1
|
Leitner M, Bishop C, Asgari S. Transcriptional Response of Wolbachia to Dengue Virus Infection in Cells of the Mosquito Aedes aegypti. mSphere 2021; 6:e0043321. [PMID: 34190587 PMCID: PMC8265661 DOI: 10.1128/msphere.00433-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Aedes aegypti transmits one of the most significant mosquito-borne viruses, dengue virus (DENV). The absence of effective vaccines and clinical treatments and the emergence of insecticide resistance in A. aegypti necessitate novel vector control strategies. A new approach uses the endosymbiotic bacterium Wolbachia pipientis to reduce the spread of arboviruses. However, the Wolbachia-mediated antiviral mechanism is not well understood. To shed light on this mechanism, we investigated an unexplored aspect of Wolbachia-virus-mosquito interaction. We used RNA sequencing to examine the transcriptional response of Wolbachia to DENV infection in A. aegypti Aag2 cells transinfected with the wAlbB strain of Wolbachia. Our results suggest that genes encoding an endoribonuclease (RNase HI), a regulator of sigma 70-dependent gene transcription (6S RNA), essential cellular, transmembrane, and stress response functions and primary type I and IV secretion systems were upregulated, while a number of transport and binding proteins of Wolbachia, ribosome structure, and elongation factor-associated genes were downregulated due to DENV infection. Furthermore, bacterial retrotransposon, transposable, and phage-related elements were found among the up- and downregulated genes. We show that Wolbachia elicits a transcriptional response to virus infection and identify differentially expressed Wolbachia genes mostly at the early stages of virus infection. These findings highlight Wolbachia's ability to alter its gene expression in response to DENV infection of the host cell. IMPORTANCE Aedes aegypti is a vector of several pathogenic viruses, including dengue, Zika, chikungunya, and yellow fever viruses, which are of importance to human health. Wolbachia is an endosymbiotic bacterium currently used in transinfected mosquitoes to suppress replication and transmission of dengue viruses. However, the mechanism of Wolbachia-mediated virus inhibition is not fully understood. While several studies have shown mosquitoes' transcriptional responses to dengue virus infection, none have investigated these responses in Wolbachia, which may provide clues to the inhibition mechanism. Our results suggest changes in the expression of a number of functionally important Wolbachia genes upon dengue virus infection, including those involved in stress responses, providing insights into the endosymbiont's reaction to virus infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Sutera V, Hennebique A, Lopez F, Fernandez N, Schneider D, Maurin M. Genomic trajectories to fluoroquinolone resistance in Francisella tularensis subsp. holarctica live vaccine strain. Int J Antimicrob Agents 2020; 56:106153. [PMID: 32911069 DOI: 10.1016/j.ijantimicag.2020.106153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 07/04/2020] [Accepted: 08/29/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Fluoroquinolone (FQ)-resistant mutants were previously selected from the live vaccine strain (LVS) of Francisella tularensis (F. tularensis) subsp. holarctica. This study further characterised all genetic changes that occurred in these mutants during the evolutionary trajectory toward high-level FQ resistance, and their potential impact on F. tularensis antibiotic resistance and intracellular fitness. METHODS The whole genomes of FQ-resistant mutants were determined and compared with those of their parental strain. All detected mutations were evaluated for their potential impact on FQ resistance and intracellular multiplication of F. tularensis. RESULTS As compared with the parental LVS genome, 28 mutations were found in the derived FQ-resistant mutants. These mutations involved all genes encoding type II topoisomerases (i.e. gyrA, gyrB, parC, and parE). Interestingly, some of them were not previously associated with FQ resistance, warranting further characterisation. Mutations associated with FQ resistance were also found in other genes, including three encoding proteins involved in transport processes. Most of the detected mutations did not alter multiplication of the corresponding mutants in J774 cells. In contrast, all mutations at locus FTL_0439 encoding FupA/B, a membrane protein involved in iron transport, were associated with FQ resistance and fitness loss. CONCLUSION FQ resistance in F. tularensis is complex and may involve single or combined mutations in genes encoding type II topoisomerases, transport systems and FupA/B. In vivo studies are now required to assess the potential role of these mutations in FQ treatment failures.
Collapse
Affiliation(s)
- Vivien Sutera
- Centre National de Référence Francisella tularensis, Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France; Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Aurélie Hennebique
- Centre National de Référence Francisella tularensis, Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France; Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Fabrice Lopez
- Technological Advances for Genomics and Clinics (TAGC), Univ. Aix-Marseille II, Marseille, France; Transcriptomic and Genomic Marseille-Luminy (TGML), IBiSA platform, Marseille, France
| | - Nicolas Fernandez
- Technological Advances for Genomics and Clinics (TAGC), Univ. Aix-Marseille II, Marseille, France; Transcriptomic and Genomic Marseille-Luminy (TGML), IBiSA platform, Marseille, France
| | - Dominique Schneider
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Max Maurin
- Centre National de Référence Francisella tularensis, Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France; Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France.
| |
Collapse
|
3
|
Contributions of TolC Orthologs to Francisella tularensis Schu S4 Multidrug Resistance, Modulation of Host Cell Responses, and Virulence. Infect Immun 2019; 87:IAI.00823-18. [PMID: 30670554 DOI: 10.1128/iai.00823-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a Gram-negative, facultative intracellular pathogen and the causative agent of tularemia. Previous studies with the attenuated live vaccine strain (LVS) identified a role for the outer membrane protein TolC in modulation of host cell responses during infection and virulence in the mouse model of tularemia. TolC is an integral part of efflux pumps that export small molecules and type I secretion systems that export a range of bacterial virulence factors. In this study, we analyzed TolC and its two orthologs, FtlC and SilC, present in the fully virulent F. tularensis Schu S4 strain for their contributions to multidrug efflux, suppression of innate immune responses, and virulence. We found that each TolC ortholog participated in multidrug efflux, with overlapping substrate specificities for TolC and FtlC and a distinct substrate profile for SilC. In contrast to their shared roles in drug efflux, only TolC functioned in the modulation of macrophage apoptotic and proinflammatory responses to Schu S4 infection, consistent with a role in virulence factor delivery to host cells. In agreement with previous results with the LVS, the Schu S4 ΔtolC mutant was highly attenuated for virulence in mice by both the intranasal and intradermal routes of infection. Unexpectedly, FtlC was also critical for Schu S4 virulence, but only by the intradermal route. Our data demonstrate a conserved and critical role for TolC in modulation of host immune responses and Francisella virulence and also highlight strain- and route-dependent differences in the pathogenesis of tularemia.
Collapse
|
4
|
Dankova V, Balonova L, Link M, Straskova A, Sheshko V, Stulik J. Inactivation of Francisella tularensis Gene Encoding Putative ABC Transporter Has a Pleiotropic Effect upon Production of Various Glycoconjugates. J Proteome Res 2016; 15:510-24. [DOI: 10.1021/acs.jproteome.5b00864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Vera Dankova
- Department
of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Lucie Balonova
- Department
of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Marek Link
- Department
of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Adela Straskova
- Department
of Phototrophic Microorganisms, Institute of Microbiology, The Academy of Sciences of The Czech Republic, Trebon 379 81, Czech Republic
| | - Valeria Sheshko
- Department
of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Jiri Stulik
- Department
of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove 500 01, Czech Republic
| |
Collapse
|
5
|
Ma Z, Banik S, Rane H, Mora VT, Rabadi SM, Doyle CR, Thanassi DG, Bakshi CS, Malik M. EmrA1 membrane fusion protein of Francisella tularensis LVS is required for resistance to oxidative stress, intramacrophage survival and virulence in mice. Mol Microbiol 2014; 91:976-95. [PMID: 24397487 DOI: 10.1111/mmi.12509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2014] [Indexed: 01/11/2023]
Abstract
Francisella tularensis is a category A biodefence agent that causes a fatal human disease known as tularaemia. The pathogenicity of F. tularensis depends on its ability to persist inside host immune cells primarily by resisting an attack from host-generated reactive oxygen and nitrogen species (ROS/RNS). Based on the ability of F. tularensis to resist high ROS/RNS levels, we have hypothesized that additional unknown factors act in conjunction with known antioxidant defences to render ROS resistance. By screening a transposon insertion library of F. tularensis LVS in the presence of hydrogen peroxide, we have identified an oxidant-sensitive mutant in putative EmrA1 (FTL_0687) secretion protein. The results demonstrate that the emrA1 mutant is highly sensitive to oxidants and several antimicrobial agents, and exhibits diminished intramacrophage growth that can be restored to wild-type F. tularensis LVS levels by either transcomplementation, inhibition of ROS generation or infection in NADPH oxidase deficient (gp91Phox(-/-)) macrophages. The emrA1 mutant is attenuated for virulence, which is restored by infection in gp91Phox(-/-) mice. Further, EmrA1 contributes to oxidative stress resistance by affecting secretion of Francisella antioxidant enzymes SodB and KatG. This study exposes unique links between transporter activity and the antioxidant defence mechanisms of F. tularensis.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Francisella tularensis intracellular survival: to eat or to die. Microbes Infect 2013; 15:989-997. [PMID: 24513705 DOI: 10.1016/j.micinf.2013.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022]
Abstract
Francisella tularensis is a highly infectious facultative intracellular bacterium causing the zoonotic disease tularemia. Numerous attributes required for F. tularensis intracellular multiplication have been identified recently. However, the mechanisms by which the majority of them interfere with the infected host are still poorly understood. The following review summarizes our current knowledge on the different steps of Francisella intramacrophagic life cycle and expands on the importance of nutrient acquisition.
Collapse
|
7
|
Sutera V, Levert M, Burmeister WP, Schneider D, Maurin M. Evolution toward high-level fluoroquinolone resistance in Francisella species. J Antimicrob Chemother 2013; 69:101-10. [PMID: 23963236 DOI: 10.1093/jac/dkt321] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Francisella tularensis, a CDC class A potential bioterrorism agent, is a Gram-negative bacterium responsible for tularaemia. Understanding the mechanisms of resistance to antibiotics used as first-line treatment is of major security relevance. METHODS We propagated the three parental reference strains Francisella tularensis subsp. holarctica live vaccine strain, Francisella novicida and Francisella philomiragia with increasing concentrations of ciprofloxacin, a fluoroquinolone used as curative and prophylactic treatment for tularaemia. This evolution procedure provided us with high-level ciprofloxacin-resistant mutants and all evolutionary intermediates towards high-level resistance. We determined the resistance levels to other fluoroquinolones (levofloxacin and moxifloxacin) and other antibiotic families (aminoglycosides, tetracyclines and macrolides) and characterized the genetic changes in the fluoroquinolone target genes encoding DNA gyrase and topoisomerase IV. RESULTS All high-level resistant mutants shared cross-resistance to the tested fluoroquinolones, while some also revealed striking levels of cross-resistance to other clinically relevant antibiotic classes. High-level resistant mutants carried one to three mutations, including some not previously reported. We mapped all mutations onto known topoisomerase three-dimensional structures. Along the pathways towards high-level resistance, we identified complex evolutionary trajectories including polymorphic states and additional resistance mechanisms likely to be associated with efflux processes. CONCLUSIONS Our data demonstrated the efficiency and speed of in vitro production of mutants highly resistant to fluoroquinolones in Francisella species. They emphasize the urgent need to identify all antibiotic resistance mechanisms in these species, develop molecular tools for their detection and design new therapeutic alternatives for tularaemia.
Collapse
Affiliation(s)
- Vivien Sutera
- Centre Hospitalier Universitaire Grenoble, CS10217, 38043 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
8
|
The acid phosphatase AcpA is secreted in vitro and in macrophages by Francisella spp. Infect Immun 2011; 80:1088-97. [PMID: 22184418 DOI: 10.1128/iai.06245-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a remarkably infectious facultative intracellular pathogen that causes the zoonotic disease tularemia. Essential to the pathogenesis of F. tularensis is its ability to escape the destructive phagosomal environment and inhibit the host cell respiratory burst. F. tularensis subspecies encode a series of acid phosphatases, which have been reported to play important roles in Francisella phagosomal escape, inhibition of the respiratory burst, and intracellular survival. However, rigorous demonstration of acid phosphatase secretion by intracellular Francisella has not been shown. Here, we demonstrate that AcpA, which contributes most of the F. tularensis acid phosphatase activity, is secreted into the culture supernatant in vitro by F. novicida and F. tularensis subsp. holarctica LVS. In addition, both F. novicida and the highly virulent F. tularensis subsp. tularensis Schu S4 strain are able to secrete and also translocate AcpA into the host macrophage cytosol. This is the first evidence of acid phosphatase translocation during macrophage infection, and this knowledge will greatly enhance our understanding of the functions of these enzymes in Francisella pathogenesis.
Collapse
|
9
|
Dresler J, Klimentova J, Stulik J. Francisella tularensis membrane complexome by blue native/SDS-PAGE. J Proteomics 2011; 75:257-69. [DOI: 10.1016/j.jprot.2011.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/09/2011] [Accepted: 05/03/2011] [Indexed: 12/11/2022]
|
10
|
Meibom KL, Charbit A. Francisella tularensis metabolism and its relation to virulence. Front Microbiol 2010; 1:140. [PMID: 21687763 PMCID: PMC3109416 DOI: 10.3389/fmicb.2010.00140] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/13/2010] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is a Gram-negative bacterium capable of causing the zoonotic disease tularaemia in a large number of mammalian species and in arthropods. F. tularensis is a facultative intracellular bacterium that infects and replicates in vivo mainly inside macrophages. During its systemic dissemination, F. tularensis must cope with very different life conditions (such as survival in different target organs or tissues and/or survival in the blood stream…) and may thus encounter a broad variety of carbon substrates, nitrogen, phosphor, and sulfur sources, as well as very low concentrations of essential ions. The development of recent genome-wide genetic screens have led to the identification of hundreds of genes participating to variable extents to Francisella virulence. Remarkably, an important proportion of the genes identified are related to metabolic and nutritional functions. However, the relationship between nutrition and the in vivo life cycle of F. tularensis is yet poorly understood. In this review, we will address the importance of metabolism and nutrition for F. tularensis pathogenesis, focusing specifically on amino acid and carbohydrate requirements.
Collapse
|
11
|
Konecna K, Hernychova L, Reichelova M, Lenco J, Klimentova J, Stulik J, Macela A, Alefantis T, DelVecchio VG. Comparative proteomic profiling of culture filtrate proteins of less and highly virulent Francisella tularensis
strains. Proteomics 2010; 10:4501-11. [DOI: 10.1002/pmic.201000248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Gestin B, Valade E, Thibault F, Schneider D, Maurin M. Phenotypic and genetic characterization of macrolide resistance in Francisella tularensis subsp. holarctica biovar I. J Antimicrob Chemother 2010; 65:2359-67. [PMID: 20837574 DOI: 10.1093/jac/dkq315] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Francisella tularensis subsp. holarctica strains are classified as biovars I and II, which are susceptible and naturally resistant to the macrolide erythromycin, respectively. The present study was aimed at both selecting biovar I strains with increased levels of erythromycin resistance and characterizing the underlying genetic mechanisms. METHODS Serial cultures in the presence of increasingly high erythromycin concentrations were performed to select independent high- and intermediate-level erythromycin-resistant mutants from each of three different biovar I strains. The mutants were characterized for cross-resistance to several antibiotics, presence of mutations in the genes encoding the 23S rRNA and the L4 and L22 ribosomal proteins, and overexpression of efflux pumps. RESULTS Mutants displayed cross-resistance to all macrolide compounds tested but not to other classes of antibiotics. We found mutations in domain V of the 23S rRNA gene (G2057A, A2058G, A2058T and C2611T) and in the gene encoding L22, leading to either the G91D substitution or the M82K83R84 deletion. Analysis of mutants with intermediate resistance levels obtained over the course of the selection process revealed both a positive correlation between the number of mutated ribosomal operons and the resistance level, and an additional resistance mechanism in the early steps of selection. CONCLUSIONS We showed that high-level resistance to macrolides can be easily obtained in vitro in F. tularensis subsp. holarctica biovar I strains, thereby suggesting that in vivo selection for resistance may explain reported failures of antibiotic treatment. Ketolides were the most effective macrolides tested, which may limit the risk of selection for resistance.
Collapse
Affiliation(s)
- Brieuc Gestin
- CNRS UMR 5163 and Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
13
|
The Repertoire and Evolution of ATP-Binding Cassette Systems in Synechococcus and Prochlorococcus. J Mol Evol 2009; 69:300-10. [PMID: 19756840 DOI: 10.1007/s00239-009-9259-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 06/14/2009] [Accepted: 06/16/2009] [Indexed: 12/17/2022]
|
14
|
Champion MD, Zeng Q, Nix EB, Nano FE, Keim P, Kodira CD, Borowsky M, Young S, Koehrsen M, Engels R, Pearson M, Howarth C, Larson L, White J, Alvarado L, Forsman M, Bearden SW, Sjöstedt A, Titball R, Michell SL, Birren B, Galagan J. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog 2009; 5:e1000459. [PMID: 19478886 PMCID: PMC2682660 DOI: 10.1371/journal.ppat.1000459] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 04/29/2009] [Indexed: 01/15/2023] Open
Abstract
Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.
Collapse
Affiliation(s)
- Mia D Champion
- Microbial Analysis Group, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kowalczewska M, Villard C, Lafitte D, Fenollar F, Raoult D. Global proteomic pattern of Tropheryma whipplei: a Whipple's disease bacterium. Proteomics 2009; 9:1593-616. [PMID: 19253299 DOI: 10.1002/pmic.200700889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The proteome of Tropheryma whipplei, the intracellular bacterium responsible for Whipple's disease (WD), was analyzed using two complementary approaches: 2-DE coupled with MALDI-TOF and SDS-PAGE with nanoLC-MS/MS. This strategy led to the identification of 206 proteins of 808 predicted ORFs, resolving some questions raised by the genomic sequence of this bacterium. We successfully identified antibiotic targets and proteins with predicted N-terminal signal sequences. Additionally, we identified a family of surface proteins (known as T. whipplei surface proteins (WiSPs)), which are encoded by a unique group of species-specific genes and serve as both coding regions and DNA repeats that promote genomic recombination. Comparison of the protein expression profiles of the intracellular facultative host-associated WD bacterium with other host-associated, intracellular obligate, and environmental bacteria revealed that T. whipplei shares a proteomic expression profile with other host-associated facultative intracellular bacteria. In summary, this study describes the global protein expression pattern of T. whipplei and reveals some specific features of the T. whipplei proteome.
Collapse
|
16
|
Kowalczewska M, Fenollar F, Villard C, Azza S, Roux M, Raoult D. An immunoproteomic approach for identification of clinical biomarkers of Whipple's disease. Proteomics Clin Appl 2008; 2:504-16. [PMID: 21136854 DOI: 10.1002/prca.200780078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Indexed: 12/19/2022]
Abstract
Whipple's disease (WD) is a chronic multisystemic infection, caused by the bacterium Tropheryma whipplei. The main clinical presentations are classic WD (CWD) with histologic lesions in the gastrointestinal tract, endocarditis, and isolated neurologic infection. The current strategy for diagnosis remains invasive.The present study aimed to select the protein candidates for serological diagnosis of WD. The first step was to identify candidate proteins by an immunoproteomic approach combining 2-DE using a total extract of a T. whipplei, immunoblotting, and MS. The second step was to validate the discovered biomarkers using a recombinant protein-based ELISA. Serum samples from 18 patients with WD and from 54 control individuals were tested. A sugar ABC transporter, TWT328 (sensitivity (Se) 61%, specificity (Sp) 87%, positive predictive value (PPV) 61%, negative predictive value (NPV) 87%, and positive likelihood ratio (PLR) 4.69) was the best marker for development of serodiagnosis for CWD. We also obtained a reproducible immunoreactive protein pattern for patients with isolated neurological infection due to T. whipplei (Se 100%, Sp 93%, PPV 55.5%, NPV 100%, and PLR 13.51) as an encouraging step towards noninvasive diagnosis of this particular manifestation. Nine recombinant candidates have been successfully screened with serum samples. Results from these ELISA assays skewed with those obtained with immunoblots.
Collapse
|
17
|
Maier TM, Casey MS, Becker RH, Dorsey CW, Glass EM, Maltsev N, Zahrt TC, Frank DW. Identification of Francisella tularensis Himar1-based transposon mutants defective for replication in macrophages. Infect Immun 2007; 75:5376-89. [PMID: 17682043 PMCID: PMC2168294 DOI: 10.1128/iai.00238-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Francisella tularensis, the etiologic agent of tularemia in humans, is a potential biological threat due to its low infectious dose and multiple routes of entry. F. tularensis replicates within several cell types, eventually causing cell death by inducing apoptosis. In this study, a modified Himar1 transposon (HimarFT) was used to mutagenize F. tularensis LVS. Approximately 7,000 Km(r) clones were screened using J774A.1 macrophages for reduction in cytopathogenicity based on retention of the cell monolayer. A total of 441 candidates with significant host cell retention compared to the parent were identified following screening in a high-throughput format. Retesting at a defined multiplicity of infection followed by in vitro growth analyses resulted in identification of approximately 70 candidates representing 26 unique loci involved in macrophage replication and/or cytotoxicity. Mutants carrying insertions in seven hypothetical genes were screened in a mouse model of infection, and all strains tested appeared to be attenuated, which validated the initial in vitro results obtained with cultured macrophages. Complementation and reverse transcription-PCR experiments suggested that the expression of genes adjacent to the HimarFT insertion may be affected depending on the orientation of the constitutive groEL promoter region used to ensure transcription of the selective marker in the transposon. A hypothetical gene, FTL_0706, postulated to be important for lipopolysaccharide biosynthesis, was confirmed to be a gene involved in O-antigen expression in F. tularensis LVS and Schu S4. These and other studies demonstrate that therapeutic targets, vaccine candidates, or virulence-related genes may be discovered utilizing classical genetic approaches in Francisella.
Collapse
Affiliation(s)
- Tamara M Maier
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gil H, Platz GJ, Forestal CA, Monfett M, Bakshi CS, Sellati TJ, Furie MB, Benach JL, Thanassi DG. Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence. Proc Natl Acad Sci U S A 2006; 103:12897-902. [PMID: 16908853 PMCID: PMC1568944 DOI: 10.1073/pnas.0602582103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Indexed: 01/09/2023] Open
Abstract
The Gram-negative bacterium Francisella tularensis is the causative agent of tularemia. Interest in this zoonotic pathogen has increased due to its classification as a category A agent of bioterrorism, but little is known about the molecular mechanisms underlying its virulence, and especially what secretion systems and virulence factors are present. In this study, we characterized two genes in the F. tularensis genome, tolC and a gene we term ftlC, whose products have high homology with the Escherichia coli TolC protein. TolC functions as the outer membrane channel component for both type I secretion and multidrug efflux systems. We constructed deletion mutations of these genes in the F. tularensis live vaccine strain by allelic replacement. Deletion of either tolC or ftlC caused increased sensitivity to various antibiotics, detergents, and dyes, indicating both genes are involved in the multidrug resistance machinery of F. tularensis. Complementation of the deletion mutations in trans restored drug resistance. Neither tolC nor ftlC was required for replication of the live vaccine strain in murine bone marrow-derived macrophages. However, deletion of tolC, but not ftlC, caused a significant attenuation of virulence in a mouse model of tularemia that could be complemented by addition of tolC in trans. Thus, tolC is a critical virulence factor of F. tularensis in addition to its role in multidrug resistance, which suggests the presence of a functional type I secretion system.
Collapse
Affiliation(s)
- Horacio Gil
- *Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120; and
| | - Gabrielle J. Platz
- *Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120; and
| | - Colin A. Forestal
- *Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120; and
| | - Michael Monfett
- *Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120; and
| | | | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Martha B. Furie
- *Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120; and
| | - Jorge L. Benach
- *Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120; and
| | - David G. Thanassi
- *Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120; and
| |
Collapse
|