1
|
Yadav M, Mallappa RH, Ambatipudi K. Human milk fat globule delivers entrapped probiotics to the infant's gut and acts synergistically to ameliorate oxidative and pathogenic stress. Food Chem 2025; 462:141030. [PMID: 39241685 DOI: 10.1016/j.foodchem.2024.141030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, Indian Council of Agriculture Research-National Dairy Research Institute, Karnal 132001, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
2
|
Zheng Y, Xu L, Zhang S, Liu Y, Ni J, Xiao G. Effect of a probiotic formula on gastrointestinal health, immune responses and metabolic health in adults with functional constipation or functional diarrhea. Front Nutr 2023; 10:1196625. [PMID: 37497057 PMCID: PMC10368241 DOI: 10.3389/fnut.2023.1196625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023] Open
Abstract
Objective Our aim was to determine the efficacy of four-week probiotic supplementation on gastrointestinal health. The secondary objectives were to assess probiotic effects on immune reaction, as well as weight control and metabolic health. Methods We conducted two randomized sub-trials, respectively, among subjects who were diagnosed with functional constipation (FC) or functional diarrhea (FDr) according to the Rome IV criteria. In each sub-trial, 70 eligible Chinese adults were randomized to receive a multi-strain probiotic combination or a placebo. Gastrointestinal symptoms, defecation habits, stool characteristics, blood and fecal biochemistry markers, anthropometrics measures, stress-associated responses, and intestinal flora changes were assessed at baseline and after probiotics intervention. Results Four weeks of probiotic supplementation reduced overall gastrointestinal symptoms scores in FC participants (p < 0.0001). Their mean weekly stool frequency increased from 3.3 times to 6.2 times; immune response and inflammation markers improved with increases in serum IgA, IFN-γ and fecal sIgA, and decrease in hsCRP; most components of lipid profile were significantly ameliorated, with increases in HDL-C and reductions in TC and TG; body weight, body mass index and basal metabolic rate decreased following probiotics consumption. For FDr participants, probiotics consumption markedly reduced overall gastrointestinal symptom scores (p < 0.0001); decreased stool frequency by 3 times per week; increased IgA, IFN-γ, sIgA concentrations, while lowered hsCRP and IL-4 levels. Both FC and FDr participants had improvement in the scores of defecation habits, anxiety or depression, and perceived stress. Probiotics supplementation promoted the production of all three major short-chain fatty acids. No changes were observed in LDL-C, IgG, IgM, IL-8, IL-10 and motilin. Conclusion Supplementation with the probiotic formula over a four-week period could help relieving gastrointestinal symptoms, improving satisfaction with defecation habits, emotional state and immune response, and ameliorating dysbacteriosis in participants with FC or FDr. It also had beneficial effects on lipid metabolism and weight control for FC participants.
Collapse
Affiliation(s)
- Yanyi Zheng
- Shenzhen Precision Health Food Technology Co., Ltd., Shenzhen, China
| | - Leiming Xu
- Department of Gastroenterology, Shanghai Jiaotong University Affiliated Xinhua Hospital, Shanghai, China
| | - Silu Zhang
- Shenzhen Precision Health Food Technology Co., Ltd., Shenzhen, China
| | - Yanwen Liu
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Jiayi Ni
- Sprim (China) Consulting Co. Ltd., Shanghai, China
| | - Guoxun Xiao
- Shenzhen Precision Health Food Technology Co., Ltd., Shenzhen, China
| |
Collapse
|
3
|
Qi X, Zhang Y, Zhang Y, Luo F, Song K, Wang G, Ling F. Vitamin B 12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. MICROBIOME 2023; 11:135. [PMID: 37322528 PMCID: PMC10268390 DOI: 10.1186/s40168-023-01574-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pathogen infections seriously affect host health, and the use of antibiotics increases the risk of the emergence of drug-resistant bacteria and also increases environmental and health safety risks. Probiotics have received much attention for their excellent ability to prevent pathogen infections. Particularly, explaining mechanism of action of probiotics against pathogen infections is important for more efficient and rational use of probiotics and the maintenance of host health. RESULTS Here, we describe the impacts of probiotic on host resistance to pathogen infections. Our findings revealed that (I) the protective effect of oral supplementation with B. velezensis against Aeromonas hydrophila infection was dependent on gut microbiota, specially the anaerobic indigenous gut microbe Cetobacterium; (II) Cetobacterium was a sensor of health, especially for fish infected with pathogenic bacteria; (III) the genome resolved the ability of Cetobacterium somerae CS2105-BJ to synthesize vitamin B12 de novo, while in vivo and in vitro metabolism assays also showed the ability of Cetobacterium somerae CS2105-BJ to produce vitamin B12; (IV) the addition of vitamin B12 significantly altered the gut redox status and the gut microbiome structure and function, and then improved the stability of the gut microbial ecological network, and enhanced the gut barrier tight junctions to prevent the pathogen infection. CONCLUSION Collectively, this study found that the effect of probiotics in enhancing host resistance to pathogen infections depended on function of B12 produced by an anaerobic indigenous gut microbe, Cetobacterium. Furthermore, as a gut microbial regulator, B12 exhibited the ability to strengthen the interactions within gut microbiota and gut barrier tight junctions, thereby improving host resistance against pathogen infection. Video Abstract.
Collapse
Affiliation(s)
- Xiaozhou Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaige Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Birmann PT, Casaril AM, Pesarico AP, Rodrigues RR, Conceição FR, Sousa FSS, Collares T, Seixas FK, Savegnago L. Komagataella pastoris KM71H Mitigates Depressive-Like Phenotype, Preserving Intestinal Barrier Integrity and Modulating the Gut Microbiota in Mice. Mol Neurobiol 2023; 60:4017-4029. [PMID: 37016046 DOI: 10.1007/s12035-023-03326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
The role of intestinal microbiota in the genesis of mental health has received considerable attention in recent years, given that probiotics are considered promising therapeutic agents against major depressive disorder. Komagataella pastoris KM71H is a yeast with probiotic properties and antidepressant-like effects in animal models of depression. Hence, we evaluated the antidepressant-like effects of K. pastoris KM71H in a model of antibiotic-induced intestinal dysbiosis in male Swiss mice. The mice received clindamycin (200 μg, intraperitoneal) and, after 24 h, were treated with K. pastoris KM71H at a dose of 8 log CFU/animal by intragastric administration (ig) or PBS (vehicle, ig) for 14 consecutive days. Afterward, the animals were subjected to behavioral tests and biochemical analyses. Our results showed that K. pastoris KM71H administration decreased the immobility time in the tail suspension test and increased grooming activity duration in the splash test in antibiotic-treated mice, thereby characterizing its antidepressant-like effect. We observed that these effects of K. pastoris KM71H were accompanied by the modulation of the intestinal microbiota, preservation of intestinal barrier integrity, and restoration of the mRNA levels of occludin, zonula occludens-1, zonula occludens-2, and toll-like receptor-4 in the small intestine, and interleukin-1β in the hippocampi of mice. Our findings provide solid evidence to support the development of K. pastoris KM71H as a new probiotic with antidepressant-like effects.
Collapse
Affiliation(s)
- Paloma T Birmann
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Angela M Casaril
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Ana Paula Pesarico
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Rafael R Rodrigues
- Applied Immunology Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabricio R Conceição
- Applied Immunology Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fernanda Severo Sabedra Sousa
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
5
|
Tang N, Yu Q, Mei C, Wang J, Wang L, Wang G, Zhao J, Chen W. Bifidobacterium bifidum CCFM1163 Alleviated Cathartic Colon by Regulating the Intestinal Barrier and Restoring Enteric Nerves. Nutrients 2023; 15:nu15051146. [PMID: 36904145 PMCID: PMC10005791 DOI: 10.3390/nu15051146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Cathartic colon (CC), a type of slow-transit constipation caused by the long-term use of stimulant laxatives, does not have a precise and effective treatment. This study aimed to evaluate the ability of Bifidobacterium bifidum CCFM1163 to relieve CC and to investigate its underlying mechanism. Male C57BL/6J mice were treated with senna extract for 8 weeks, followed by a 2-week treatment with B. bifidum CCFM1163. The results revealed that B. bifidum CCFM1163 effectively alleviated CC symptoms. The possible mechanism of B. bifidum CCFM1163 in relieving CC was analyzed by measuring the intestinal barrier and enteric nervous system (ENS)-related indices and establishing a correlation between each index and gut microbiota. The results indicated that B. bifidum CCFM1163 changed the gut microbiota by significantly increasing the relative abundance of Bifidobacterium, Faecalibaculum, Romboutsia, and Turicibacter as well as the content of short-chain fatty acids, especially propionic acid, in the feces. This increased the expression of tight junction proteins and aquaporin 8, decreased intestinal transit time, increased fecal water content, and relieved CC. In addition, B. bifidum CCFM1163 also increased the relative abundance of Faecalibaculum in feces and the expression of enteric nerve marker proteins to repair the ENS, promote intestinal motility, and relieve constipation.
Collapse
Affiliation(s)
- Nan Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chunxia Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jialiang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: ; Tel.: +86-510-8591-2155
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Compound Probiotic Ameliorates Acute Alcoholic Liver Disease in Mice by Modulating Gut Microbiota and Maintaining Intestinal Barrier. Probiotics Antimicrob Proteins 2023; 15:185-201. [PMID: 36456838 DOI: 10.1007/s12602-022-10005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
Alcoholic liver disease (ALD) is a worldwide health threaten lack of effective treatment. Gut dysbiosis and concomitant augmented intestinal permeability are strongly implicated in the pathogenesis and progression of ALD. Research on the protective effect of probiotics on ALD is limited, and more effective intestinal microecological regulators and the related mechanisms still need to be further explored. In the present study, the protective effects and mechanisms of a compound probiotic against acute alcohol-induced liver injury in vivo were explod. It was showed that the compound probiotic ameliorated liver injury in acute ALD mice and stabilized the levels of ALT, AST, and TG in serum. The compound probiotic reversed acute alcohol-induced gut dysbiosis and maintained the intestinal barrier integrity by upregulating the production of mucus and the expression of tight junction (TJ) proteins and thus reduced LPS level in liver. Meanwhile, the compound probiotic reduced inflammation level by inhibiting TLR4/NF-κB signaling pathway and suppressed oxidative stress level in liver. Furthermore, the compound probiotic alleviated liver lipid accumulation by regulating fatty acid metabolism-associated genes and AMPK-PPARα signaling pathway. Noteworthy, fecal microbiota transplantation (FMT) realized comparable protective effect with that of compound probiotic. In conclusion, present study demonstrates the beneficial effects and underlying mechanism of the compound probiotic against acute alcohol-induced liver injury. It provides clues for development of novel strategy for treatment of ALD.
Collapse
|
7
|
di Vito R, Conte C, Traina G. A Multi-Strain Probiotic Formulation Improves Intestinal Barrier Function by the Modulation of Tight and Adherent Junction Proteins. Cells 2022; 11:cells11162617. [PMID: 36010692 PMCID: PMC9406415 DOI: 10.3390/cells11162617] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
In healthy individuals, tight junction proteins (TJPs) maintain the integrity of the intestinal barrier. Dysbiosis and increased intestinal permeability are observed in several diseases, such as inflammatory bowel disease. Many studies highlight the role of probiotics in preventing intestinal barrier dysfunction. The present study aims to investigate the effects of a commercially available probiotic formulation of L. rhamnosus LR 32, B. lactis BL 04, and B. longum BB 536 (Serobioma, Bromatech s.r.l., Milan, Italy) on TJPs and the integrity of the intestinal epithelial barrier, and the ability of this formulation to prevent lipopolysaccharide-induced, inflammation-associated damage. An in vitro model of the intestinal barrier was developed using a Caco-2 cell monolayer. The mRNA expression levels of the TJ genes were analyzed using real-time PCR. Changes in the amounts of proteins were assessed with Western blotting. The effect of Serobioma on the intestinal epithelial barrier function was assessed using transepithelial electrical resistance (TEER) measurements. The probiotic formulation tested in this study modulates the expression of TJPs and prevents inflammatory damage. Our findings provide new insights into the mechanisms by which probiotics are able to prevent damage to the gut epithelial barrier.
Collapse
|
8
|
Use of the Probiotic Bifidobacterium animalis subsp. lactis HN019 in Oral Diseases. Int J Mol Sci 2022; 23:ijms23169334. [PMID: 36012597 PMCID: PMC9409207 DOI: 10.3390/ijms23169334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
The oral cavity is one of the environments on the human body with the highest concentrations of microorganisms that coexist harmoniously and maintain homeostasis related to oral health. Several local factors can shift the microbiome to a pathogenic state of dysbiosis. Existing treatments for infections caused by changes in the oral cavity aim to control biofilm dysbiosis and restore microbial balance. Studies have used probiotics as treatments for oral diseases, due to their ability to reduce the pathogenicity of the microbiota and immunoinflammatory changes. This review investigates the role of the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) HN019 in oral health, and its mechanism of action in pre-clinical and clinical studies. This probiotic strain is a lactic acid bacterium that is safe for human consumption. It mediates bacterial co-aggregation with pathogens and modulates the immune response. Studies using B. lactis HN019 in periodontitis and peri-implant mucositis have shown it to be a potential adjuvant treatment with beneficial microbiological and immunological effects. Studies evaluating its oral effects and mechanism of action show that this probiotic strain has the potential to be used in several dental applications because of its benefit to the host.
Collapse
|
9
|
Saccharomyces cerevisiae I4 Showed Alleviating Effects on Dextran Sulfate Sodium-Induced Colitis of Balb/c Mice. Foods 2022; 11:foods11101436. [PMID: 35627006 PMCID: PMC9140780 DOI: 10.3390/foods11101436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease. The purpose of this study was to investigate the ameliorating effects of three yeast strains, Saccharomyces cerevisiae I4, Clavispora lusitaniae 30 and Pichia kudriavzevii 11, isolated from traditional fermented dairy food in Xinjiang, China, on the ulcerative colitis symptoms of Balb/c mice treated by dextran sulfate sodium (DSS). Among which, S. cerevisiae I4 had good tolerance to simulated gastrointestinal juice and strong adhesion to HT–29 cells monolayers. Furthermore, the three yeast strains were oral administered to Balb/c mice with DSS induced colitis. The weight loss, colon shortening and histological injury of colitis mice were ameliorated. Then, oral administration of S. cerevisiae I4 improved the immune state by reducing the contents of TNF–α, IL–6 and IL–1β and increasing immunoglobulin. The relative expression of intestinal barrier proteins Claudin–1, Occludin and Zonula Occludins–1 (ZO–1) of the mice enhanced, and the short chain fatty acids (SCFAs) content such as Propionic acid, Butyric acid, Isobutyric acid and Isovaleric acid in the feces of the mice increased to varying degrees, after S. cerevisiae I4 treatment compared with the model group of drinking 3% DSS water without yeast treatment. Moreover, S. cerevisiae I4 treatment lifted the proportion of beneficial bacteria such as Muribaculaceae, Lactobacillaceae and Rikenellaceae in the intestinal tract of the mice, the abundance of harmful bacteria such as Staphylococcus aureus and Turicibacter was decreased. These results suggested that S. cerevisiae I4 could alleviate DSS induced colitis in mice by enhancing intestinal barrier function and regulating intestinal flora balance.
Collapse
|
10
|
Cheng J, Laitila A, Ouwehand AC. Bifidobacterium animalis subsp. lactis HN019 Effects on Gut Health: A Review. Front Nutr 2022; 8:790561. [PMID: 34970580 PMCID: PMC8712437 DOI: 10.3389/fnut.2021.790561] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Optimal gut motility is central to bowel function and gut health. The link between the gut dysmotility related disorders and dysfunctional-intestinal barriers has led to a hypothesis that certain probiotics could help in normalizing gut motility and maintain gut health. This review investigates the roles of Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019™) on gut health, and its mechanisms of action in various pre-clinical and clinical studies. Research supports the hypothesis that B. lactis HN019™ has a beneficial role in maintaining intestinal barrier function during gastrointestinal infections by competing and excluding potential pathogens via different mechanisms; maintaining normal tight junction function in vitro; and regulating host immune defense toward pathogens in both in vitro and human studies. This has been observed to lead to reduced incidence of diarrhea. Interestingly, B. lactis HN019™ also supports normal physiological function in immunosenescent elderly and competes and excludes potential pathogens. Furthermore, B. lactis HN019™ reduced intestinal transit time and increased bowel movement frequency in functional constipation, potentially by modulating gut–brain–microbiota axis, mainly via serotonin signaling pathway, through short chain fatty acids derived from microbial fermentation. B. lactis HN019™ is thus a probiotic that can contribute to relieving gut dysmotility related disorders.
Collapse
Affiliation(s)
- Jing Cheng
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| | - Arja Laitila
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| | - Arthur C Ouwehand
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
11
|
Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021; 8:718093. [PMID: 34778332 PMCID: PMC8582318 DOI: 10.3389/fnut.2021.718093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
There is converging and increasing evidence, but also uncertainty, for the role of abnormal intestinal epithelial barrier function in the origin and development of a growing number of human gastrointestinal and extraintestinal inflammatory disorders, and their related complaints. Despite a vast literature addressing factors and mechanisms underlying changes in intestinal permeability in humans, and its connection to the appearance and severity of clinical symptoms, the ultimate link remains to be established in many cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic management of intestinal permeability disorders that allow health professionals involved in the management of these patients to carry out a consensus treatment based on clinical evidence. Instead, there are multiple pseudoscientific approaches and commercial propaganda scattered on the internet that confuse those affected and health professionals and that often lack scientific rigor. Therefore, in this review we aim to shed light on the different therapeutic options, which include, among others, dietary management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic and exosomes-manipulation, through an objective evaluation of the scientific publications in this field. Advances in the knowledge and management of intestinal permeability will sure enable better options of dealing with this group of common disorders to enhance quality of life of those affected.
Collapse
Affiliation(s)
- Marina Fortea
- Laboratory for Enteric NeuroScience, Translational Research Center for GastroIntestinal Disorders, University of Leuven, Leuven, Belgium
| | - Mercé Albert-Bayo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Abril-Gil
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - John-Peter Ganda Mall
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xavier Serra-Ruiz
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Alejandro Henao-Paez
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Lopez-Pier MA, Koppinger MP, Harris PR, Cannon DK, Skaria RS, Hurwitz BL, Watts G, Aras S, Slepian MJ, Konhilas JP. An adaptable and non-invasive method for tracking Bifidobacterium animalis subspecies lactis 420 in the mouse gut. J Microbiol Methods 2021; 189:106302. [PMID: 34391819 PMCID: PMC8473990 DOI: 10.1016/j.mimet.2021.106302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Probiotic strains from the Bifidobacterium or Lactobacillus genera improve health outcomes in models of metabolic and cardiovascular disease. Yet, underlying mechanisms governing these improved health outcomes are rooted in the interaction of gut microbiota, intestinal interface, and probiotic strain. Central to defining the underlying mechanisms governing these improved health outcomes is the development of adaptable and non-invasive tools to study probiotic localization and colonization within the host gut microbiome. The objective of this study was to test labeling and tracking efficacy of Bifidobacterium animalis subspecies lactis 420 (B420) using a common clinical imaging agent, indocyanine green (ICG). ICG was an effective in situ labeling agent visualized in either intact mouse or excised gastrointestinal (GI) tract at different time intervals. Quantitative PCR was used to validate ICG visualization of B420, which also demonstrated that B420 transit time matched normal murine GI motility (~8 hours). Contrary to previous thoughts, B420 did not colonize any region of the GI tract whether following a single bolus or daily administration for up to 10 days. We conclude that ICG may provide a useful tool to visualize and track probiotic species such as B420 without implementing complex molecular and genetic tools. Proof-of-concept studies indicate that B420 did not colonize and establish residency align the murine GI tract.
Collapse
Affiliation(s)
- Marissa A Lopez-Pier
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Matthew P Koppinger
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Preston R Harris
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Danielle K Cannon
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Rinku S Skaria
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | | | - George Watts
- Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | | | - Marvin J Slepian
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Bio5 Institute, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - John P Konhilas
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
13
|
Xue Y, Zhu MJ. Unraveling enterohemorrhagic Escherichia coli infection: the promising role of dietary compounds and probiotics in bacterial elimination and host innate immunity boosting. Crit Rev Food Sci Nutr 2021; 63:1551-1563. [PMID: 34404306 DOI: 10.1080/10408398.2021.1965538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The innate immune system has developed sophisticated strategies to defense against infections. Host cells utilize the recognition machineries such as toll-like receptors and nucleotide binding and oligomerization domain-like receptors to identify the pathogens and alert immune system. However, some pathogens have developed tactics to evade host defenses, including manipulation of host inflammatory response, interference with cell death pathway, and highjack of phagocytosis signaling for a better survival and colonization in host. Enterohemorrhagic Escherichia coli (EHEC) is a notorious foodborne pathogen that causes severe tissue damages and gastrointestinal diseases, which has been reported to disturb host immune responses. Diverse bioactive compounds such as flavonoids, phenolic acids, alkaloids, saccharides, and terpenoids derived from food varieties and probiotics have been discovered and investigated for their capability of combating bacterial infections. Some of them serve as novel antimicrobial agents and act as immune boosters that harness host immune system. In this review, we will discuss how EHEC, specifically E. coli O157:H7, hijacks the host immune system and interferes with host signaling pathway; and highlight the promising role of food-derived bioactive compounds and probiotics in harnessing host innate immunity and eliminating E. coli O157:H7 infection with multiple strategies.
Collapse
Affiliation(s)
- Yansong Xue
- Key Laboratory of Functional Dairy, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
14
|
Simon E, Călinoiu LF, Mitrea L, Vodnar DC. Probiotics, Prebiotics, and Synbiotics: Implications and Beneficial Effects against Irritable Bowel Syndrome. Nutrients 2021; 13:nu13062112. [PMID: 34203002 PMCID: PMC8233736 DOI: 10.3390/nu13062112] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is still a common functional gastrointestinal disease that presents chronic abdominal symptoms but with a pathophysiology that is not yet fully elucidated. Moreover, the use of the synergistic combination of prebiotics and probiotics, known as synbiotics, for IBS therapy is still in the early stages. Advancements in technology led to determining the important role played by probiotics in IBS, whereas the present paper focuses on the detailed review of the various pathophysiologic mechanisms of action of probiotics, prebiotics, and synbiotics via multidisciplinary domains involving the gastroenterology (microbiota modulation, alteration of gut barrier function, visceral hypersensitivity, and gastrointestinal dysmotility) immunology (intestinal immunological modulation), and neurology (microbiota–gut–brain axis communication and co-morbidities) in mitigating the symptoms of IBS. In addition, this review synthesizes literature about the mechanisms involved in the beneficial effects of prebiotics and synbiotics for patients with IBS, discussing clinical studies testing the efficiency and outcomes of synbiotics used as therapy for IBS.
Collapse
Affiliation(s)
- Elemer Simon
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
| | - Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-747-341-881
| |
Collapse
|
15
|
Mäkelä SM, Forssten SD, Kailajärvi M, Langén VL, Scheinin M, Tiihonen K, Ouwehand AC. Effects of Bifidobacterium animalis ssp. lactis 420 on gastrointestinal inflammation induced by a nonsteroidal anti-inflammatory drug: A randomized, placebo-controlled, double-blind clinical trial. Br J Clin Pharmacol 2021; 87:4625-4635. [PMID: 33908058 PMCID: PMC9291844 DOI: 10.1111/bcp.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/26/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022] Open
Abstract
Aims Use of nonsteroidal anti‐inflammatory drugs (NSAIDs) can cause damage to the gastric and duodenal mucosa. Some probiotics have proven useful in ameliorating the harmful side‐effects of NSAIDs. Our aim was to evaluate whether oral administration of Bifidobacterium animalis ssp. lactis 420 (B420) can attenuate the increase of calprotectin excretion into faeces induced by intake of diclofenac sustained‐release tablets. Methods A double‐blind, parallel‐group, placebo‐controlled and randomized clinical study was performed in 50 healthy male and female volunteers aged 20–40 years, in Finland. Study participation consisted of 4 phases: run‐in, intervention with B420 or placebo, B420 or placebo + NSAID treatment, and follow‐up. The primary outcome was the concentration of calprotectin in faeces. Secondary outcomes were haemoglobin and microbial DNA in faeces and blood haemoglobin levels. Results Intake of diclofenac increased the faecal excretion of calprotectin in both groups. The observed increases were 48.19 ± 61.55 μg/g faeces (mean ± standard deviation) in the B420 group and 31.30 ± 39.56 μg/g in the placebo group (difference estimate 16.90; 95% confidence interval: −14.00, 47.77; P = .276). There were no significant differences between the treatment groups in changes of faecal or blood haemoglobin. Faecal B. lactis DNA was much more abundant in the B420 group compared to the placebo group (ANOVA estimate for treatment difference 0.85 × 109/g faeces; 95% confidence interval: 0.50 × 109, 1.21 × 109; P < .0001). Conclusions Short‐term administration of the probiotic B420 did not protect the healthy adult study participants from diclofenac‐induced gastrointestinal inflammation as determined by analysis of faecal calprotectin levels.
Collapse
Affiliation(s)
- Sanna M Mäkelä
- Danisco Sweeteners Oy, IFF Health & Biosciences, ,Sokeritehtaantie 20, Kantvik, FI-02460, Finland
| | - Sofia D Forssten
- Danisco Sweeteners Oy, IFF Health & Biosciences, ,Sokeritehtaantie 20, Kantvik, FI-02460, Finland
| | - Marita Kailajärvi
- Clinical Research Services Turku (CRST) Oy and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ville L Langén
- Clinical Research Services Turku (CRST) Oy and Institute of Biomedicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland
| | - Mika Scheinin
- Clinical Research Services Turku (CRST) Oy and Institute of Biomedicine, University of Turku, Turku, Finland.,Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Kirsti Tiihonen
- Danisco Sweeteners Oy, IFF Health & Biosciences, ,Sokeritehtaantie 20, Kantvik, FI-02460, Finland
| | - Arthur C Ouwehand
- Danisco Sweeteners Oy, IFF Health & Biosciences, ,Sokeritehtaantie 20, Kantvik, FI-02460, Finland
| |
Collapse
|
16
|
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 2021; 45:fuaa039. [PMID: 32876664 PMCID: PMC7794045 DOI: 10.1093/femsre/fuaa039] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, bacteriocins have received substantial attention as antimicrobial compounds. Although bacteriocins have been predominantly exploited as food preservatives, they are now receiving increased attention as potential clinical antimicrobials and as possible immune-modulating agents. Infections caused by antibiotic-resistant bacteria have been declared as a global threat to public health. Bacteriocins represent a potential solution to this worldwide threat due to their broad- or narrow-spectrum activity against antibiotic-resistant bacteria. Notably, despite their role in food safety as natural alternatives to chemical preservatives, nisin remains the only bacteriocin legally approved by regulatory agencies as a food preservative. Moreover, insufficient data on the safety and toxicity of bacteriocins represent a barrier against the more widespread use of bacteriocins by the food and medical industry. Here, we focus on the most recent trends relating to the application of bacteriocins, their toxicity and impacts.
Collapse
Affiliation(s)
- Samira Soltani
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
- APC Microbiome Ireland, Institute and school of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Laila Ben Said
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Hélène Gaudreau
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - François Bédard
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Eric Biron
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Djamel Drider
- Institut Charles Viollette, Université de Lille, EA 7394, 53955 Villeneuve d'Ascq, France
| | - Ismail Fliss
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
| |
Collapse
|
17
|
Yuan L, van der Mei HC, Busscher HJ, Peterson BW. Two-Stage Interpretation of Changes in TEER of Intestinal Epithelial Layers Protected by Adhering Bifidobacteria During E. coli Challenges. Front Microbiol 2020; 11:599555. [PMID: 33329490 PMCID: PMC7710611 DOI: 10.3389/fmicb.2020.599555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Mechanisms of gastrointestinal protection by probiotic bacteria against infection involve amongst others, modulation of intestinal epithelial barrier function. Trans-epithelial electrical resistance (TEER) is widely used to evaluate cellular barrier functions. Here, we developed a two-stage interpretative model of the time-dependence of the TEER of epithelial layers grown in a transwell during Escherichia coli challenges in the absence or presence of adhering bifidobacteria. E. coli adhesion in absence or presence of adhering bifidobacteria was enumerated using selective plating. After 4-8 h, E. coli challenges increased TEER to a maximum due to bacterial adhesion and increased expression of a tight-junction protein [zonula occludens-1 (ZO-1)], concurrent with a less dense layer structure, that is indicative of mild epithelial layer damage. Before the occurrence of a TEER-maximum, decreases in electrical conductance (i.e., the reciprocal TEER) did not relate with para-cellular dextran-permeability, but after occurrence of a TEER-maximum, dextran-permeability and conductance increased linearly, indicative of more severe epithelial layer damage. Within 24 h after the occurrence of a TEER maximum, TEER decreased to below the level of unchallenged epithelial layers demonstrating microscopically observable holes and apoptosis. Under probiotic protection by adhering bifidobacteria, TEER-maxima were delayed or decreased in magnitude due to later transition from mild to severe damage, but similar linear relations between conductance and dextran permeability were observed as in absence of adhering bifidobacteria. Based on the time-dependence of the TEER and the relation between conductance and dextran-permeability, it is proposed that bacterial adhesion to epithelial layers first causes mild damage, followed by more severe damage after the occurrence of a TEER-maximum. The mild damage caused by E. coli prior to the occurrence of TEER maxima was reversible upon antibiotic treatment, but the severe damage after occurrence of TEER maxima could not be reverted by antibiotic treatment. Thus, single-time TEER is interpretable in two ways, depending whether increasing to or decreasing from its maximum. Adhering bifidobacteria elongate the time-window available for antibiotic treatment to repair initial pathogen damage to intestinal epithelial layers.
Collapse
Affiliation(s)
| | | | | | - Brandon W. Peterson
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Parisa A, Roya G, Mahdi R, Shabnam R, Maryam E, Malihe T. Anti-cancer effects of Bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis. PLoS One 2020; 15:e0232930. [PMID: 32401801 PMCID: PMC7219778 DOI: 10.1371/journal.pone.0232930] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/25/2020] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Probiotics are suggested to prevent colorectal cancer (CRC). This study aimed to investigate the anticancer properties of some potential probiotics in vitro and in vivo. MATERIALS AND METHODS Anticancer effects of the following potential probiotic groups were investigated in LS174T cancer cells compared to IEC-18 normal cells. 1. a single strain of Bifidobacterium. breve, 2. a single strain of Lactobacillus. reuteri, 3. a cocktail of 5 strains of Lactobacilli (LC), 4. a cocktail of 5 strains of Bifidobacteria (BC), 5. a cocktail of 10 strains from Lactobacillus and Bifidobacterium (L+B). Apoptosis rate, EGFR, HER-2 and PTGS-2 (COX-2 protein) expression levels were assessed as metrics of evaluating anticancer properties. Effect of BC, as the most effective group in vitro, was further assessed in mice models. RESULTS BC induced ~21% and only ~3% apoptosis among LS174T and IEC-18 cells respectively. BC decreased the expression of EGFR by 4.4 folds, HER-2 by 6.7 folds, and PTGS-2 by 20 folds among the LS174T cells. In all these cases, BC did not interfere significantly with the expression of the genes in IEC-18 cells. This cocktail has caused only 1.1 folds decrease, 1.8 folds increase and 1.7 folds decrease in EGFR, HER-2 and PTGS-2 expression, respectively. Western blot analysis confirmed these results in the protein level. BC significantly ameliorated the disease activity index, restored colon length, inhibited the increase in incidence and progress of tumors to higher stages and grades. CONCLUSIONS BC was the most efficient treatment in this study. It had considerable "protective" anti-cancer properties and concomitantly down regulated EGFR, HER-2 and PTGS-2 (COX-2), while having significant anti-CRC effects on CRC mice models. In general, this potential probiotic could be considered as a suitable nutritional supplement to treat and prevent CRC.
Collapse
Affiliation(s)
- Asadollahi Parisa
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghanavati Roya
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Behbahan Faculty of Medical Science, Behbahan, Iran
| | - Rohani Mahdi
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Razavi Shabnam
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Esghaei Maryam
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Talebi Malihe
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Study of the Histopathologic Effects of Probiotic Lactobacillus acidophilus in Exposure to E. coli O157: H7 in Zebrafish Intestine. IRANIAN RED CRESCENT MEDICAL JOURNAL 2020. [DOI: 10.5812/ircmj.99400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients 2020; 12:nu12040892. [PMID: 32218248 PMCID: PMC7230722 DOI: 10.3390/nu12040892] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The growing worldwide epidemic of obesity and associated metabolic health comorbidities has resulted in an urgent need for safe and efficient nutritional solutions. The research linking obesity with gut microbiota dysbiosis has led to a hypothesis that certain bacterial strains could serve as probiotics helping in weight management and metabolic health. In the search for such strains, the effect of Bifidobacterium animalis subsp. lactis 420 (B420) on gut microbiota and metabolic health, and the mechanisms of actions, has been investigated in a variety of in vitro, pre-clinical, and clinical studies. In this review, we aim to highlight the research on B420 related to obesity, metabolic health, and the microbiota. Current research supports the hypothesis that gut dysbiosis leads to an imbalance in the inflammatory processes and loss of epithelial integrity. Bacterial components, like endotoxins, that leak out of the gut can invoke low-grade, chronic, and systemic inflammation. This imbalanced state is often referred to as metabolic endotoxemia. Scientific evidence indicates that B420 can slow down many of these detrimental processes via multiple signaling pathways, as supported by mechanistic in vitro and in vivo studies. We discuss the connection of these mechanisms to clinical evidence on the effect of B420 in controlling weight gain in overweight and obese subjects. The research further indicates that B420 may improve the epithelial integrity by rebalancing a dysbiotic state induced by an obesogenic diet, for example by increasing the prevalence of lean phenotype microbes such as Akkermansia muciniphila. We further discuss, in the context of delivering the health benefits of B420: the safety and technological aspects of the strain including genomic characterization, antibiotic resistance profiling, stability in the product, and survival of the live probiotic in the intestine. In summary, we conclude that the clinical and preclinical studies on metabolic health suggest that B420 may be a potential candidate in combating obesity; however, further clinical studies are needed.
Collapse
|
21
|
Wedgwood S, Gerard K, Halloran K, Hanhauser A, Monacelli S, Warford C, Thai PN, Chiamvimonvat N, Lakshminrusimha S, Steinhorn RH, Underwood MA. Intestinal Dysbiosis and the Developing Lung: The Role of Toll-Like Receptor 4 in the Gut-Lung Axis. Front Immunol 2020; 11:357. [PMID: 32194566 PMCID: PMC7066082 DOI: 10.3389/fimmu.2020.00357] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/14/2020] [Indexed: 01/19/2023] Open
Abstract
Background In extremely premature infants, postnatal growth restriction (PNGR) is common and increases the risk of developing bronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH). Mechanisms by which poor nutrition impacts lung development are unknown, but alterations in the gut microbiota appear to play a role. In a rodent model, PNGR plus hyperoxia causes BPD and PH and increases intestinal Enterobacteriaceae, Gram-negative organisms that stimulate Toll-like receptor 4 (TLR4). We hypothesized that intestinal dysbiosis activates intestinal TLR4 triggering systemic inflammation which impacts lung development. Methods Rat pups were assigned to litters of 17 (PNGR) or 10 (normal growth) at birth and exposed to room air or 75% oxygen for 14 days. Half of the pups were treated with the TLR4 inhibitor TAK-242 from birth or beginning at day 3. After 14 days, pulmonary arterial pressure was evaluated by echocardiography and hearts were examined for right ventricular hypertrophy (RVH). Lungs and serum samples were analyzed by western blotting and immunohistochemistry. Results Postnatal growth restriction + hyperoxia increased pulmonary arterial pressure and RVH with trends toward increased plasma IL1β and decreased IκBα, the inhibitor of NFκB, in lung tissue. Treatment with the TLR4 inhibitor attenuated PH and inflammation. Conclusion Postnatal growth restriction induces an increase in intestinal Enterobacteriaceae leading to PH. Activation of the TLR4 pathway is a promising mechanism by which intestinal dysbiosis impacts the developing lung.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Kimberly Gerard
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Katrina Halloran
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Ashley Hanhauser
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Sveva Monacelli
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Cris Warford
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, UC Davis Health System, Sacramento, CA, United States
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, UC Davis Health System, Sacramento, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States
| | | | - Robin H Steinhorn
- Department of Hospital Medicine, Children's National Health System, Washington, DC, United States
| | - Mark A Underwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
22
|
Rubio APD, Martínez J, Palavecino M, Fuentes F, López CMS, Marcilla A, Pérez OE, Piuri M. Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model. Sci Rep 2020; 10:3120. [PMID: 32080346 PMCID: PMC7033168 DOI: 10.1038/s41598-020-60077-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial EVs have been related to inter-kingdom communication between probiotic/pathogenic bacteria and their hosts. Our aim was to investigate the transcytosis process of B. subtilis EVs using an in vitro intestinal epithelial cell model. In this study, using Confocal Laser Scanning Microscopy, we report that uptake and internalization of CFSE-labeled B. subtilis EVs (115 nm ± 27 nm) by Caco-2 cells are time-dependent. To study the transcytosis process we used a transwell system and EVs were quantified in the lower chamber by Fluorescence and Nanoparticle Tracking Analysis measurements. Intact EVs are transported across a polarized cell monolayer at 60-120 min and increased after 240 min with an estimated average uptake efficiency of 30% and this process is dose-dependent. EVs movement into intestinal epithelial cells was mainly through Z axis and scarcely on X and Y axis. This work demonstrates that EVs could be transported across the gastrointestinal epithelium. We speculate this mechanism could be the first step allowing EVs to reach the bloodstream for further delivery up to extraintestinal tissues and organs. The expression and further encapsulation of bioactive molecules into natural nanoparticles produced by probiotic bacteria could have practical implications in food, nutraceuticals and clinical therapies.
Collapse
Affiliation(s)
- Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Jimena Martínez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marcos Palavecino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Federico Fuentes
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Christian Miquel Sánchez López
- Àrea de Parasitologia, Departament de Farmàcia i TecnologiaFarmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i TecnologiaFarmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Li N, Pang B, Li J, Liu G, Xu X, Shao D, Jiang C, Yang B, Shi J. Mechanisms for Lactobacillus rhamnosus treatment of intestinal infection by drug-resistant Escherichia coli. Food Funct 2020; 11:4428-4445. [DOI: 10.1039/d0fo00128g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reducing the viability of pathogens may also play an important role for the therapeutic effects of Lactobacillus rhamnosus SHA113 against multiple-drug-resistant E. coli, as well as influencing on the intestinal integrity and functions of animals.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Junjun Li
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Baowei Yang
- College of Food Science and Engineering
- Yangling
- China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| |
Collapse
|
24
|
Barba-Vidal E, Martín-Orúe SM, Castillejos L. Practical aspects of the use of probiotics in pig production: A review. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Underwood MA. Probiotics and the prevention of necrotizing enterocolitis. J Pediatr Surg 2019; 54:405-412. [PMID: 30241961 DOI: 10.1016/j.jpedsurg.2018.08.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/19/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Immaturity of the host immune system and alterations in the intestinal microbiome appear to be key factors in the pathogenesis of necrotizing enterocolitis (NEC). The aim of this paper is to weigh the evidence for the use of probiotics to prevent NEC in premature infants. METHODS Animal studies, randomized controlled trials, observational cohort studies and meta-analyses involving administration of probiotic products for the prevention of NEC were reviewed. This review of the evidence summarizes the available preclinical and clinical data. RESULTS In animal models probiotic microbes alter the intestinal microbiome, decrease inflammation and intestinal permeability and decrease the incidence and severity of experimental NEC. In randomized, placebo-controlled trials and cohort studies of premature infants, probiotic microbes decrease the risk of NEC, death and sepsis. CONCLUSION Evidence is strong for the prevention of NEC with the use of combination probiotics in premature infants who receive breast milk. The potential risks and benefits of probiotic administration to premature infants should be carefully reviewed with parents. TYPE OF STUDY Therapeutic. LEVEL OF EVIDENCE I.
Collapse
Affiliation(s)
- Mark A Underwood
- Division of Neonatology, University of California Davis, Ticon 2, Suite 253, 2516 Stockton Blvd, Sacramento, CA 95817, USA.
| |
Collapse
|
26
|
Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci 2019; 76:473-493. [PMID: 30317530 PMCID: PMC11105460 DOI: 10.1007/s00018-018-2943-4] [Citation(s) in RCA: 610] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Gut microbiota has evolved along with their hosts and is an integral part of the human body. Microbiota acquired at birth develops in parallel as the host develops and maintains its temporal stability and diversity through adulthood until death. Recent developments in genome sequencing technologies, bioinformatics and culturomics have enabled researchers to explore the microbiota and in particular their functions at more detailed level than before. The accumulated evidences suggest that though a part of the microbiota is conserved, the dynamic members vary along the gastrointestinal tract, from infants to elderly, primitive tribes to modern societies and in different health conditions. Though the gut microbiota is dynamic, it performs some basic functions in the immunological, metabolic, structural and neurological landscapes of the human body. Gut microbiota also exerts significant influence on both physical and mental health of an individual. An in-depth understanding of the functioning of gut microbiota has led to some very exciting developments in therapeutics, such as prebiotics, probiotics, drugs and faecal transplantation leading to improved health.
Collapse
Affiliation(s)
- Atanu Adak
- Molecular Biology and Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India.
| |
Collapse
|
27
|
do Carmo MS, Santos CID, Araújo MC, Girón JA, Fernandes ES, Monteiro-Neto V. Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food Funct 2019; 9:5074-5095. [PMID: 30183037 DOI: 10.1039/c8fo00376a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infectious diarrhea is the second most common cause of morbidity and mortality in children under 5 years of age in the underdeveloped areas of the world. Conventional treatment consists of rehydration, which may be coupled with antimicrobial agents in more severe bacterial infections or with antiprotozoal agents. In the last few decades, research on the use of probiotic strains, such as Lactobacillus rhamnosus GG ATCC 53013 (LGG), Lactobacillus reuteri DSM 17938 and Saccharomyces boulardii, has gained much attention to prevent and treat diarrheal diseases. However, they are rarely used in the clinical routine, perhaps because there are still gaps in the knowledge about the effective benefit to the patient in terms of the reduction of the duration of diarrhea and its prevention. Furthermore, only a few probiotic strains are safely indicated for usage in pediatric practice. This review summarizes the current knowledge on the antimicrobial mechanisms of probiotics on distinct enteropathogens and their role in stimulating host defense mechanisms against intestinal infections. In addition, we highlight the potential of probiotics for the treatment and prevention of diarrhea in children. We conclude that the use of probiotics is beneficial for both the treatment and prevention of diarrhea in children and that the identification of other candidate probiotics might represent an important advance to a greater reduction in hospital stays and to prevent infectious diarrhea in a larger portion of this population.
Collapse
Affiliation(s)
- Monique Santos do Carmo
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Hibberd AA, Yde CC, Ziegler ML, Honoré AH, Saarinen MT, Lahtinen S, Stahl B, Jensen HM, Stenman LK. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef Microbes 2018; 10:121-135. [PMID: 30525950 DOI: 10.3920/bm2018.0028] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gut microbiota contributes to host energy metabolism, and altered gut microbiota has been associated with obesity-related metabolic disorders. We previously reported that a probiotic alone or together with a prebiotic controls body fat mass in healthy overweight or obese individuals in a randomised, double-blind, placebo controlled clinical study (ClinicalTrials.gov NCT01978691). We now aimed to investigate whether changes in the gut microbiota may be associated with the observed clinical benefits. Faecal and plasma samples were obtained from a protocol compliant subset (n=134) of participants from a larger clinical study where participants were randomised (1:1:1:1) into four groups: (1) placebo, 12 g/d microcrystalline cellulose; (2) Litesse® Ultra™ polydextrose (LU), 12 g/day; (3) Bifidobacterium animalis subsp. lactis 420™ (B420), 1010 cfu/d in 12 g microcrystalline cellulose; (4) LU+B420, 1010 cfu/d of B420 in 12 g/d LU for 6 months of intervention. The faecal microbiota composition and metabolites were assessed as exploratory outcomes at baseline, 2, 4, 6 months, and +1 month post-intervention and correlated to obesity-related clinical outcomes. Lactobacillus and Akkermansia were more abundant with B420 at the end of the intervention. LU+B420 increased Akkermansia, Christensenellaceae and Methanobrevibacter, while Paraprevotella was reduced. Christensenellaceae was consistently increased in the LU and LU+B420 groups across the intervention time points, and correlated negatively to waist-hip ratio and energy intake at baseline, and waist-area body fat mass after 6 months treatment with LU+B420. Functional metagenome predictions indicated alterations in pathways related to cellular processes and metabolism. Plasma bile acids glycocholic acid, glycoursodeoxycholic acid, and taurohyodeoxycholic acid and tauroursodeoxycholic acid were reduced in LU+B420 compared to Placebo. Consumption of B420 and its combination with LU resulted in alterations of the gut microbiota and its metabolism, and may support improved gut barrier function and obesity-related markers.
Collapse
Affiliation(s)
- A A Hibberd
- 1 Genomics and Microbiome Science, DuPont Nutrition & Health, 4300 Duncan Avenue, Saint Louis, MO 63110, USA
| | - C C Yde
- 2 DuPont Nutrition Biosciences ApS, Edwin Rahrsvej 38, 8220 Brabrand, Aarhus, Denmark.,3 Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Aarslev, Denmark
| | - M L Ziegler
- 4 DuPont Nutrition & Health, 3329 Agriculture Drive, Madison, WI 53716, USA
| | - A H Honoré
- 2 DuPont Nutrition Biosciences ApS, Edwin Rahrsvej 38, 8220 Brabrand, Aarhus, Denmark
| | - M T Saarinen
- 5 Global Health and Nutrition Science, DuPont Nutrition & Health, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - S Lahtinen
- 5 Global Health and Nutrition Science, DuPont Nutrition & Health, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Stahl
- 4 DuPont Nutrition & Health, 3329 Agriculture Drive, Madison, WI 53716, USA
| | - H M Jensen
- 2 DuPont Nutrition Biosciences ApS, Edwin Rahrsvej 38, 8220 Brabrand, Aarhus, Denmark
| | - L K Stenman
- 5 Global Health and Nutrition Science, DuPont Nutrition & Health, Sokeritehtaantie 20, 02460 Kantvik, Finland
| |
Collapse
|
29
|
Lépine AFP, de Wit N, Oosterink E, Wichers H, Mes J, de Vos P. Lactobacillus acidophilus Attenuates Salmonella-Induced Stress of Epithelial Cells by Modulating Tight-Junction Genes and Cytokine Responses. Front Microbiol 2018; 9:1439. [PMID: 30013538 PMCID: PMC6036613 DOI: 10.3389/fmicb.2018.01439] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/24/2022] Open
Abstract
Scope: Salmonellosis is a prevalent food-borne illness that causes diarrhea in over 130 million humans yearly and can lead to death. There is an urgent need to find alternatives to antibiotics as many salmonellae are now multidrug resistant. As such, specific beneficial bacteria and dietary fibers can be an alternative as they may prevent Salmonella Typhimurium (STM) infection and spreading by strengthening intestinal barrier function. Methods and Results: We tested whether immune active long-chain inulin-type fructans and/or L. acidophilus W37, L. brevis W63, and L. casei W56 can strengthen barrier integrity of intestinal Caco-2 cells in the presence and absence of a STM. Effects of the ingredients on intestinal barrier function were first evaluated by quantifying trans-epithelial electric resistance (TEER) and regulation of gene expression by microarray. Only L. acidophilus had effects on TEER and modulated a group of 26 genes related to tight-junctions. Inulin-type fructans, L. brevis W63 and L. casei W56 regulated other genes, unrelated to tight-junctions. L. acidophilus also had unique effects on a group of six genes regulating epithelial phenotype toward follicle-associated epithelium. L. acidophilus W37 was therefore selected for a challenge with STM and prevented STM-induced barrier disruption and decreased secretion of IL-8. Conclusion:L. acidophilus W37 increases TEER and can protect against STM induced disruption of gut epithelial cells integrity in vitro. Our results suggest that selection of specific bacterial strains for enforcing barrier function may be a promising strategy to reduce or prevent STM infections.
Collapse
Affiliation(s)
- Alexia F. P. Lépine
- Section Immuno-endocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Food Quality and Health Effects, Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Nicole de Wit
- Food Quality and Health Effects, Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Els Oosterink
- Food Quality and Health Effects, Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Harry Wichers
- Food Quality and Health Effects, Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Jurriaan Mes
- Food Quality and Health Effects, Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Paul de Vos
- Section Immuno-endocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
30
|
Mokkala K, Pussinen P, Houttu N, Koivuniemi E, Vahlberg T, Laitinen K. The impact of probiotics and n-3 long-chain polyunsaturated fatty acids on intestinal permeability in pregnancy: a randomised clinical trial. Benef Microbes 2018; 9:199-208. [PMID: 29345158 DOI: 10.3920/bm2017.0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A disruption in intestinal barrier integrity may predispose individuals to metabolic aberrations, particularly during the vulnerable period of pregnancy. We investigated whether intestinal permeability, as measured by serum zonulin concentration, changes over the duration of pregnancy and whether this change is reflected in lipopolysaccharide (LPS) activity. Second, we tested in a randomised double-blind placebo controlled clinical trial the impact of consuming dietary probiotics and/or long chain polyunsaturated fatty acid (LC-PUFA) supplements in lowering serum zonulin concentration and LPS activity. The probiotic supplement was a combination of two bacteria, Bifidobacterium animalis ssp. lactis 420 and Lactobacillus rhamnosus HN001. This study included 200 overweight pregnant women participating in an on-going study; participants were randomised to consume either (1) probiotics, (2) LC-PUFA, (3) probiotics and LC-PUFA, or (4) placebo for each supplement. Blood samples were obtained at early, the baseline, and late pregnancy (mean 14 and 35 weeks of gestation, respectively). Serum zonulin concentration increased from early (mean (standard deviation): 62.7 (12.9) ng/ml) to late pregnancy by 5.3 (95%CI 3.7-6.9) ng/ml, and LPS activity increased from (0.16 (0.04) EU/ml) by 0.04 (95%CI 0.03-0.05) EU/ml. No differences among the intervention groups were detected in the change from early to late pregnancy in serum zonulin concentration (P=0.8) or LPS activity (P=0.2). The change in serum zonulin concentration during the pregnancy was associated with the weeks of follow up (r=0.25, P<0.001). Serum LPS activity was correlated with higher maternal weight gain (r=0.19, P=0.008). As a conclusion, intestinal permeability increased with the progression of pregnancy in overweight and obese women and was reflected in LPS activity. No efficacy of supplementation with probiotics and/or LC-PUFA was demonstrated in pregnancy-induced changes in serum zonulin concentration or LPS activity.
Collapse
Affiliation(s)
- K Mokkala
- 1 Institute of Biomedicine, University of Turku, 20014 Turku, Finland
| | - P Pussinen
- 2 Oral and Maxillofacial Diseases, University of Helsinki and University Hospital of Helsinki, 00014 Helsinki, Finland
| | - N Houttu
- 1 Institute of Biomedicine, University of Turku, 20014 Turku, Finland
| | - E Koivuniemi
- 1 Institute of Biomedicine, University of Turku, 20014 Turku, Finland.,3 Turku University Hospital, Department of Obstetrics and Gynaecology, 20014 Turku, Finland
| | - T Vahlberg
- 4 Department of Clinical Medicine, Biostatistics, University of Turku and Turku University Hospital, 20014 Turku, Finland
| | - K Laitinen
- 1 Institute of Biomedicine, University of Turku, 20014 Turku, Finland
| |
Collapse
|
31
|
Servi BD, Ranzini F. Protective efficacy of antidiarrheal agents in a permeability model of Escherichia coli-infected CacoGoblet ® cells. Future Microbiol 2017; 12:1449-1455. [PMID: 29068234 DOI: 10.2217/fmb-2016-0195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIM To compare the protective efficacy of gelatine tannate/probiotic with other antidiarrheal agents in Escherichia coli-inoculated CacoGoblet® cells. METHODS Four test compounds - gelatine tannate plus inactivated probiotic, diosmectite, probiotic mixture and Saccharomyces boulardii - were added to E. coli-infected CacoGoblet cells. After 1 and 24 h, transepithelial electrical resistance was measured and a lucifer yellow assay performed. RESULTS Gelatine tannate/probiotic markedly increased transepithelial electrical resistance by 123.1% (at 1 h) and 149.5% (at 24 h), and produced paracellular flux values of 0.41% (1 h) and 1.34% (24 h), which were considerably less than the E. coli-invasion value (2.41%). CONCLUSION The protective efficacy of gelatine tannate/probiotic against E. coli-induced reduction of membrane integrity manifests early and is maintained for 24 h.
Collapse
|
32
|
Putaala H, Nurminen P, Tiihonen K. Effects of cinnamaldehyde and thymol on cytotoxicity, tight junction barrier resistance, and cyclooxygenase-1 and -2 expression in Caco-2 cells. JOURNAL OF ANIMAL AND FEED SCIENCES 2017. [DOI: 10.22358/jafs/77058/2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Helmy YA, Kassem II, Kumar A, Rajashekara G. In Vitro Evaluation of the Impact of the Probiotic E. coli Nissle 1917 on Campylobacter jejuni's Invasion and Intracellular Survival in Human Colonic Cells. Front Microbiol 2017; 8:1588. [PMID: 28878749 PMCID: PMC5572226 DOI: 10.3389/fmicb.2017.01588] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial food poisoning in humans. Due to the rise in antibiotic-resistant Campylobacter, there exists a need to develop antibiotic-independent interventions to control infections in humans. Here, we evaluated the impact of Escherichia coli Nissle 1917 (EcN), a probiotic strain, on C. jejuni’s invasion and intracellular survival in polarized human colonic cells (HT-29). To further understand how EcN mediates its impact, the expression of 84 genes associated with tight junctions and cell adhesion was profiled in HT-29 cells after treatment with EcN and challenge with C. jejuni. The pre-treatment of polarized HT-29 cells with EcN for 4 h showed a significant effect on C. jejuni’s invasion (∼2 log reduction) of the colonic cells. Furthermore, no intracellular C. jejuni were recovered from EcN pre-treated HT-29 cells at 24 h post-infection. Other probiotic strains tested had no significant impact on C. jejuni invasion and intracellular survival. C. jejuni decreased the expression of genes associated with epithelial cells permeability and barrier function in untreated HT-29 cells. However, EcN positively affected the expression of genes that are involved in enhanced intestinal barrier function, decreased cell permeability, and increased tight junction integrity. The results suggest that EcN impedes C. jejuni invasion and subsequent intracellular survival by affecting HT-29 cells barrier function and tight junction integrity. We conclude that EcN might be a viable alternative for controlling C. jejuni infections.
Collapse
Affiliation(s)
- Yosra A Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, WoosterOH, United States.,Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal UniversityIsmailia, Egypt
| | - Issmat I Kassem
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, WoosterOH, United States.,Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of BeirutBeirut, Lebanon
| | - Anand Kumar
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, WoosterOH, United States
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, WoosterOH, United States
| |
Collapse
|
34
|
Shang M, Sun J. Vitamin D/VDR, Probiotics, and Gastrointestinal Diseases. Curr Med Chem 2017; 24:876-887. [PMID: 27915988 DOI: 10.2174/0929867323666161202150008] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Vitamin D is an important factor in regulating inflammation, immune responses, and carcinoma inhibition via action of its receptor, vitamin D receptor (VDR). Recent studies have demonstrated the role of vitamin D/VDR in regulating host-bacterial interactions. Probiotics are beneficial bacteria with the power of supporting or favoring life on the host. In the current review, we will discuss the recent progress on the roles of vitamin D/VDR in gut microbiome and inflammation. We will summarize evidence of probiotics in modulating vitamin D/VDR and balancing gut microbiota in health and gastrointestinal diseases. Moreover, we will review the clinical application of probiotics in prevention and therapy of IBD or colon cancer. Despite of the gains, there remain several barriers to advocate broad use of probiotics in clinical therapy. We will also discuss the limits and future direction in scientific understanding of probiotics, vitamin D/VDR, and host responses.
Collapse
Affiliation(s)
- Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou. China
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB, Chicago, IL, 60612. United States
| |
Collapse
|
35
|
|
36
|
Yu X, Åvall-Jääskeläinen S, Koort J, Lindholm A, Rintahaka J, von Ossowski I, Palva A, Hynönen U. A Comparative Characterization of Different Host-sourced Lactobacillus ruminis Strains and Their Adhesive, Inhibitory, and Immunomodulating Functions. Front Microbiol 2017; 8:657. [PMID: 28450859 PMCID: PMC5390032 DOI: 10.3389/fmicb.2017.00657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
Lactobacillus ruminis, an autochthonous member of the gastrointestinal microbiota of humans and many animals, is a less characterized but interesting species for many reasons, including its intestinal prevalence and possible positive roles in host–microbe crosstalk. In this study, we isolated a novel L. ruminis strain (GRL 1172) from porcine feces and analyzed its functional characteristics and niche adaptation factors in parallel with those of three other L. ruminis strains (a human isolate, ATCC 25644, and two bovine isolates, ATCC 27780 and ATCC 27781). All the strains adhered to fibronectin, type I collagen, and human colorectal adenocarcinoma cells (HT-29), but poorly to type IV collagen, porcine intestinal epithelial cells (IPEC-1), and human colon adenocarcinoma cells (Caco-2). In competition assays, all the strains were able to inhibit the adhesion of Yersinia enterocolitica and enterotoxigenic Escherichia coli (ETEC, F4+) to fibronectin, type I; collagen, IPEC-1, and Caco-2 cells, and the inhibition rates tended to be higher than in exclusion assays. The culture supernatants of the tested strains inhibited the growth of six selected pathogens to varying extents. The inhibition was solely based on the low pH resulting from acid production during growth. All four L. ruminis strains supported the barrier function maintenance of Caco-2 cells, as shown by the modest increase in trans-epithelial electrical resistance and the prevention of dextran diffusion during co-incubation. However, the strains could not prevent the barrier damage caused by ETEC in the Caco-2 cell model. All the tested strains and their culture supernatants were able to provoke Toll-like receptor (TLR) 2-mediated NF-κB activation and IL-8 production in vitro to varying degrees. The induction of TLR5 signaling revealed that flagella were expressed by all the tested strains, but to different extents. Flagella and pili were observed by electron microscopy on the newly isolated strain GRL 1172.
Collapse
Affiliation(s)
- Xia Yu
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Silja Åvall-Jääskeläinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Joanna Koort
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Agneta Lindholm
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Johanna Rintahaka
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Ingemar von Ossowski
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Ulla Hynönen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| |
Collapse
|
37
|
Bron PA, Kleerebezem M, Brummer RJ, Cani PD, Mercenier A, MacDonald TT, Garcia-Ródenas CL, Wells JM. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr 2017; 117:93-107. [PMID: 28102115 PMCID: PMC5297585 DOI: 10.1017/s0007114516004037] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/29/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
Intestinal barrier integrity is a prerequisite for homeostasis of mucosal function, which is balanced to maximise absorptive capacity, while maintaining efficient defensive reactions against chemical and microbial challenges. Evidence is mounting that disruption of epithelial barrier integrity is one of the major aetiological factors associated with several gastrointestinal diseases, including infection by pathogens, obesity and diabetes, necrotising enterocolitis, irritable bowel syndrome and inflammatory bowel disease. The notion that specific probiotic bacterial strains can affect barrier integrity fuelled research in which in vitro cell lines, animal models and clinical trials are used to assess whether probiotics can revert the diseased state back to homeostasis and health. This review catalogues and categorises the lines of evidence available in literature for the role of probiotics in epithelial integrity and, consequently, their beneficial effect for the reduction of gastrointestinal disease symptoms.
Collapse
Affiliation(s)
- Peter A. Bron
- NIZO Food Research and BE-Basic Foundation, Kernhemseweg 2, 6718ZB Ede, The Netherlands
| | - Michiel Kleerebezem
- Wageningen University, Host Microbe Interactomics Group, De Elst 1, 6708WD Wageningen, The Netherlands
| | - Robert-Jan Brummer
- Faculty of Medicine and Health, Örebro University, Fakultetsgatan 1, SE-701 82 Örebro, Sweden
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, WELBIO – Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Annick Mercenier
- Nestlé Research Center, Nutrition and Health Research, route du Jorat 57, 1000 Lausanne 26, Switzerland
| | - Thomas T. MacDonald
- Barts and The London school of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Clara L. Garcia-Ródenas
- Nestlé Research Center, Nutrition and Health Research, route du Jorat 57, 1000 Lausanne 26, Switzerland
| | - Jerry M. Wells
- Wageningen University, Host Microbe Interactomics Group, De Elst 1, 6708WD Wageningen, The Netherlands
| |
Collapse
|
38
|
Sharma M, Shukla G. Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Front Microbiol 2016; 7:1940. [PMID: 27994577 PMCID: PMC5133260 DOI: 10.3389/fmicb.2016.01940] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is closely associated with environment, diet and lifestyle. Normally it is treated with surgery, radiotherapy or chemotherapy but increasing systemic toxicity, resistance and recurrence is prompting scientists to devise new potent and safer alternate prophylactic or therapeutic strategies. Among these, probiotics, prebiotics, synbiotics, and metabiotics are being considered as the promising candidates. Metabiotics or probiotic derived factors can optimize various physiological functions of the host and offer an additional advantage to be utilized even in immunosuppressed individuals. Interestingly, anti colon cancer potential of probiotic strains has been attributable to metabiotics that have epigenetic, antimutagenic, immunomodulatory, apoptotic, and antimetastatic effects. Thus, it's time to move one step further to utilize metabiotics more smartly by avoiding the risks associated with probiotics even in certain normal/or immuno compromised host. Here, an attempt is made to provide insight into the adverse effects associated with probiotics and beneficial aspects of metabiotics with main emphasis on the modulatory mechanisms involved in colon cancer.
Collapse
Affiliation(s)
- Mridul Sharma
- Department of Microbiology, Panjab University Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University Chandigarh, India
| |
Collapse
|
39
|
Cordonnier C, Thévenot J, Etienne-Mesmin L, Alric M, Livrelli V, Blanquet-Diot S. Probiotic and enterohemorrhagic Escherichia coli: An effective strategy against a deadly enemy? Crit Rev Microbiol 2016; 43:116-132. [PMID: 27798976 DOI: 10.1080/1040841x.2016.1185602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are major food-borne pathogens that constitute a serious public health threat. Currently, there is no specific treatment available for EHEC infections in human creating an urgent need for the development of alternative therapeutic strategies. Among them, one of the most promising approaches is the use of probiotic microorganisms. Even if many studies have shown the antagonistic effects of probiotic bacteria or yeast on EHEC survival, virulence, adhesion on intestinal epithelium or pathogen-induced inflammatory responses, mechanisms mediating their beneficial effects remain unclear. This review describes EHEC pathogenesis and novel therapeutic strategies, with a particular emphasis on probiotics. The interests and limits of a probiotic-based approach and the way it might be incorporated into global health strategies against EHEC infections will be discussed.
Collapse
Affiliation(s)
- Charlotte Cordonnier
- a EA 4678 CIDAM, "Conception, Ingénierie et Développement de l'Aliment et du Médicament", Centre de Recherche en Nutrition Humaine Auvergne , Université d'Auvergne , Clermont-Ferrand , France.,b M2iSH, "Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte" , UMR Inserm/Université d'Auvergne U1071, USC-INRA 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne , Clermont-Ferrand , France
| | - Jonathan Thévenot
- a EA 4678 CIDAM, "Conception, Ingénierie et Développement de l'Aliment et du Médicament", Centre de Recherche en Nutrition Humaine Auvergne , Université d'Auvergne , Clermont-Ferrand , France.,b M2iSH, "Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte" , UMR Inserm/Université d'Auvergne U1071, USC-INRA 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne , Clermont-Ferrand , France
| | - Lucie Etienne-Mesmin
- a EA 4678 CIDAM, "Conception, Ingénierie et Développement de l'Aliment et du Médicament", Centre de Recherche en Nutrition Humaine Auvergne , Université d'Auvergne , Clermont-Ferrand , France.,b M2iSH, "Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte" , UMR Inserm/Université d'Auvergne U1071, USC-INRA 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne , Clermont-Ferrand , France
| | - Monique Alric
- a EA 4678 CIDAM, "Conception, Ingénierie et Développement de l'Aliment et du Médicament", Centre de Recherche en Nutrition Humaine Auvergne , Université d'Auvergne , Clermont-Ferrand , France
| | - Valérie Livrelli
- b M2iSH, "Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte" , UMR Inserm/Université d'Auvergne U1071, USC-INRA 2018, Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne , Clermont-Ferrand , France.,c Service de Bactériologie , CHU Clermont-Ferrand , Clermont-Ferrand , France
| | - Stéphanie Blanquet-Diot
- a EA 4678 CIDAM, "Conception, Ingénierie et Développement de l'Aliment et du Médicament", Centre de Recherche en Nutrition Humaine Auvergne , Université d'Auvergne , Clermont-Ferrand , France
| |
Collapse
|
40
|
Li Z, Jin H, Oh SY, Ji GE. Anti-obese effects of two Lactobacilli and two Bifidobacteria on ICR mice fed on a high fat diet. Biochem Biophys Res Commun 2016; 480:222-227. [DOI: 10.1016/j.bbrc.2016.10.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
|
41
|
Stenman LK, Lehtinen MJ, Meland N, Christensen JE, Yeung N, Saarinen MT, Courtney M, Burcelin R, Lähdeaho ML, Linros J, Apter D, Scheinin M, Kloster Smerud H, Rissanen A, Lahtinen S. Probiotic With or Without Fiber Controls Body Fat Mass, Associated With Serum Zonulin, in Overweight and Obese Adults-Randomized Controlled Trial. EBioMedicine 2016; 13:190-200. [PMID: 27810310 PMCID: PMC5264483 DOI: 10.1016/j.ebiom.2016.10.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Background The gut microbiota is interlinked with obesity, but direct evidence of effects of its modulation on body fat mass is still scarce. We investigated the possible effects of Bifidobacterium animalisssp. lactis 420 (B420) and the dietary fiber Litesse® Ultra polydextrose (LU) on body fat mass and other obesity-related parameters. Methods 225 healthy volunteers (healthy, BMI 28–34.9) were randomized into four groups (1:1:1:1), using a computer-generated sequence, for 6 months of double-blind, parallel treatment: 1) Placebo, microcrystalline cellulose, 12 g/d; 2) LU, 12 g/d; 3) B420, 1010 CFU/d in microcrystalline cellulose, 12 g/d; 4) LU + B420, 12 g + 1010 CFU/d. Body composition was monitored with dual-energy X-ray absorptiometry, and the primary outcome was relative change in body fat mass, comparing treatment groups to Placebo. Other outcomes included anthropometric measurements, food intake and blood and fecal biomarkers. The study was registered in Clinicaltrials.gov (NCT01978691). Findings There were marked differences in the results of the Intention-To-Treat (ITT; n = 209) and Per Protocol (PP; n = 134) study populations. The PP analysis included only those participants who completed the intervention with > 80% product compliance and no antibiotic use. In addition, three participants were excluded from DXA analyses for PP due to a long delay between the end of intervention and the last DXA measurement. There were no significant differences between groups in body fat mass in the ITT population. However, LU + B420 and B420 seemed to improve weight management in the PP population. For relative change in body fat mass, LU + B420 showed a − 4.5% (− 1.4 kg, P = 0.02, N = 37) difference to the Placebo group, whereas LU (+ 0.3%, P = 1.00, N = 35) and B420 (− 3.0%, P = 0.28, N = 24) alone had no effect (overall ANOVA P = 0.095, Placebo N = 35). A post-hoc factorial analysis was significant for B420 (− 4.0%, P = 0.002 vs. Placebo). Changes in fat mass were most pronounced in the abdominal region, and were reflected by similar changes in waist circumference. B420 and LU + B420 also significantly reduced energy intake compared to Placebo. Changes in blood zonulin levels and hsCRP were associated with corresponding changes in trunk fat mass in the LU + B420 group and in the overall population. There were no differences between groups in the incidence of adverse events. Discussion This clinical trial demonstrates that a probiotic product with or without dietary fiber controls body fat mass. B420 and LU + B420 also reduced waist circumference and food intake, whereas LU alone had no effect on the measured outcomes. The probiotic B420 and synbiotic LU + B420 seem to control body fat mass in humans, especially in the abdominal area. B420 and LU + B420 reduce waist circumference and energy intake, but only LU + B420 increases lean body mass. Reduced body fat is associated with zonulin, a marker of epithelial permeability, supporting earlier preclinical findings.
Concise results on probiotics for weight management are lacking. Stenman et al. show in a gold standard clinical study that the probiotic B420 with or without a fiber controls body fat, waist circumference and energy intake when taken in a dietary intervention of six months. Study participants maintained habitual diet and physical activity. Stenman et al. link the benefit to changes in serum zonulin, a potential gut permeability marker. The authors have previously shown in animal studies that these gut microbiota targeting products improve metabolic health in mice by strengthening gut barrier function. These effects are now translated to humans.
Collapse
Affiliation(s)
- Lotta K Stenman
- Global Health and Nutrition Science, DuPont Nutrition & Health, FI-02460 Kantvik, Finland.
| | - Markus J Lehtinen
- Global Health and Nutrition Science, DuPont Nutrition & Health, FI-02460 Kantvik, Finland
| | - Nils Meland
- Smerud Medical Research, N-0212 Oslo, Norway
| | | | - Nicolas Yeung
- Global Health and Nutrition Science, DuPont Nutrition & Health, FI-02460 Kantvik, Finland
| | - Markku T Saarinen
- Global Health and Nutrition Science, DuPont Nutrition & Health, FI-02460 Kantvik, Finland
| | | | | | | | - Jüri Linros
- Kerava Health Centre, FI-04200 Kerava, Finland
| | | | - Mika Scheinin
- Clinical Research Services Turku, FI-20520 Turku, Finland
| | | | - Aila Rissanen
- Obesity Research Unit, University of Helsinki, FI-00290 Helsinki, Finland
| | - Sampo Lahtinen
- Global Health and Nutrition Science, DuPont Nutrition & Health, FI-02460 Kantvik, Finland
| |
Collapse
|
42
|
Lactobacillus gasseri SBT2055 inhibits adipose tissue inflammation and intestinal permeability in mice fed a high-fat diet. J Nutr Sci 2016; 5:e23. [PMID: 27293560 PMCID: PMC4891558 DOI: 10.1017/jns.2016.12] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/18/2016] [Indexed: 12/21/2022] Open
Abstract
The probiotic Lactobacillus gasseri SBT2055 (LG2055) has anti-obesity effects. Obesity is closely correlated with inflammation in adipose tissue, and maintaining adipose tissue in a less-inflamed state requires intestinal integrity or a barrier function to protect the intestine from the disruption that can be caused by a high-fat diet (HFD). Here, we examined the anti-inflammatory and intestinal barrier-protecting effects of LG2055 in C57BL/6 mice fed a normal-fat diet (NFD), HFD, or the HFD containing LG2055 (HFD-LG) for 21 weeks. HFD-LG intake significantly prevented HFD-induced increases in body weight, visceral fat mass, and the ratio of inflammatory-type macrophages to anti-inflammatory ones in adipose tissue. Mice fed the HFD showed higher intestinal permeability to a fluorescent dextran administered by oral administration and an elevated concentration of antibodies specific to lipopolysaccharides (LPS) in the blood compared with those fed the NFD, suggesting an increased penetration of the gut contents into the systemic circulation. These elevations of intestinal permeability and anti-LPS antibody levels were significantly suppressed in mice fed the HFD-LG. Moreover, treatment with LG2055 cells suppressed an increase in the cytokine-induced permeability of Caco-2 cell monolayers. These results suggest that LG2055 improves the intestinal integrity, reducing the entry of inflammatory substances like LPS from the intestine, which may lead to decreased inflammation in adipose tissue.
Collapse
Key Words
- Anti-inflammation effects
- Anti-obesity effects
- Diet-induced obesity
- FBS, fetal bovine serum
- FCM, flow cytometry buffer
- FD-4, fluorescein isothiocyanate–dextran
- FITC, fluorescein isothiocyanate
- HFD, high-fat diet
- HFD-LG, high-fat diet containing Lactobacillus gasseri SBT2055
- IFN-γ, interferon-γ
- Intestinal barrier function
- LPS, lipopolysaccharide
- LY, Lucifer yellow
- Lactobacillus gasseri SBT2055
- M1, classically activated macrophages
- M2, alternatively activated macrophages
- NFD, normal-fat diet
- SVF, stromal–vascular fraction
- TEER, trans-epithelial electrical resistance
Collapse
|
43
|
Bongaerts GPA, Severijnen RSVM. A reassessment of the PROPATRIA study and its implications for probiotic therapy. Nat Biotechnol 2016; 34:55-63. [PMID: 26744983 DOI: 10.1038/nbt.3436] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 11/20/2015] [Indexed: 12/17/2022]
Abstract
The PROPATRIA (Probiotics in Pancreatitis Trial) study was a multicenter, double-blind, placebo-controlled clinical trial that aimed to reduce infectious complications in patients with predicted severe acute pancreatitis by the enteral use of a multispecies probiotic preparation. An unprecedented 24 of 152 patients (16%) in the group receiving probiotics died versus 9 of 144 (6%) in the placebo group. This high mortality rate in the probiotic-treated group contrasts strongly with observations from a previous smaller study and from our observations regarding the effects of abundant intestinal lactobacilli in patients with short small bowel (SSB) syndrome. We argue here that a lethal combination of mainly proteolytic pancreas enzymes and probiotic therapy resulted in the high mortality rate of the PROPATRIA trial and that elevated levels of lactic acid produced by bacterial fermentation of carbohydrates were a key contributing factor. We suggest that probiotic therapy may not be counter-indicated for the prevention of secondary infections associated with acute pancreatitis, provided that future clinical studies (i) start probiotic therapy immediately after first onset of disease symptoms, (ii) limit the supply of fermentable carbohydrates, (iii) prevent bacterial (over)growth of patient's own intestinal flora and (iv) massively increase the dose of probiotic bacteria.
Collapse
Affiliation(s)
- Ger P A Bongaerts
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - René S V M Severijnen
- Department of Surgery, Division of Pediatric Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
44
|
Differential immunomodulatory effects of Lactobacillus rhamnosus DR20, Lactobacillus fermentum CECT 5716 and Bifidobacterium animalis subsp. lactis on monocyte-derived dendritic cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
45
|
Mokkala K, Laitinen K, Röytiö H. Bifidobacterium lactis 420 and fish oil enhance intestinal epithelial integrity in Caco-2 cells. Nutr Res 2016; 36:246-52. [DOI: 10.1016/j.nutres.2015.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/28/2022]
|
46
|
Abstract
Premature infants are at increased risk for morbidity and mortality due to necrotizing enterocolitis (NEC) and sepsis. Probiotics decrease the risk of NEC and death in premature infants; however, mechanisms of action are unclear. A wide variety of probiotic species have been evaluated for potential beneficial properties in vitro, in animal models, and in clinical trials of premature infants. Although there is variation by species and even strain, common mechanisms of protection include attenuation of intestinal inflammation, apoptosis, dysmotility, permeability, supplanting other gut microbes through production of bacteriocins, and more effective use of available nutrients. Here, we review the most promising probiotics and what is known about their impact on the innate and adaptive immune response.
Collapse
Affiliation(s)
- Mark A Underwood
- Chief Division of Neonatology, School of Medicine, University of California at Davis, Sacramento, CA
| |
Collapse
|
47
|
Xu Q, Li X, Wang E, He Y, Yin B, Fang D, Wang G, Zhao J, Zhang H, Chen W. A cellular model for screening of lactobacilli that can enhance tight junctions. RSC Adv 2016. [DOI: 10.1039/c6ra24148d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A new cellular model was established for screening the probiotics with direct effects on tight junction restoration efficiently.
Collapse
|
48
|
Tulstrup MVL, Christensen EG, Carvalho V, Linninge C, Ahrné S, Højberg O, Licht TR, Bahl MI. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class. PLoS One 2015; 10:e0144854. [PMID: 26691591 PMCID: PMC4686753 DOI: 10.1371/journal.pone.0144854] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/24/2015] [Indexed: 01/25/2023] Open
Abstract
Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa.
Collapse
Affiliation(s)
- Monica Vera-Lise Tulstrup
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Ellen Gerd Christensen
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Vera Carvalho
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Caroline Linninge
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Siv Ahrné
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Ole Højberg
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Tine Rask Licht
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Martin Iain Bahl
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
- * E-mail:
| |
Collapse
|
49
|
Woting A, Pfeiffer N, Hanske L, Loh G, Klaus S, Blaut M. Alleviation of high fat diet-induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum. Mol Nutr Food Res 2015. [PMID: 26202344 PMCID: PMC5049449 DOI: 10.1002/mnfr.201500249] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scope Diet‐induced obesity is associated with changes in the gut microbiota and low‐grade inflammation. Oligofructose was reported to ameliorate high fat diet‐induced metabolic disorders in mice by restoring the number of intestinal bifidobacteria. However, this has not been experimentally demonstrated. Methods and results We fed conventional mice, germfree mice, mice associated with a simplified human gut microbiota composed of eight bacterial species including Bifidobacterium longum (SIHUMI), and mice associated with SIHUMI without B. longum a low fat diet (LFD), a high fat diet (HFD), or a HFD containing 10% oligofructose (HFD + OFS) for five weeks. We assessed body composition, bacterial cell numbers and metabolites, markers of inflammation, and gut permeability. Conventional mice fed HFD or HFD + OFS did not differ in body weight gain and glucose tolerance. The gnotobiotic mouse groups fed LFD or HFD + OFS gained less body weight and body fat, and displayed an improved glucose tolerance compared with mice fed HFD. These differences were not affected by the presence of B. longum. Mice fed HFD showed no signs of inflammation or increased intestinal permeability. Conclusion The ability of oligofructose to reduce obesity and to improve glucose tolerance in gnotobiotic mice fed HFD was independent of the presence of B. longum.
Collapse
Affiliation(s)
- Anni Woting
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Nora Pfeiffer
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Laura Hanske
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Gunnar Loh
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Susanne Klaus
- Group of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
50
|
Thévenot J, Cordonnier C, Rougeron A, Le Goff O, Nguyen HTT, Denis S, Alric M, Livrelli V, Blanquet-Diot S. Enterohemorrhagic Escherichia coli infection has donor-dependent effect on human gut microbiota and may be antagonized by probiotic yeast during interaction with Peyer's patches. Appl Microbiol Biotechnol 2015; 99:9097-110. [PMID: 26084888 DOI: 10.1007/s00253-015-6704-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 01/05/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are major food-borne pathogens responsible for serious infections ranging from mild diarrhea to hemorrhagic colitis and life-threatening complications. Shiga toxins (Stxs) are the main virulence factor of EHEC. The antagonistic effect of a prophylactic treatment with the probiotic strain Saccharomyces cerevisiae against EHEC O157:H7 was investigated using complementary in vitro human colonic model and in vivo murine ileal loop assays. In vitro, the probiotic treatment had no effect on O157:H7 survival but favorably influenced gut microbiota activity through modulation of short-chain fatty acid production, increasing acetate production and decreasing that of butyrate. Both pathogen and probiotic strains had individual-dependent effects on human gut microbiota. For the first time, stx expression was followed in human colonic environment: at 9 and 12 h post EHEC infection, probiotic treatment significantly decreased stx mRNA levels. Besides, in murine ileal loops, the probiotic yeast specifically exerted a trophic effect on intestinal mucosa and inhibited O157:H7 interactions with Peyer's patches and subsequent hemorrhagic lesions. Taken together, the results suggest that S. cerevisiae may be useful in the fight against EHEC infection and that host associated factors such as microbiota could influence clinical evolution of EHEC infection and the effectiveness of probiotics.
Collapse
Affiliation(s)
- J Thévenot
- Centre de Recherche en Nutrition Humaine Auvergne, EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine Auvergne, M2iSH, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte UMR INSERM / Université d'Auvergne U1071 USC-INRA 2018, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - C Cordonnier
- Centre de Recherche en Nutrition Humaine Auvergne, EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine Auvergne, M2iSH, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte UMR INSERM / Université d'Auvergne U1071 USC-INRA 2018, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - A Rougeron
- Centre de Recherche en Nutrition Humaine Auvergne, M2iSH, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte UMR INSERM / Université d'Auvergne U1071 USC-INRA 2018, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - O Le Goff
- Centre de Recherche en Nutrition Humaine Auvergne, EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - H T T Nguyen
- Centre de Recherche en Nutrition Humaine Auvergne, M2iSH, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte UMR INSERM / Université d'Auvergne U1071 USC-INRA 2018, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - S Denis
- Centre de Recherche en Nutrition Humaine Auvergne, EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - M Alric
- Centre de Recherche en Nutrition Humaine Auvergne, EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - V Livrelli
- Centre de Recherche en Nutrition Humaine Auvergne, M2iSH, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte UMR INSERM / Université d'Auvergne U1071 USC-INRA 2018, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France.,Service de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - S Blanquet-Diot
- Centre de Recherche en Nutrition Humaine Auvergne, EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France.
| |
Collapse
|