1
|
Sepúlveda-Rebolledo P, González-Rosales C, Dopson M, Pérez-Rueda E, Holmes DS, Valdés JH. Comparative genomics sheds light on transcription factor-mediated regulation in the extreme acidophilic Acidithiobacillia representatives. Res Microbiol 2024; 175:104135. [PMID: 37678513 DOI: 10.1016/j.resmic.2023.104135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Extreme acidophiles thrive in acidic environments, confront a multitude of challenges, and demonstrate remarkable adaptability in their metabolism to cope with the ever-changing environmental fluctuations, which encompass variations in temperature, pH levels, and the availability of electron acceptors and donors. The survival and proliferation of members within the Acidithiobacillia class rely on the deployment of transcriptional regulatory systems linked to essential physiological traits. The study of these transcriptional regulatory systems provides valuable insights into critical processes, such as energy metabolism and nutrient assimilation, and how they integrate into major genetic-metabolic circuits. In this study, we examined the transcriptional regulatory repertoires and potential interactions of forty-three Acidithiobacillia complete and draft genomes, encompassing nine species. To investigate the function and diversity of Transcription Factors (TFs) and their DNA Binding Sites (DBSs), we conducted a genome-wide comparative analysis, which allowed us to identify these regulatory elements in representatives of Acidithiobacillia. We classified TFs into gene families and compared their occurrence among all representatives, revealing conservation patterns across the class. The results identified conserved regulators for several pathways, including iron and sulfur oxidation, the main pathways for energy acquisition, providing new evidence for viable regulatory interactions and branch-specific conservation in Acidithiobacillia. The identification of TFs and DBSs not only corroborates existing experimental information for selected species, but also introduces novel candidates for experimental validation. Moreover, these promising candidates have the potential for further extension to new representatives within the class.
Collapse
Affiliation(s)
- Pedro Sepúlveda-Rebolledo
- Centro de Genómica y Bioinformática and PhD. Program on Integrative Genomics, Facultad de Ciencias, Universidad Mayor, Santiago (8580745), Chile.
| | - Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago (8580638), Chile; Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, Mexico.
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago (8580638), Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago (7510156), Chile.
| | - Jorge H Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago (8370146), Chile.
| |
Collapse
|
2
|
Breuker A, Schippers A. Rates of iron(III) reduction coupled to elemental sulfur or tetrathionate oxidation by acidophilic microorganisms and detection of sulfur intermediates. Res Microbiol 2024; 175:104110. [PMID: 37544391 DOI: 10.1016/j.resmic.2023.104110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Bioleaching processes and acid mine drainage (AMD) generation are mainly driven by aerobic microbial iron(II) and inorganic sulfur/compound oxidation. Dissimilatory iron(III) reduction coupled to sulfur/compound oxidation (DIRSO) by acidophilic microorganisms has been described for anaerobic cultures, but iron reduction was observed under aerobic conditions as well. Aim of this study was to explore reaction rates and mechanisms of this process. Cell-specific iron(III) reduction rates for different Acidithiobacillus (At.) strains during batch culture growth or stationary phase with iron(III) (∼40 mM) as electron acceptor and elemental sulfur or tetrathionate as electron donor (1% or 5 mM, respectively) were determined. The rates were highest under anaerobic conditions for the At. ferrooxidans type strain with 6.8 × 106 and 1.1 × 107 reduced iron(III) ions per second per cell for growth on elemental sulfur and tetrathionate, respectively. The iron(III) reduction rates were somehow lower for the anaerobically sulfur grown archaeon Ferroplasma acidiphilum, and lowest for the sulfur grown At. caldus type strain under aerobic conditions (1.7 × 106 and 7.3 × 104 reduced iron(III) ions per second per cell, respectively). The rates for five strains of At. thiooxidans (aerobe) were in between those for At. ferrooxidans (anaerobe) and At. caldus (aerobe). There was no pronounced pH dependence of iron(III) reduction rates in the range of pH 1.0-1.9 for the type strains of all species but rates increased with increasing pH for four other At. thiooxidans strains. Thiosulfate as sulfur intermediate was found for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III) but not during anaerobic growths on elemental sulfur and iron(III), and a small concentration was measured during aerobic growths on tetrathionate without iron(III). For the At. thiooxidans type strain thiosulfate was found with tetrathionate grown cells under aerobic conditions in presence and absence of iron(III), but not with sulfur grown cells. Evidence for hydrogen sulfide production at low pH was found for the At. ferrooxidans as well as the At. thiooxidans type strains during microaerophilic growth on elemental sulfur and for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III). The occurrence of sulfur compound intermediates supports the hypothesis that chemical reduction of iron(III) ions takes place by sulfur compounds released by the microbial cells.
Collapse
Affiliation(s)
- Anja Breuker
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg2, 30655 Hannover, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg2, 30655 Hannover, Germany.
| |
Collapse
|
3
|
Ibáñez A, Garrido-Chamorro S, Coque JJR, Barreiro C. From Genes to Bioleaching: Unraveling Sulfur Metabolism in Acidithiobacillus Genus. Genes (Basel) 2023; 14:1772. [PMID: 37761912 PMCID: PMC10531304 DOI: 10.3390/genes14091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Sulfur oxidation stands as a pivotal process within the Earth's sulfur cycle, in which Acidithiobacillus species emerge as skillful sulfur-oxidizing bacteria. They are able to efficiently oxidize several reduced inorganic sulfur compounds (RISCs) under extreme conditions for their autotrophic growth. This unique characteristic has made these bacteria a useful tool in bioleaching and biological desulfurization applications. Extensive research has unraveled diverse sulfur metabolism pathways and their corresponding regulatory systems. The metabolic arsenal of the Acidithiobacillus genus includes oxidative enzymes such as: (i) elemental sulfur oxidation enzymes, like sulfur dioxygenase (SDO), sulfur oxygenase reductase (SOR), and heterodisulfide reductase (HDR-like system); (ii) enzymes involved in thiosulfate oxidation pathways, including the sulfur oxidation (Sox) system, tetrathionate hydrolase (TetH), and thiosulfate quinone oxidoreductase (TQO); (iii) sulfide oxidation enzymes, like sulfide:quinone oxidoreductase (SQR); and (iv) sulfite oxidation pathways, such as sulfite oxidase (SOX). This review summarizes the current state of the art of sulfur metabolic processes in Acidithiobacillus species, which are key players of industrial biomining processes. Furthermore, this manuscript highlights the existing challenges and barriers to further exploring the sulfur metabolism of this peculiar extremophilic genus.
Collapse
Affiliation(s)
- Ana Ibáñez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (J.J.R.C.)
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Área de Investigación Agrícola, 47071 Valladolid, Spain
| | - Sonia Garrido-Chamorro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - Juan J. R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (J.J.R.C.)
| | - Carlos Barreiro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| |
Collapse
|
4
|
Dopson M, González-Rosales C, Holmes DS, Mykytczuk N. Eurypsychrophilic acidophiles: From (meta)genomes to low-temperature biotechnologies. Front Microbiol 2023; 14:1149903. [PMID: 37007468 PMCID: PMC10050440 DOI: 10.3389/fmicb.2023.1149903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides. Five low-temperature acidophiles are characterized, namely, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, “Ferrovum myxofaciens,” and Alicyclobacillus disulfidooxidans, and their characteristics are reviewed. Our understanding of characterized and environmental eurypsychrophilic acidophiles has been accelerated by the application of “omics” techniques that have aided in revealing adaptations to low pH and temperature that can be synergistic, while other adaptations are potentially antagonistic. The lack of known acidophiles that exclusively grow below 15°C may be due to the antagonistic nature of adaptations in this polyextremophile. In conclusion, this review summarizes the knowledge of eurypsychrophilic acidophiles and places the information in evolutionary, environmental, biotechnological, and exobiology perspectives.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- *Correspondence: Mark Dopson
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Nadia Mykytczuk
- Goodman School of Mines, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
5
|
Aboulela A, Peyre Lavigne M, Pons T, Bounouba M, Schiettekatte M, Lepercq P, Mercade M, Patapy C, Meulenyzer S, Bertron A. The fate of tetrathionate during the development of a biofilm in biogenic sulfuric acid attack on different cementitious materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158031. [PMID: 35985586 DOI: 10.1016/j.scitotenv.2022.158031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The biodeterioration of cement-based materials in sewer environments occurs because of the production of sulfuric acid from the biochemical oxidation of H2S by sulfur-oxidizing bacteria (SOB). In the perspective of determining the possible reaction pathways for the sulfur cycle in such conditions, hydrated cementitious binders were exposed to an accelerated laboratory test (BAC test) to reproduce a biochemical attack similar to the one occurring in the sewer networks. Tetrathionate was used as a reduced sulfur source to naturally develop sulfur-oxidizing activities on the surfaces of materials. The transformation of tetrathionate was investigated on materials made from different binders: Portland cement, calcium aluminate cement, calcium sulfoaluminate cement and alkali-activated slag. The pH and the concentration of the different sulfur species were monitored in the leached solutions during 3 months of exposure. The results showed that the formation of different polythionates was independent of the nature of the material. The main parameter controlling the phenomena was the evolution of the pH of the leached solutions. Moreover, tetrathionate disproportionation was detected with the formation of more reduced forms of sulfur compounds (pentathionate, hexathionate and elemental sulfur) along with thiosulfate and sulfate. The experimental findings allowed numerical models to be developed to estimate the amount of sulfur compounds as a function of the pH evolution. In addition, biomass samples were collected from the exposed surface and from the deteriorated layers to identify the microbial populations. No clear influence of the cementitious materials on the selected populations was detected, confirming the previous results concerning the impact of the materials on the selected reaction pathways for tetrathionate transformation.
Collapse
Affiliation(s)
- Amr Aboulela
- LMDC, Université de Toulouse, UPS, INSA, INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France; TBI, Université de Toulouse, CNRS, INRA, INSA, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France; Holcim Innovation Center, Saint, 95 rue du Montmurier, 38070 Saint Quentin Fallavier, France.
| | - Matthieu Peyre Lavigne
- TBI, Université de Toulouse, CNRS, INRA, INSA, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France.
| | - Tony Pons
- LMDC, Université de Toulouse, UPS, INSA, INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France.
| | - Mansour Bounouba
- TBI, Université de Toulouse, CNRS, INRA, INSA, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France.
| | - Maud Schiettekatte
- LMDC, Université de Toulouse, UPS, INSA, INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France.
| | - Pascale Lepercq
- TBI, Université de Toulouse, CNRS, INRA, INSA, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France.
| | - Myriam Mercade
- TBI, Université de Toulouse, CNRS, INRA, INSA, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France.
| | - Cédric Patapy
- LMDC, Université de Toulouse, UPS, INSA, INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France.
| | - Samuel Meulenyzer
- Holcim Innovation Center, Saint, 95 rue du Montmurier, 38070 Saint Quentin Fallavier, France.
| | - Alexandra Bertron
- LMDC, Université de Toulouse, UPS, INSA, INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
6
|
Meng T, Wei Q, Yang Y, Cai Z. The influences of soil sulfate content on the transformations of nitrate and sulfate during the reductive soil disinfestation (RSD) process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151766. [PMID: 34801506 DOI: 10.1016/j.scitotenv.2021.151766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The transformations and products of sulfate (SO42-) and nitrate (NO3-), especially the influences of SO42- content on the transformations during RSD process, are unclear. In this study, a series of soil SO42- contents (from 333 to 3000 mg S kg-1) were prepared before RSD treatment. The results indicated that nearly all the cumulative NO3- (>98.6%) was removed and not affected by the soil SO42- content. The 15N recovery results showed that 0.57-1.24% and 2.94-4.59% of NO3- translated into ammonium (NH4+) and organic N, respectively, and high SO42- contents stimulated the processes of NO3- dissimilatory reduction and NO3- immobilization. The soluble SO42- contents decreased by 397-922 mg S kg-1, but the contents of total sulfur, sulfide, and sulfate precipitation varied slightly after RSD, indicating that the decreased SO42- was mainly immobilized into organic sulfur in all soils. In addition, a fraction of decreased SO42- was adsorbed to the soil with a relatively high SO42- content. The leaching of SO42- was high (42.9-602 mg S kg-1) during the RSD process, and the leaching amounts increased with increasing soil SO42- content. In terms of the gases emitted from the transformations of NO3- and SO42-, the cumulative emissions of nitrous oxide (N2O) and six sulfurous gases (hydrogen sulfide, carbonyl sulfide, carbon disulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide) were in the ranges of 17.1-21.2 mg N kg-1 and 7.78-23.5 μg S kg-1, respectively, during the whole RSD process. The emissions of sulfurous gases were inhibited by high soil SO42- content, but the N2O emissions were unaffected. In conclusion, the soil SO42- content influenced the transformations of NO3- and SO42- during RSD process, and the SO42- leaching and N2O emissions might threaten the environment which should be concerned.
Collapse
Affiliation(s)
- Tianzhu Meng
- College of Agriculture Science and Engineering, Hohai University, Nanjing 211106, China.
| | - Qi Wei
- College of Agriculture Science and Engineering, Hohai University, Nanjing 211106, China
| | - Yanju Yang
- School of Geography Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zucong Cai
- School of Geography Sciences, Nanjing Normal University, Nanjing 210023, China; Zhongke Clean Soil (Guangzhou) Technology Service Co., Ltd., Guangzhou 510000, China.
| |
Collapse
|
7
|
Peng T, Liao W, Wang J, Miao J, Peng Y, Gu G, Wu X, Qiu G, Zeng W. Bioleaching and Electrochemical Behavior of Chalcopyrite by a Mixed Culture at Low Temperature. Front Microbiol 2021; 12:663757. [PMID: 34040597 PMCID: PMC8141852 DOI: 10.3389/fmicb.2021.663757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Low-temperature biohydrometallurgy is implicated in metal recovery in alpine mining areas, but bioleaching using microbial consortia at temperatures <10°C was scarcely discussed. To this end, a mixed culture was used for chalcopyrite bioleaching at 6°C. The mixed culture resulted in a higher copper leaching rate than the pure culture of Acidithiobacillus ferrivorans strain YL15. High-throughput sequencing technology showed that Acidithiobacillus spp. and Sulfobacillus spp. were the mixed culture's major lineages. Cyclic voltammograms, potentiodynamic polarization and electrochemical impedance spectroscopy unveiled that the mixed culture enhanced the dissolution reactions, decreased the corrosion potential and increased the corrosion current, and lowered the charge transfer resistance and passivation layer impedance of the chalcopyrite electrode compared with the pure culture. This study revealed the mechanisms via which the mixed culture promoted the chalcopyrite bioleaching.
Collapse
Affiliation(s)
- Tangjian Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Wanqing Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jingshu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jie Miao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuping Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guohua Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
- CSIRO Process Science and Engineering, Clayton, VIC, Australia
| |
Collapse
|
8
|
Barragán CE, Márquez MA, Dopson M, Montoya D. RNA transcript response by an Acidithiobacillus spp. mixed culture reveals adaptations to growth on arsenopyrite. Extremophiles 2021; 25:143-158. [PMID: 33616780 DOI: 10.1007/s00792-021-01217-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
Biooxidation of gold-bearing refractory mineral ores such as arsenopyrite (FeAsS) in stirred tanks produces solutions containing highly toxic arsenic concentrations. In this study, ferrous iron and inorganic sulfur-oxidizing Acidithiobacillus strain IBUN Ppt12 most similar to Acidithiobacillus ferrianus and inorganic sulfur compound oxidizing Acidithiobacillus sp. IBUNS3 were grown in co-culture during biooxidation of refractory FeAsS. Total RNA was extracted and sequenced from the planktonic cells to reveal genes with different transcript counts involved in the response to FeAsS containing medium. The co-culture's response to arsenic release during biooxidation included the ars operon genes that were independently regulated according to the arsenopyrite concentration. Additionally, increased mRNA transcript counts were identified for transmembrane ion transport proteins, stress response mechanisms, accumulation of inorganic polyphosphates, urea catabolic processes, and tryptophan biosynthesis. Acidithiobacillus spp. RNA transcripts also included those encoding the Rus and PetI proteins involved in ferrous iron oxidation and gene clusters annotated as encoding inorganic sulfur compound metabolism enzymes. Finally, mRNA counts of genes related to DNA methylation, management of oxidative stress, chemotaxis, and motility during biooxidation were decreased compared to cells growing without mineral. The results provide insights into the adaptation of Acidithiobacillus spp. to growth during biooxidation of arsenic-bearing sulfides.
Collapse
Affiliation(s)
- Carlos Eduardo Barragán
- Bioprocesses and Bioprospecting Group, Biotechnology Institute (IBUN), Universidad Nacional de Colombia, Bogotá D.C., Colombia
- Applied Mineralogy and Bioprocesses Research Group, Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia
| | - Marco Antonio Márquez
- Applied Mineralogy and Bioprocesses Research Group, Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems EEMiS, Linnaeus University, Kalmar, Sweden
| | - Dolly Montoya
- Bioprocesses and Bioprospecting Group, Biotechnology Institute (IBUN), Universidad Nacional de Colombia, Bogotá D.C., Colombia.
| |
Collapse
|
9
|
Bernardelli CE, Maza SN, Lecomte KL, Collo G, Astini RA, Donati ER. Acidophilic microorganisms enhancing geochemical dynamics in an acidic drainage system, Amarillo river in La Rioja, Argentina. CHEMOSPHERE 2021; 263:128098. [PMID: 33297094 DOI: 10.1016/j.chemosphere.2020.128098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
The Amarillo River in La Rioja, Argentina, is a natural acidic environment that is influenced by an abandoned mine. The river is characterized by extremely low pH and high concentrations of metals and metalloids. Fe(III)-bearing neoformed precipitated minerals are widespread along the hydrological basin. This work reports the presence of different species of iron-oxidizing bacteria and demonstrates that their action has a significant role in geochemical processes of the Amarillo River, mainly by catalyzing Fe2+ oxidation and intensifying the Fe(III)-bearing mineral precipitation. Various iron oxidizers (i.e. Acidithiobacillus ferrivorans, Leptospirillum ferrooxidans, Ferrimicrobium acidophilum, Alicyclobacillus cycloheptanicus) were detected in enrichment cultures at different temperatures. Moreover, this is the first report confirming that Acidithiobacillus ferrivorans is able to grow at 4 °C. Other acidophilic bacteria (i.e., Acidiphilium iwatensii) and fungi (e.g., Fodinomyces uranophilus, Coniochaeta fodinicola, Acidea extrema, Penicillium sp. and Cladosporium pseudocladosporioides) were also detected. In vitro laboratory studies recreating natural Fe(III)-bearing mineral formation showed that mineral precipitation rate was higher than 350 mg L-1 day-1 in the presence of microorganisms whereas it was about 15 mg L-1 day-1 under abiotic conditions. Jarosite was the only mineral detected in the precipitates generated by microbial action and it was also identified in the Amarillo River bed sediments. Biological Fe2+ oxidation rates depend on temperature which range from 8 to 32 mM day-1 at 4 and 30 °C, respectively. Finally, a conceptual model recognizing the significant microbial role is proposed to gain a better understanding of the biogeochemistry dynamics of the Amarillo River.
Collapse
Affiliation(s)
- Cecilia E Bernardelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Calle 50 288, La Plata, Argentina; Universidad Nacional de La Plata (UNLP), Calle 47 y 115, La Plata, Buenos Aires, Argentina.
| | - Santiago N Maza
- Department of Geology and Andean Geothermal Center of Excellence (CEGA), Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile.
| | - Karina L Lecomte
- Centro de Investigaciones en Ciencias de La Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Vélez Sarsfield 1611, X5016CGA, Córdoba, Argentina; Universidad Nacional de Córdoba (UNC), Avenida Vélez Sarsfield 1611, X5016CGA, Córdoba, Argentina.
| | - Gilda Collo
- Centro de Investigaciones en Ciencias de La Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Vélez Sarsfield 1611, X5016CGA, Córdoba, Argentina.
| | - Ricardo A Astini
- Centro de Investigaciones en Ciencias de La Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Vélez Sarsfield 1611, X5016CGA, Córdoba, Argentina; Universidad Nacional de Córdoba (UNC), Avenida Vélez Sarsfield 1611, X5016CGA, Córdoba, Argentina.
| | - Edgardo R Donati
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Calle 50 288, La Plata, Argentina; Universidad Nacional de La Plata (UNLP), Calle 47 y 115, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Piervandi Z, Khodadadi Darban A, Mousavi SM, Abdollahy M, Asadollahfardi G, Funari V, Dinelli E, Webster RD, Sillanpää M. Effect of biogenic jarosite on the bio-immobilization of toxic elements from sulfide tailings. CHEMOSPHERE 2020; 258:127288. [PMID: 32947659 DOI: 10.1016/j.chemosphere.2020.127288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The discharge of toxic elements from tailings soils in the aquatic environments occurs chiefly in the presence of indigenous bacteria. The biotic components may interact in the opposite direction, leading to the formation of a passivation layer, which can inhibit the solubility of the elements. In this work, the influence of jarosite on the bio-immobilization of toxic elements was studied by native bacteria. In batch experiments, the bio-immobilization of heavy metals by an inhibitory layer was examined in the different aquatic media using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. A variety of analyses also investigated the mechanisms of metals bio-immobilization. Among different tests, the highest metal solubility yielded 99% Mn, 91% Cr, 95% Fe, and 78% Cu using A. ferrooxidans in 9KFe medium after ten days. After 22 days, these percentages decreased down to 30% Mn and about 20% Cr, Fe, and Cu, likely due to metal immobilization by biogenic jarosite. The formation of jarosite was confirmed by an electron probe micro-analyzer (EPMA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The mechanisms of metal bio-immobilization by biogenic jarosite from tailings soil confirmed three main steps: 1) the dissolution of metal sulfides in the presence of Acidithiobacillus bacteria; 2) the nucleation of jarosite on the surface of sulfide minerals; 3) the co-precipitation of dissolved elements with jarosite during the bio-immobilization process, demonstrated by a structural study for jarosite. Covering the surface of soils by the jarosite provided a stable compound in the acidic environment of mine-waste.
Collapse
Affiliation(s)
- Zeinab Piervandi
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modarres University, Tehran, Iran
| | - Ahmad Khodadadi Darban
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modarres University, Tehran, Iran.
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modarres University, Tehran, Iran.
| | - Mahmoud Abdollahy
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modarres University, Tehran, Iran
| | | | - Valerio Funari
- Department of Earth System Science and Environmental Technologies, National Research Council ISMAR-CNR Bologna Research Area, Bologna, Italy
| | - Enrico Dinelli
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Richard David Webster
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| | - Mika Sillanpää
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia; Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
11
|
Barahona S, Castro-Severyn J, Dorador C, Saavedra C, Remonsellez F. Determinants of Copper Resistance in Acidithiobacillus Ferrivorans ACH Isolated from the Chilean Altiplano. Genes (Basel) 2020; 11:genes11080844. [PMID: 32722087 PMCID: PMC7463520 DOI: 10.3390/genes11080844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
The use of microorganisms in mining processes is a technology widely employed around the world. Leaching bacteria are characterized by having resistance mechanisms for several metals found in their acidic environments, some of which have been partially described in the Acidithiobacillus genus (mainly on ferrooxidans species). However, the response to copper has not been studied in the psychrotolerant Acidithiobacillus ferrivorans strains. Therefore, we propose to elucidate the response mechanisms of A. ferrivorans ACH to high copper concentrations (0-800 mM), describing its genetic repertoire and transcriptional regulation. Our results show that A. ferrivorans ACH can grow in up to 400 mM of copper. Moreover, we found the presence of several copper-related makers, belonging to cop and cus systems, as well as rusticyanins and periplasmatic acop protein in the genome. Interestingly, the ACH strain is the only one in which we find three copies of copB and copZ genes. Moreover, transcriptional expression showed an up-regulation response (acop, copZ, cusA, rusA, and rusB) to high copper concentrations. Finally, our results support the important role of these genes in A. ferrivorans copper stress resistance, promoting the use of the ACH strain in industrial leaching under low temperatures, which could decrease the activation times of oxidation processes and the energy costs.
Collapse
Affiliation(s)
- Sergio Barahona
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile;
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recurso Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile;
- Programa de Doctorado en Ingeniería de Procesos de Minerales, Facultad de Ingeniería, Universidad de Antofagasta, Antofagasta 1240000, Chile
- Correspondence: (S.B.); (F.R.)
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile;
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recurso Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile;
- Centro de Biotecnología y Bioingeniería (CeBiB), Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Claudia Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile;
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile;
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta 1240000, Chile
- Correspondence: (S.B.); (F.R.)
| |
Collapse
|
12
|
Hajdu-Rahkama R, Ahoranta S, Lakaniemi AM, Puhakka JA. Effects of elevated pressures on the activity of acidophilic bioleaching microorganisms. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Christel S, Yu C, Wu X, Josefsson S, Lillhonga T, Högfors-Rönnholm E, Sohlenius G, Åström ME, Dopson M. Comparison of boreal acid sulfate soil microbial communities in oxidative and reductive environments. Res Microbiol 2019; 170:288-295. [PMID: 31279086 DOI: 10.1016/j.resmic.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Due to land uplift after the last ice age, previously stable Baltic Sea sulfidic sediments are becoming dry land. When these sediments are drained, the sulfide minerals are exposed to air and can release large amounts of metals and acid into the environment. This can cause severe ecological damage such as fish kills in rivers feeding the northern Baltic Sea. In this study, five sites were investigated for the occurrence of acid sulfate soils and their geochemistry and microbiology was identified. The pH and soil chemistry identified three of the areas as having classical acid sulfate soil characteristics and culture independent identification of 16S rRNA genes identified populations related to acidophilic bacteria capable of catalyzing sulfidic mineral dissolution, including species likely adapted to low temperature. These results were compared to an acid sulfate soil area that had been flooded for ten years and showed that the previously oxidized sulfidic materials had an increased pH compared to the unremediated oxidized layers. In addition, the microbiology of the flooded soil had changed such that alkalinity producing ferric and sulfate reducing reactions had likely occurred. This suggested that flooding of acid sulfate soils mitigates their environmental impact.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-39182 Kalmar, Sweden.
| | - Changxun Yu
- Department of Biology and Environmental Science, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Xiaofen Wu
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-39182 Kalmar, Sweden
| | - Sarah Josefsson
- Geological Survey of Sweden, Box 670, 751 28 Uppsala, Sweden
| | - Tom Lillhonga
- Research and Development, Novia University of Applied Sciences, FI-65200, Vaasa, Finland
| | - Eva Högfors-Rönnholm
- Research and Development, Novia University of Applied Sciences, FI-65200, Vaasa, Finland
| | | | - Mats E Åström
- Department of Biology and Environmental Science, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
14
|
Fan W, Peng Y, Meng Y, Zhang W, Zhu N, Wang J, Guo C, Li J, Du H, Dang Z. Transcriptomic Analysis Reveals Reduced Inorganic Sulfur Compound Oxidation Mechanism in Acidithiobacillus ferriphilus. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Tran TTT, Mangenot S, Magdelenat G, Payen E, Rouy Z, Belahbib H, Grail BM, Johnson DB, Bonnefoy V, Talla E. Comparative Genome Analysis Provides Insights into Both the Lifestyle of Acidithiobacillus ferrivorans Strain CF27 and the Chimeric Nature of the Iron-Oxidizing Acidithiobacilli Genomes. Front Microbiol 2017; 8:1009. [PMID: 28659871 PMCID: PMC5468388 DOI: 10.3389/fmicb.2017.01009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
The iron-oxidizing species Acidithiobacillus ferrivorans is one of few acidophiles able to oxidize ferrous iron and reduced inorganic sulfur compounds at low temperatures (<10°C). To complete the genome of At. ferrivorans strain CF27, new sequences were generated, and an update assembly and functional annotation were undertaken, followed by a comparative analysis with other Acidithiobacillus species whose genomes are publically available. The At. ferrivorans CF27 genome comprises a 3,409,655 bp chromosome and a 46,453 bp plasmid. At. ferrivorans CF27 possesses genes allowing its adaptation to cold, metal(loid)-rich environments, as well as others that enable it to sense environmental changes, allowing At. ferrivorans CF27 to escape hostile conditions and to move toward favorable locations. Interestingly, the genome of At. ferrivorans CF27 exhibits a large number of genomic islands (mostly containing genes of unknown function), suggesting that a large number of genes has been acquired by horizontal gene transfer over time. Furthermore, several genes specific to At. ferrivorans CF27 have been identified that could be responsible for the phenotypic differences of this strain compared to other Acidithiobacillus species. Most genes located inside At. ferrivorans CF27-specific gene clusters which have been analyzed were expressed by both ferrous iron-grown and sulfur-attached cells, indicating that they are not pseudogenes and may play a role in both situations. Analysis of the taxonomic composition of genomes of the Acidithiobacillia infers that they are chimeric in nature, supporting the premise that they belong to a particular taxonomic class, distinct to other proteobacterial subgroups.
Collapse
Affiliation(s)
- Tam T T Tran
- Aix-Marseille Université, CNRS, LCBMarseille, France
| | - Sophie Mangenot
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, C.E.A., Institut de Génomique - GenoscopeEvry, France
| | - Ghislaine Magdelenat
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, C.E.A., Institut de Génomique - GenoscopeEvry, France
| | - Emilie Payen
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, C.E.A., Institut de Génomique - GenoscopeEvry, France
| | - Zoé Rouy
- CNRS UMR8030, CEA/DSV/IG/Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le MétabolismeEvry, France
| | | | - Barry M Grail
- College of Natural Sciences, Bangor UniversityBangor, United Kingdom
| | - D Barrie Johnson
- College of Natural Sciences, Bangor UniversityBangor, United Kingdom
| | | | | |
Collapse
|
16
|
Christel S, Fridlund J, Watkin EL, Dopson M. Acidithiobacillus ferrivorans SS3 presents little RNA transcript response related to cold stress during growth at 8 °C suggesting it is a eurypsychrophile. Extremophiles 2016; 20:903-913. [PMID: 27783177 PMCID: PMC5085989 DOI: 10.1007/s00792-016-0882-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022]
Abstract
Acidithiobacillus ferrivorans is an acidophilic bacterium that represents a substantial proportion of the microbial community in a low temperature mining waste stream. Due to its ability to grow at temperatures below 15 °C, it has previously been classified as 'psychrotolerant'. Low temperature-adapted microorganisms have strategies to grow at cold temperatures such as the production of cold acclimation proteins, DEAD/DEAH box helicases, and compatible solutes plus increasing their cellular membrane fluidity. However, little is known about At. ferrivorans adaptation strategies employed during culture at its temperature extremes. In this study, we report the transcriptomic response of At. ferrivorans SS3 to culture at 8 °C compared to 20 °C. Analysis revealed 373 differentially expressed genes of which, the majority were of unknown function. Only few changes in transcript counts of genes previously described to be cold adaptation genes were detected. Instead, cells cultured at cold (8 °C) altered the expression of a wide range of genes ascribed to functions in transcription, translation, and energy production. It is, therefore, suggested that a temperature of 8 °C imposed little cold stress on At. ferrivorans, underlining its adaptation to growth in the cold as well as suggesting it should be classified as a 'eurypsychrophile'.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Jimmy Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Elizabeth L Watkin
- School of Biomedical Sciences, Curtin University, Perth, 6845, Australia
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
17
|
Christel S, Fridlund J, Buetti-Dinh A, Buck M, Watkin EL, Dopson M. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans. FEMS Microbiol Lett 2016; 363:fnw057. [PMID: 26956550 DOI: 10.1093/femsle/fnw057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 01/08/2023] Open
Abstract
Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| | - Jimmy Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| | - Antoine Buetti-Dinh
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| | - Moritz Buck
- National Bioinformatics Infrastructure Sweden and Evolutionary Biology Center, Uppsala University, 751 05 Uppsala, Sweden
| | - Elizabeth L Watkin
- CHIRI Biosciences, School of Biomedical Sciences, Curtin University, Perth 6845, Australia
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
18
|
Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 2015; 91:fiv011. [PMID: 25764459 DOI: 10.1093/femsec/fiv011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/13/2022] Open
Abstract
An acid mine drainage (pH 2.5-2.7) stream biofilm situated 250 m below ground in the low-temperature (6-10°C) Kristineberg mine, northern Sweden, contained a microbial community equipped for growth at low temperature and acidic pH. Metagenomic sequencing of the biofilm and planktonic fractions identified the most abundant microorganism to be similar to the psychrotolerant acidophile, Acidithiobacillus ferrivorans. In addition, metagenome contigs were most similar to other Acidithiobacillus species, an Acidobacteria-like species, and a Gallionellaceae-like species. Analyses of the metagenomes indicated functional characteristics previously characterized as related to growth at low temperature including cold-shock proteins, several pathways for the production of compatible solutes and an anti-freeze protein. In addition, genes were predicted to encode functions related to pH homeostasis and metal resistance related to growth in the acidic metal-containing mine water. Metagenome analyses identified microorganisms capable of nitrogen fixation and exhibiting a primarily autotrophic lifestyle driven by the oxidation of the ferrous iron and inorganic sulfur compounds contained in the sulfidic mine waters. The study identified a low diversity of abundant microorganisms adapted to a low-temperature acidic environment as well as identifying some of the strategies the microorganisms employ to grow in this extreme environment.
Collapse
Affiliation(s)
- Maria Liljeqvist
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Francisco J Ossandon
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Piso 14, 7550296, Chile
| | - Sukithar Rajan
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| | - Adam Stell
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| | - Jorge Valdes
- Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Piso 14, 7550296, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile
| | - Mark Dopson
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| |
Collapse
|
19
|
González C, Yanquepe M, Cardenas JP, Valdes J, Quatrini R, Holmes DS, Dopson M. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis. Res Microbiol 2014; 165:726-34. [PMID: 25172573 DOI: 10.1016/j.resmic.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/17/2023]
Abstract
Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment.
Collapse
Affiliation(s)
- Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile.
| | - María Yanquepe
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Juan Pablo Cardenas
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Jorge Valdes
- Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile.
| | - Raquel Quatrini
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Sweden.
| |
Collapse
|
20
|
Barahona S, Dorador C, Zhang R, Aguilar P, Sand W, Vera M, Remonsellez F. Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature. Res Microbiol 2014; 165:782-93. [PMID: 25111023 DOI: 10.1016/j.resmic.2014.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/17/2022]
Abstract
Microorganisms are used to aid the extraction of valuable metals from low-grade sulfide ores in mines worldwide, but relatively little is known about this process in cold environments. This study comprises a preliminary analysis of the bacterial diversity of the polyextremophilic acid River Aroma located in the Chilean Altiplano, and revealed that Betaproteobacteria was the most dominant bacterial group (Gallionella-like and Thiobacillus-like). Taxa characteristic of leaching environments, such Acidithiobacillus and Leptospirillum, were detected at low abundances. Also, bacteria not associated with extremely acidic, metal-rich environments were found. After enrichment in iron- and sulfur-oxidizing media, we isolated and identified a novel psychrotolerant Acidithiobacillus ferrivorans strain ACH. This strain can grow using ferrous iron, sulfur, thiosulfate, tetrathionate and pyrite, as energy sources. Optimal growth was observed in the presence of pyrite, where cultures reached a cell number of 6.5 · 10(7) cells mL(-1). Planktonic cells grown with pyrite showed the presence of extracellular polymeric substances (10 °C and 28 °C), and a high density of cells attached to pyrite grains were observed at 10 °C by electron microscopy. The attachment of cells to pyrite coupons and the presence of capsular polysaccharides were visualized by using epifluorescence microscopy, through nucleic acid and lectin staining with Syto(®)9 and TRITC-Con A, respectively. Interestingly, we observed high cell adhesion including the formation of microcolonies within 21 days of incubation at 4 °C, which was correlated with a clear induction of capsular polysaccharides production. Our data suggests that attachment to pyrite is not temperature-dependent in At. ferrivorans ACH. The results of this study highlight the potential of this novel psychrotolerant strain in oxidation and attachment to minerals under low-temperature conditions.
Collapse
Affiliation(s)
- Sergio Barahona
- Laboratorio de Tecnología de Membranas, Biotecnología y Medio Ambiente, Departamento de Ingeniería Química, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile; Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Centro de Bioinnovación, Facultad de Ciencias del Mar y Recursos Biológicos, Departamento de Biotecnología, Universidad de Antofagasta, Avenida Angamos 0601, Antofagasta, Chile.
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Centro de Bioinnovación, Facultad de Ciencias del Mar y Recursos Biológicos, Departamento de Biotecnología, Universidad de Antofagasta, Avenida Angamos 0601, Antofagasta, Chile.
| | - Ruiyong Zhang
- Biofilm Centre, University of Dusiburg-Essen, 5, 45141 Essen, Germany.
| | - Pablo Aguilar
- Laboratorio de Tecnología de Membranas, Biotecnología y Medio Ambiente, Departamento de Ingeniería Química, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile; Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Centro de Bioinnovación, Facultad de Ciencias del Mar y Recursos Biológicos, Departamento de Biotecnología, Universidad de Antofagasta, Avenida Angamos 0601, Antofagasta, Chile.
| | - Wolfgang Sand
- Biofilm Centre, University of Dusiburg-Essen, 5, 45141 Essen, Germany.
| | - Mario Vera
- Biofilm Centre, University of Dusiburg-Essen, 5, 45141 Essen, Germany.
| | - Francisco Remonsellez
- Laboratorio de Tecnología de Membranas, Biotecnología y Medio Ambiente, Departamento de Ingeniería Química, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile.
| |
Collapse
|
21
|
Identification and Characterization of a Psychrotolerant Acidithiobacillus Strain from Chilean Altiplano. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.825.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesophilic iron and sulfur-oxidizing acidophiles are commonly used for the extraction of base metals from low-grade sulfide ores in some copper Chilean mines. However, relatively little is known about their activities in cold environments. Some natural ecosystems present in the Andes Mountains, such as the Chilean Altiplano, meet environmental conditions for the growth of psychrotolerant leaching microorganisms. In this work, we obtained enrichment cultures of iron- and sulfur-oxidizing microorganisms from an acid river in the Chilean Altiplano. Molecular identification was performed using PCR products of bacterial 16S rRNA clone libraries, and the sequences analysis revealed the presence of a microorganism related to the recently described psychrotolerantAcidithiobacillus ferrivorans. TheAcidithiobacillusstrain was able to grow at temperatures ranging between 4 and 30°C, and pH values ranged between 1.7 and 2.5. According to the energy sources, this microorganism was able to grow using ferric iron, sulfur, thiosulfate and tetrathionate. Optimal growth was observed in presence of ferric ion, where the culture reached a potential redox value of 600 mV and a cellular number of 3×107cells/mL. Molecular analysis of variants of gene encoding for rusticyanin showed thatrusBgene was amplified fromA. ferrivoransstrain and no PCR product was obtained for therusAgene. Our description is consistent with data previously reported forA. ferrivoransstrains. Finally, results of this study highlight the importance and potential of novel native bacterial species proficient in mineral oxidation under low-temperature conditions.
Collapse
|
22
|
Wu X, Wong ZL, Sten P, Engblom S, Osterholm P, Dopson M. Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil. FEMS Microbiol Ecol 2013; 84:555-63. [PMID: 23369102 PMCID: PMC3732381 DOI: 10.1111/1574-6941.12084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/21/2012] [Accepted: 01/25/2013] [Indexed: 11/28/2022] Open
Abstract
Soils containing an approximately equal mixture of metastable iron sulfides and pyrite occur in the boreal Ostrobothnian coastal region of Finland, termed 'potential acid sulfate soil materials'. If the iron sulfides are exposed to air, oxidation reactions result in acid and metal release to the environment that can cause severe damage. Despite that acidophilic microorganisms catalyze acid and metal release from sulfide minerals, the microbiology of acid sulfate soil (ASS) materials has been neglected. The molecular phylogeny of a depth profile through the plough and oxidized ASS layers identified several known acidophilic microorganisms and environmental clones previously identified from acid- and metal-contaminated environments. In addition, several of the 16S rRNA gene sequences were more similar to sequences previously identified from cold environments. Leaching of the metastable iron sulfides and pyrite with an ASS microbial enrichment culture incubated at low pH accelerated metal release, suggesting microorganisms capable of catalyzing metal sulfide oxidation were present. The 16S rRNA gene analysis showed the presence of species similar to Acidocella sp. and other clones identified from acid mine environments. These data support that acid and metal release from ASSs was catalyzed by indigenous microorganisms adapted to low pH.
Collapse
Affiliation(s)
- Xiaofen Wu
- Centre for Ecology and Evolution in Microbial Model Systems, Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans. Appl Environ Microbiol 2012. [PMID: 23183980 DOI: 10.1128/aem.02989-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments.
Collapse
|
24
|
Dopson M, Johnson DB. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 2012; 14:2620-31. [PMID: 22510111 DOI: 10.1111/j.1462-2920.2012.02749.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extremely acidic, sulfur-rich environments can be natural, such as solfatara fields in geothermal and volcanic areas, or anthropogenic, such as acid mine drainage waters. Many species of acidophilic bacteria and archaea are known to be involved in redox transformations of sulfur, using elemental sulfur and inorganic sulfur compounds as electron donors or acceptors in reactions involving between one and eight electrons. This minireview describes the nature and origins of acidic, sulfur-rich environments, the biodiversity of sulfur-metabolizing acidophiles, and how sulfur is metabolized and assimilated by acidophiles under aerobic and anaerobic conditions. Finally, existing and developing technologies that harness the abilities of sulfur-oxidizing and sulfate-reducing acidophiles to extract and capture metals, and to remediate sulfur-polluted waste waters are outlined.
Collapse
Affiliation(s)
- Mark Dopson
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | | |
Collapse
|
25
|
Draft genome of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3. J Bacteriol 2011; 193:4304-5. [PMID: 21705598 DOI: 10.1128/jb.05373-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acidithiobacillus ferrivorans SS3 is a psychrotolerant acidophile capable of growth in the range of 5° to 30°C (optimum, ≈25°C). It gains energy from the oxidation of ferrous iron and inorganic sulfur compounds and obtains organic carbon from carbon dioxide. Here, we present the draft genome sequence of A. ferrivorans SS3 that will permit investigation of genes involved in growth in acidic environments at low temperatures.
Collapse
|
26
|
Chen P, Yan L, Leng F, Nan W, Yue X, Zheng Y, Feng N, Li H. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. BIORESOURCE TECHNOLOGY 2011; 102:3260-3267. [PMID: 21146407 DOI: 10.1016/j.biortech.2010.11.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/11/2010] [Accepted: 11/14/2010] [Indexed: 05/30/2023]
Abstract
The characteristics of the bioleaching of realgar by Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans) were investigated in this work. We examined the effects of using ferrous iron and elemental sulfur as the sole and mixed energy sources on the bioleaching of realgar. Under all experimental conditions, A. ferrooxidans BY-3 significantly enhanced the dissolution of realgar. Moreover, arsenic was more efficiently leached using A. ferrooxidans BY-3 in the presence of ferrous iron than in other culture conditions. A high concentration of arsenic was observed in the absence of alternative energy sources. This concentration was higher than that in cultures with sulfur only and lower than that in cultures with ferrous iron and sulfur. Linear or nonlinear models best fit the experimental data; the nonlinear model exhibited the dual effects of dissolution and removal on the bioleaching of realgar, whereas the linear model only applied to situations of slow bioleaching rather than removal.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Arid and Grassland Ecology, School of Life Sciences, Lanzhou University, Lanzhou, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Liljeqvist M, Sundkvist JE, Saleh A, Dopson M. Low temperature removal of inorganic sulfur compounds from mining process waters. Biotechnol Bioeng 2011; 108:1251-9. [PMID: 21280027 DOI: 10.1002/bit.23057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/12/2022]
Abstract
Process water and effluents from mining operations treating sulfide rich ores often contain considerable concentrations of metastable inorganic sulfur compounds such as thiosulfate and tetrathionate. These species may cause environmental problems if released to downstream recipients due to oxidation to sulfuric acid catalyzed by acidophilic microorganisms. Molecular phylogenic analysis of the tailings pond and recipient streams identified psychrotolerant and mesophilic inorganic sulfur compound oxidizing microorganisms. This suggested year round thiosalt oxidation occurs. Mining process waters may also contain inhibiting substances such as thiocyanate from cyanidation plants. However, toxicity experiments suggested their expected concentrations would not inhibit thiosalt oxidation by Acidithiobacillus ferrivorans SS3. A mixed culture from a permanently cold (4-6 °C) low pH environment was tested for thiosalt removal in a reactor design including a biogenerator and a main reactor containing a biofilm carrier. The biogenerator and main reactors were successively reduced in temperature to 5-6 °C when 43.8% of the chemical oxidation demand was removed. However, it was found that the oxidation of thiosulfate was not fully completed to sulfate since low residual concentrations of tetrathionate and trithionate were found in the discharge. This study has demonstrated the potential of using biotechnological solutions to remove inorganic sulfur compounds at 6°C and thus, reduce the impact of mining on the environment.
Collapse
Affiliation(s)
- Maria Liljeqvist
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|