1
|
Jiang Y, Jiang M, Cai R, Shi X, Hu Q, Kan B. Rapid and specific differentiation of Salmonella enterica serotypes typhi and Paratyphi by multicolor melting curve analysis. Gut Pathog 2024; 16:43. [PMID: 39160630 PMCID: PMC11331607 DOI: 10.1186/s13099-024-00636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Rapid and accurate identification of Salmonella enterica serotypes Typhi and Paratyphi (A, B and C), the causal agents of enteric fever, is critical for timely treatment, case management and evaluation of health policies in low and middle-income countries where the disease still remains a serious public health problem. The present study describes the development of a multiplex assay (EFMAtyping) for simultaneous identification of pathogens causing typhoid and paratyphoid fever in a single reaction by the MeltArray approach, which could be finished within 2.5 h. Seven specific genes were chosen for differentiation of typhoidal and nontyphoidal Salmonella. All gene targets were able to be detected by the EFMAtyping assay, with expected Tm values and without cross-reactivity to other relevant Salmonella serovars. The limit of detection (LOD) for all gene targets was 50 copies per reaction. The LOD reached 102-103 CFU/ml for each pathogen in simulated clinical samples. The largest standard deviation value for mean Tm was below 0.5 °C. This newly developed EFMAtyping assay was further evaluated by testing 551 clinical Salmonella isolates, corroborated in parallel by the traditional Salmonella identification workflow, and serotype prediction was enabled by whole-genome sequencing. Compared to the traditional method, our results exhibited 100% of specificity and greater than 96% of sensitivity with a kappa correlation ranging from 0.96 to 1.00. Thus, the EFMAtyping assay provides a rapid, high throughput, and promising tool for public health laboratories to monitor typhoid and paratyphoid fever.
Collapse
Affiliation(s)
- Yixiang Jiang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
2
|
Jean-Baptiste D, Monette F. Quantitative microbial risk assessment (QMRA) of the work of manual pit emptiers, commonly known as bayakous. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3122-3132. [PMID: 38877634 DOI: 10.2166/wst.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
In Haiti, manual pit emptiers, known as bayakous, face significant health risks. They work by descending naked into latrine pits, exposing themselves to pathogens and contributing to environmental contamination. This study employs the quantitative microbial risk assessment (QMRA) method to evaluate the microbial risks associated with this practice, considering nine prevalent pathogens in Haiti. Three ingestion scenarios were developed: hand-to-mouth contact, ingestion while immersed in excreta, and a combination of both. A sensitivity analysis assessed the impact of input data on study outcomes. The results indicate a high probability of infection and illness during pit emptying operations annually for all scenarios and pathogens. Recommendations include adopting personal protective equipment (PPE) and using a manual Gulper waste pump to eliminate the need to descend directly into the pits, thereby reducing the risk of injury from sharp objects. The study proposes the establishment of intermediate disposal points approximately 5 km from collection sites to deter illegal dumping. National regulations and professionalization of the bayakou profession are suggested, along with awareness campaigns to promote PPE and Gulper pump usage. Addressing these issues is crucial for safeguarding the health of bayakou and public health in Haiti.
Collapse
Affiliation(s)
- Davidson Jean-Baptiste
- École de technologie supérieure, Montréal, QC, Canada; Faculté des Sciences, Université d'État d'Haïti, Port-au-Prince, Haïti E-mail:
| | | |
Collapse
|
3
|
Kim HJ, Jung Y, Kim MJ, Kim HY. Novel Heptaplex PCR-Based Diagnostics for Enteric Fever Caused by Typhoidal Salmonella Serovars and Its Applicability in Clinical Blood Culture. J Microbiol Biotechnol 2023; 33:1457-1466. [PMID: 37674393 DOI: 10.4014/jmb.2307.07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Enteric fever is caused by typhoidal Salmonella serovars (Typhi, Paratyphi A, Paratyphi B, and Paratyphi C). Owing to the importance of Salmonella serovars in clinics and public hygiene, reliable diagnostics for typhoidal serovars are crucial. This study aimed to develop a novel diagnostic tool for typhoidal Salmonella serovars and evaluate the use of human blood for clinically diagnosing enteric fever. Five genes were selected to produce specific PCR results against typhoidal Salmonella serovars based on the genes of Salmonella Typhi. Heptaplex PCR, including genetic markers of generic Salmonella, Salmonella enterica subsp. enterica, and typhoidal Salmonella serovars, was developed. Typhoidal Salmonella heptaplex PCR using genomic DNAs from 200 Salmonella strains (112 serovars) provided specifically amplified PCR products for each typhoidal Salmonella serovar. These results suggest that heptaplex PCR can sufficiently discriminate between typhoidal and nontyphoidal Salmonella serovars. Heptaplex PCR was applied to Salmonella-spiked blood cultures directly and provided diagnostic results after 12- or 13.5-h blood culture. Additionally, it demonstrated diagnostic performance with colonies recovered from a 6-h blood culture. This study provides a reliable DNA-based tool for diagnosing typhoidal Salmonella serovars that may be useful in clinical microbiology and epidemiology.
Collapse
Affiliation(s)
- Hyun-Joong Kim
- Department of Food Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - Younsik Jung
- Institute of Life Sciences and Resources and the Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104 Republic of Korea
| | - Mi-Ju Kim
- Institute of Life Sciences and Resources and the Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104 Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and the Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104 Republic of Korea
| |
Collapse
|
4
|
Jean-Baptiste D, De Giudici P, Monette F. Quantitative microbial risk assessment associated with the use of container-based toilets in Haiti. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1332-1343. [PMID: 37771230 PMCID: wst_2023_274 DOI: 10.2166/wst.2023.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A container-based toilet (CBT) is a type of ecological toilet that allows users to compost their feces. During emptying, bucket washing, and composting operations, operators are exposed to microbial risks. This paper aims to evaluate these risks using the Quantitative Microbial Risk Assessment (QMRA) method. Nine pathogens prevalent in Haiti were targeted: Ascaris lumbricoides, Campylobacter spp., Cryptosporidium parvum, Escherichia coli O157:H7, Giardia intestinalis, poliovirus, Salmonella spp., Shigella spp., and Vibrio cholerae. Information regarding pathogens' concentration in feces came from scientific literature data. The exposure scenarios considered were those in which operators accidentally ingested a low dose of feces during the aforementioned operations. A Monte Carlo simulation was conducted to address uncertainties. The results showed that the probability of infection is highly elevated, while the probability of illness is generally moderate or minor, except for poliovirus and Ascaris. Preventive measures can be implemented to reduce these risks during various operations, such as wearing gloves, disposable protective masks, and appropriate clothing. It is up to the political authorities to develop guidelines in this regard and to organize awareness-raising activities with the help of local organizations mandated by the relevant authorities to ensure the safer use of technology by households.
Collapse
Affiliation(s)
- Davidson Jean-Baptiste
- École de Technologie Supérieure, Montreal, QC, Canada; Faculty of Science, Université d'État d'Haïti, Port-au-Prince, Haïti E-mail:
| | | | | |
Collapse
|
5
|
Cordovana M, Mauder N, Kostrzewa M, Wille A, Rojak S, Hagen RM, Ambretti S, Pongolini S, Soliani L, Justesen US, Holt HM, Join-Lambert O, Le Hello S, Auzou M, Veloo AC, May J, Frickmann H, Dekker D. Classification of Salmonella enterica of the (Para-)Typhoid Fever Group by Fourier-Transform Infrared (FTIR) Spectroscopy. Microorganisms 2021; 9:microorganisms9040853. [PMID: 33921159 PMCID: PMC8071548 DOI: 10.3390/microorganisms9040853] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Typhoidal and para-typhoidal Salmonella are major causes of bacteraemia in resource-limited countries. Diagnostic alternatives to laborious and resource-demanding serotyping are essential. Fourier transform infrared spectroscopy (FTIRS) is a rapidly developing and simple bacterial typing technology. In this study, we assessed the discriminatory power of the FTIRS-based IR Biotyper (Bruker Daltonik GmbH, Bremen, Germany), for the rapid and reliable identification of biochemically confirmed typhoid and paratyphoid fever-associated Salmonella isolates. In total, 359 isolates, comprising 30 S. Typhi, 23 S. Paratyphi A, 23 S. Paratyphi B, and 7 S. Paratyphi C, respectively and other phylogenetically closely related Salmonella serovars belonging to the serogroups O:2, O:4, O:7 and O:9 were tested. The strains were derived from clinical, environmental and food samples collected at different European sites. Applying artificial neural networks, specific automated classifiers were built to discriminate typhoidal serovars from non-typhoidal serovars within each of the four serogroups. The accuracy of the classifiers was 99.9%, 87.0%, 99.5% and 99.0% for Salmonella Typhi, Salmonella Paratyphi A, B and Salmonella Paratyphi C, respectively. The IR Biotyper is a promising tool for fast and reliable detection of typhoidal Salmonella. Hence, IR biotyping may serve as a suitable alternative to conventional approaches for surveillance and diagnostic purposes.
Collapse
Affiliation(s)
- Miriam Cordovana
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.C.); (N.M.); (M.K.)
| | - Norman Mauder
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.C.); (N.M.); (M.K.)
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.C.); (N.M.); (M.K.)
| | - Andreas Wille
- Institute for Hygiene and Environment, 20539 Hamburg, Germany;
| | - Sandra Rojak
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (S.R.); (R.M.H.)
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (S.R.); (R.M.H.)
| | - Simone Ambretti
- Operative Unit of Microbiology, IRCCS-Azienda Ospedaliero Policlinico Sant’Orsola-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia-Romagna, 43126 Parma, Italy; (S.P.); (L.S.)
| | - Laura Soliani
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia-Romagna, 43126 Parma, Italy; (S.P.); (L.S.)
| | - Ulrik S. Justesen
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense C, Denmark; (U.S.J.); (H.M.H.)
| | - Hanne M. Holt
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense C, Denmark; (U.S.J.); (H.M.H.)
| | - Olivier Join-Lambert
- Department of Microbiology, Université de Caen, Normandie, CEDEX 5, 14032 Caen, France; (O.J.-L.); (S.L.H.); (M.A.)
| | - Simon Le Hello
- Department of Microbiology, Université de Caen, Normandie, CEDEX 5, 14032 Caen, France; (O.J.-L.); (S.L.H.); (M.A.)
| | - Michel Auzou
- Department of Microbiology, Université de Caen, Normandie, CEDEX 5, 14032 Caen, France; (O.J.-L.); (S.L.H.); (M.A.)
| | - Alida C. Veloo
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, 9700 AB Groningen, The Netherlands;
| | - Jürgen May
- Infectious Disease Department, Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany; or
- University Medical Center Hamburg-Eppendorf (UKE), Tropical Medicine II Hamburg, 20359 Hamburg, Germany
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany; or
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Denise Dekker
- Infectious Disease Department, Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany; or
- German Centre for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
6
|
Nucleic Acid-Based Lateral Flow Biosensor for Salmonella Typhi and Salmonella Paratyphi: A Detection in Stool Samples of Suspected Carriers. Diagnostics (Basel) 2021; 11:diagnostics11040700. [PMID: 33919817 PMCID: PMC8070779 DOI: 10.3390/diagnostics11040700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 11/17/2022] Open
Abstract
A multiplex rapid detection system, based on a PCR-lateral flow biosensor (mPCR-LFB) was developed to identify Salmonella Typhi and Salmonella Paratyphi A from suspected carriers. The lower detection limit for S. Typhi and S. Paratyphi A was 0.16 and 0.08 ng DNA equivalent to 10 and 102 CFU/mL, respectively. Lateral flow biosensor was used for visual detection of mPCR amplicons (stgA, SPAint, ompC, internal amplification control) by labeling forward primers with fluorescein-isothiocyanate (FITC), Texas Red, dinitrophenol (DNP) and digoxigenin (DIG) and reverse primers with biotin. Binding of streptavidin-colloidal gold conjugate with the amplicons resulted in formation of a red color dots on the strip after 15-20 min of sample exposure. The nucleic acid lateral flow analysis of the mPCR-LFB was better in sensitivity and more rapid than the conventional agarose gel electrophoresis. Moreover, the mPCR-LFB showed 100% sensitivity and specificity when evaluated with stools spiked with 100 isolates of Salmonella genus and other bacteria. A prospective cohort study on stool samples of 1176 food handlers in outbreak areas (suspected carriers) resulted in 23 (2%) positive for S. Typhi. The developed assay has potential to be used for rapid detection of typhoid carriers in surveillance program.
Collapse
|
7
|
Ruan J, Wang W, Zhang T, Zheng T, Zheng J, Yu S, Yu D, Huang Y. Establishment of a duplex real-time qPCR method for detection of Salmonella spp. and Serratia fonticola in fishmeal. AMB Express 2020; 10:207. [PMID: 33236244 PMCID: PMC7686437 DOI: 10.1186/s13568-020-01144-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Salmonella spp. is a high-risk bacterial pathogen that is monitored in imported animal-derived feedstuffs. Serratia fonticola is the bacterial species most frequently confused with Salmonella spp. in traditional identification methods based on biochemical characteristics, which are time-consuming and labor-intensive, and thus unsuitable for daily inspection and quarantine work. In this study, we established a duplex real-time qPCR method with invA- and gyrB-specific primers and probes corresponding to Salmonella spp. and S. fonticola. The method could simultaneously detect both pathogens in imported feedstuffs, with a minimum limit of detection for Salmonella spp. and S. fonticola of 197 copies/μL and 145 copies/μL, respectively (correlation coefficient R2 = 0.999 in both cases). The amplification efficiency for Salmonella spp. and S. fonticola was 98.346% and 96.49%, respectively. Detection of fishmeal was consistent with method GB/T 13091-2018, and all seven artificially contaminated imported feed samples were positively identified. Thus, the developed duplex real-time qPCR assay displays high specificity and sensitivity, and can be used for the rapid and accurate detection of genomic DNA from Salmonella spp. and S. fonticola within hours. This represents a significant improvement in the efficiency of detection of both pathogens in imported feedstuffs.
Collapse
|
8
|
Alhaj-Qasem DM, Al-Hatamleh MAI, Irekeola AA, Khalid MF, Mohamud R, Ismail A, Mustafa FH. Laboratory Diagnosis of Paratyphoid Fever: Opportunity of Surface Plasmon Resonance. Diagnostics (Basel) 2020; 10:diagnostics10070438. [PMID: 32605310 PMCID: PMC7400347 DOI: 10.3390/diagnostics10070438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
Paratyphoid fever is caused by the bacterium Salmonellaenterica serovar Paratyphi (A, B and C), and contributes significantly to global disease burden. One of the major challenges in the diagnosis of paratyphoid fever is the lack of a proper gold standard. Given the absence of a licensed vaccine against S. Paratyphi, this diagnostic gap leads to inappropriate antibiotics use, thus, enhancing antimicrobial resistance. In addition, the symptoms of paratyphoid overlap with other infections, including the closely related typhoid fever. Since the development and utilization of a standard, sensitive, and accurate diagnostic method is essential in controlling any disease, this review discusses a new promising approach to aid the diagnosis of paratyphoid fever. This advocated approach is based on the use of surface plasmon resonance (SPR) biosensor and DNA probes to detect specific nucleic acid sequences of S. Paratyphi. We believe that this SPR-based genoassay can be a potent alternative to the current conventional diagnostic methods, and could become a rapid diagnostic tool for paratyphoid fever.
Collapse
Affiliation(s)
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.F.K.); (A.I.)
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.A.I.A.-H.); (R.M.)
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Aziah Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.F.K.); (A.I.)
| | - Fatin Hamimi Mustafa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.F.K.); (A.I.)
- Correspondence: ; Tel.: +60-9767-2432
| |
Collapse
|
9
|
Rojak S, Wiemer DF, Wille A, Loderstädt U, Wassill L, Hinz R, Hagen RM, Frickmann H. Loop-mediated isothermal amplification for paratyphoid fever - a proof-of-principle analysis. Lett Appl Microbiol 2019; 68:509-513. [PMID: 30761564 DOI: 10.1111/lam.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
In-house loop-mediated isothermal amplification (LAMP) procedures for the detection of paratyphoid fever-associated bacteria on serovar level were evaluated. Therefore, LAMP primers for Salmonella genus, for two LAMP schemes for S. Paratyphi A, for S. Paratyphi B and for S. Paratyphi C were tested with DNA from culture isolates from strain collections and spiked blood cultures against published PCR protocols targeting the same micro-organisms. Sensitivity and specificity for DNA from culture isolates verified by LAMP ranged from 80·0 to 100·0% and 96·1 to 100·0% vs 65 to 100% and 98·7 to 100% for the PCR approaches. For the spiked blood culture materials, sensitivity and specificity for LAMP ranged from 87·5 to 100·0% and 96·7 to 100·0% vs from 60 to 100% and 98·2 to 100% for PCR. In conclusion, LAMP for paratyphoid fever shows comparable performance characteristics as PCR. Due to its easy application, the procedure is well suited for surveillance purposes in resource-limited settings. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of easy-to-apply, point-of-care-testing-like loop-mediated isothermal amplification (LAMP) for the diagnosis of paratyphoid fever is evaluated. This approach can contribute to low-threshold availability of surveillance options for resource limited settings. Easy-to-teach and easy-to-apply LAMP schemes with similar performance characteristics as PCR are provided. The described test evaluation is of particular use for surveillance and public health experts.
Collapse
Affiliation(s)
- S Rojak
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany.,Department of Infectious Diseases and Tropical Medicine, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - D F Wiemer
- Department of Infectious Diseases and Tropical Medicine, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - A Wille
- Institute for Hygiene and Environment, City of Hamburg, Hamburg, Germany
| | - U Loderstädt
- Institute for Hygiene and Environment, City of Hamburg, Hamburg, Germany
| | - L Wassill
- Amplex Diagnostics GmbH, Gars-Bahnhof, Germany
| | - R Hinz
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - R M Hagen
- Department of Preventive Medicine, Bundeswehr Medical Academy, Munich, Germany
| | - H Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany.,Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
10
|
Rubio MS, Penha Fº RAC, Almeida AM, Barbosa FO, Berchieri Jr A. Duplex Real-Time PCR Using Sybr Green I for Quantification and Differential Diagnosis between Salmonella Enteritidis and Salmonella Typhimurium. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- MS Rubio
- Universidade Estadual Paulista, Brazil
| | | | | | | | | |
Collapse
|
11
|
Liaquat S, Sarwar Y, Ali A, Haque A, Farooq M, Martinez-Ballesteros I, Laorden L, Garaizar J, Bikandi J. Virulotyping of Salmonella enterica serovar Typhi isolates from Pakistan: Absence of complete SPI-10 in Vi negative isolates. PLoS Negl Trop Dis 2018; 12:e0006839. [PMID: 30500817 PMCID: PMC6267989 DOI: 10.1371/journal.pntd.0006839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/13/2018] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of Salmonella enterica serovar Typhi (S. Typhi), the cause of typhoid fever in humans, is mainly attributed to the acquisition of horizontally acquired DNA elements. Salmonella pathogenicity islands (SPIs) are indubitably the most important form of horizontally acquired DNA with respect to pathogenesis of this bacterium. The insertion or deletion of any of these transferrable SPIs may have impact on the virulence potential of S. Typhi. In this study, the virulence potential and genetic relatedness of 35 S. Typhi isolates, collected from 2004 to 2013 was determined by identification of SPI and non-SPI virulence factors through a combination of techniques including virulotyping, Whole Genome Sequencing (WGS), and Variable Number of Tandem Repeats (VNTR) profiling. In order to determine the virulence potential of local S. Typhi isolates, 56 virulence related genes were studied by PCR. These genes are located in the core as well as accessory genome (SPIs and plasmid). Major variations among studied virulence determinants were found in case of SPI-7 and SPI-10 associated genes. On the basis of presence of virulence related genes, the studied S. Typhi isolates from Pakistan were clustered into two virulotypes Vi-positive and Vi-negative. Interestingly, SPI-7 and SPI-10 were collectively absent or present in Vi-negative and Vi-positive strains, respectively. Two Vi-negative and 11 Vi-positive S. Typhi strains were also analyzed by whole genome sequencing (WGS) and their results supported the PCR results. Genetic diversity was tested by VNTR-based molecular typing. All 35 isolates were clustered into five groups. Overall, all Vi-negative isolates were placed in a single group (T5) whereas Vi-positive isolates were grouped into four types. Vi-negative and Vi-positive isolates were mutually exclusive. This is the first report on the comparative distribution of SPI and non-SPI related virulence genes in Vi-negative and Vi-positive S. Typhi isolates with an important finding that SPI-10 is absent in all Vi-negative isolates. The distribution of virulence factors in S. Typhi can vary in isolates from different geographical regions and can have significant effect on the disease control. In this study, we have checked the distribution of 56 reported virulence associated factors in 35 local isolates of S. Typhi to identify any variations that can help in designing effective control strategies for typhoid. We have identified four naturally occurring variants which are simultaneously lacking SPI-7 and SPI-10, two adjacently located pathogenicity islands on S. Typhi chromosome. These isolates are not producing Vi capsular antigen hence the Vi based vaccines will not be effective against them. These findings highlight the need to develop typhoid vaccines specifically effective in Pakistan.
Collapse
Affiliation(s)
- Sadia Liaquat
- Enteric Pathogen Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan affiliated with Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Departments of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yasra Sarwar
- Enteric Pathogen Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan affiliated with Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- * E-mail:
| | - Aamir Ali
- Enteric Pathogen Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan affiliated with Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Abdul Haque
- Akhuwat Faisalabad Institute For Research In Science And Technology, Faisalabad, Pakistan
| | - Muhammad Farooq
- Enteric Pathogen Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan affiliated with Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ilargi Martinez-Ballesteros
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country, (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Lorena Laorden
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country, (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Javier Garaizar
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country, (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Joseba Bikandi
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country, (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
12
|
Liang J, Zhou J, Tan J, Wang Z, Deng L. Aptamer-Based Fluorescent Determination of Salmonella paratyphi A Using Phi29-DNA Polymerase-Assisted Cyclic Amplification. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1505901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jingjing Liang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Jiaqi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Jianxi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Zefeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
13
|
Jeong A, Lim H. Magnetophoretic separation ICP-MS immunoassay using Cs-doped multicore magnetic nanoparticles for the determination of salmonella typhimurium. Talanta 2018; 178:916-921. [DOI: 10.1016/j.talanta.2017.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
|
14
|
Identification of Five Novel Salmonella Typhi-Specific Genes as Markers for Diagnosis of Typhoid Fever Using Single-Gene Target PCR Assays. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8905675. [PMID: 27975062 PMCID: PMC5126401 DOI: 10.1155/2016/8905675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/27/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
Salmonella Typhi (S. Typhi) causes typhoid fever which is a disease characterised by high mortality and morbidity worldwide. In order to curtail the transmission of this highly infectious disease, identification of new markers that can detect the pathogen is needed for development of sensitive and specific diagnostic tests. In this study, genomic comparison of S. Typhi with other enteric pathogens was performed, and 6 S. Typhi genes, that is, STY0201, STY0307, STY0322, STY0326, STY2020, and STY2021, were found to be specific in silico. Six PCR assays each targeting a unique gene were developed to test the specificity of these genes in vitro. The diagnostic sensitivities and specificities of each assay were determined using 39 S. Typhi, 62 non-Typhi Salmonella, and 10 non-Salmonella clinical isolates. The results showed that 5 of these genes, that is, STY0307, STY0322, STY0326, STY2020, and STY2021, demonstrated 100% sensitivity (39/39) and 100% specificity (0/72). The detection limit of the 5 PCR assays was 32 pg for STY0322, 6.4 pg for STY0326, STY2020, and STY2021, and 1.28 pg for STY0307. In conclusion, 5 PCR assays using STY0307, STY0322, STY0326, STY2020, and STY2021 were developed and found to be highly specific at single-gene target resolution for diagnosis of typhoid fever.
Collapse
|
15
|
Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin Microbiol Rev 2015; 28:901-37. [PMID: 26180063 PMCID: PMC4503790 DOI: 10.1128/cmr.00002-15] [Citation(s) in RCA: 667] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica infections are common causes of bloodstream infection in low-resource areas, where they may be difficult to distinguish from other febrile illnesses and may be associated with a high case fatality ratio. Microbiologic culture of blood or bone marrow remains the mainstay of laboratory diagnosis. Antimicrobial resistance has emerged in Salmonella enterica, initially to the traditional first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole. Decreased fluoroquinolone susceptibility and then fluoroquinolone resistance have developed in association with chromosomal mutations in the quinolone resistance-determining region of genes encoding DNA gyrase and topoisomerase IV and also by plasmid-mediated resistance mechanisms. Resistance to extended-spectrum cephalosporins has occurred more often in nontyphoidal than in typhoidal Salmonella strains. Azithromycin is effective for the management of uncomplicated typhoid fever and may serve as an alternative oral drug in areas where fluoroquinolone resistance is common. In 2013, CLSI lowered the ciprofloxacin susceptibility breakpoints to account for accumulating clinical, microbiologic, and pharmacokinetic-pharmacodynamic data suggesting that revision was needed for contemporary invasive Salmonella infections. Newly established CLSI guidelines for azithromycin and Salmonella enterica serovar Typhi were published in CLSI document M100 in 2015.
Collapse
Affiliation(s)
- John A Crump
- Centre for International Health, University of Otago, Dunedin, Otago, New Zealand Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Sjölund-Karlsson
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melita A Gordon
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Christopher M Parry
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
16
|
Thavanathan J, Huang NM, Thong KL. Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms. Int J Nanomedicine 2015; 10:2711-22. [PMID: 25897217 PMCID: PMC4396418 DOI: 10.2147/ijn.s74753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have developed a colorimetric biosensor using a dual platform of gold nanoparticles and graphene oxide sheets for the detection of Salmonella enterica. The presence of the invA gene in S. enterica causes a change in color of the biosensor from its original pinkish-red to a light purplish solution. This occurs through the aggregation of the primary gold nanoparticles–conjugated DNA probe onto the surface of the secondary graphene oxide–conjugated DNA probe through DNA hybridization with the targeted DNA sequence. Spectrophotometry analysis showed a shift in wavelength from 525 nm to 600 nm with 1 μM of DNA target. Specificity testing revealed that the biosensor was able to detect various serovars of the S. enterica while no color change was observed with the other bacterial species. Sensitivity testing revealed the limit of detection was at 1 nM of DNA target. This proves the effectiveness of the biosensor in the detection of S. enterica through DNA hybridization.
Collapse
Affiliation(s)
- Jeevan Thavanathan
- Low Dimension Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
| | - Nay Ming Huang
- Low Dimension Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Non-protein coding RNA genes as the novel diagnostic markers for the discrimination of Salmonella species using PCR. PLoS One 2015; 10:e0118668. [PMID: 25774907 PMCID: PMC4361174 DOI: 10.1371/journal.pone.0118668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/22/2015] [Indexed: 01/03/2023] Open
Abstract
Salmonellosis, a communicable disease caused by members of the Salmonella species, transmitted to humans through contaminated food or water. It is of paramount importance, to generate accurate detection methods for discriminating the various Salmonella species that cause severe infection in humans, including S. Typhi and S. Paratyphi A. Here, we formulated a strategy of detection and differentiation of salmonellosis by a multiplex polymerase chain reaction assay using S. Typhi non-protein coding RNA (sRNA) genes. With the designed sequences that specifically detect sRNA genes from S. Typhi and S. Paratyphi A, a detection limit of up to 10 pg was achieved. Moreover, in a stool-seeding experiment with S. Typhi and S. Paratyphi A, we have attained a respective detection limit of 15 and 1.5 CFU/mL. The designed strategy using sRNA genes shown here is comparatively sensitive and specific, suitable for clinical diagnosis and disease surveillance, and sRNAs represent an excellent molecular target for infectious disease.
Collapse
|
18
|
Simple and rapid detection of Salmonella by direct PCR amplification of gene fimW. Curr Microbiol 2014; 69:429-35. [PMID: 24838665 DOI: 10.1007/s00284-014-0602-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
This study established a simple method of specifically detecting Salmonella species by amplifying fimW gene, which was involved in regulating Salmonella type I fimbriae expression. A pair of primers was designed to target and discriminate the 68 Salmonella strains of 23 Salmonella serovars available to us from 12 non-Salmonella strains of five different kinds of bacteria by polymerase chain reaction (PCR) amplification. Results showed that specific DNA fragment with an expected size of 477 bp was successfully amplified from all Salmonella serovars, while no target band was detected in non-Salmonella species. The sensitivity of this PCR-amplifying system reached to 1 pg DNA chromosome and 10(2) cfu of Salmonella enteritis strain CMCC(B) 50336. The above results demonstrated the method as a simple, sensitive, and specific way for Salmonella detection.
Collapse
|
19
|
Fabre L, Le Hello S, Roux C, Issenhuth-Jeanjean S, Weill FX. CRISPR is an optimal target for the design of specific PCR assays for salmonella enterica serotypes Typhi and Paratyphi A. PLoS Negl Trop Dis 2014; 8:e2671. [PMID: 24498453 PMCID: PMC3907412 DOI: 10.1371/journal.pntd.0002671] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms. METHODOLOGY Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers. PRINCIPAL FINDINGS We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species. CONCLUSIONS The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples.
Collapse
Affiliation(s)
- Laetitia Fabre
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, WHO Collaborative Center for Reference and Research on Salmonella, Institut Pasteur, Paris, France
| | - Simon Le Hello
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, WHO Collaborative Center for Reference and Research on Salmonella, Institut Pasteur, Paris, France
| | - Chrystelle Roux
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, WHO Collaborative Center for Reference and Research on Salmonella, Institut Pasteur, Paris, France
| | - Sylvie Issenhuth-Jeanjean
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, WHO Collaborative Center for Reference and Research on Salmonella, Institut Pasteur, Paris, France
| | - François-Xavier Weill
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, WHO Collaborative Center for Reference and Research on Salmonella, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Frickmann H, Hänle A, Essig A, Dekker D, Boahen K, Acquah S, Sarpong N, Adu-Sarkodie Y, Schwarz NG, May J, Marks F, Hagen RM, Poppert S. Fluorescence in situ hybridization (FISH) for rapid identification of Salmonella spp. from agar and blood culture broth--an option for the tropics? Int J Med Microbiol 2013; 303:277-84. [PMID: 23642903 DOI: 10.1016/j.ijmm.2013.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/02/2013] [Accepted: 04/07/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Salmonella enterica is an important cause of diarrhea with the potential to cause systemic infection including sepsis, particularly in the tropics. Sepsis in particular requires quick and reliable identification to allow a rapid optimization of antibiotic therapy. We describe the establishment and evaluation of fluorescence in situ hybridization (FISH) as a rapid and easy-to-perform molecular identification procedure from agar and blood culture broths. METHODS Two newly developed FISH probes with specificity for Salmonella spp. were evaluated with 10 reference strains, 448 clinical isolates of Gram-negative bacteria from Germany and Ghana including 316 Salmonella spp. strains, and 39 environmental Salmonella spp. isolates from rivers and streams in Ghana. One FISH probe was further tested with 207 pre-incubated blood culture broths from Germany with Gram-negative rod-shaped bacteria in Gram stain. RESULTS Evaluation of the newly designed FISH probes demonstrated sensitivity of 99.2% and specificity of 98.4% for clinical isolates, sensitivity of 97.4% for environmental Salmonella spp. isolates, and sensitivity of 100% and specificity of 99.5% for blood culture materials. CONCLUSIONS FISH proved to be highly reliable for a rapid identification of Salmonella spp. directly from pre-incubated blood culture broths as well as after growth on agar. The inexpensive and easy-to-perform procedure is particularly suitable for resource-limited areas where more sophisticated procedures are not available.
Collapse
Affiliation(s)
- Hagen Frickmann
- Department of Tropical Medicine at the Bernhard-Nocht Institute, German Armed Forces Hospital of Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Deekshit VK, Kumar BK, Rai P, Rohit A, Karunasagar I. Simultaneous detection of Salmonella pathogenicity island 2 and its antibiotic resistance genes from seafood. J Microbiol Methods 2013; 93:233-8. [PMID: 23545447 DOI: 10.1016/j.mimet.2013.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 01/19/2023]
Abstract
Salmonella enterica serovars are virulent pathogens of humans and animals with many strains possessing multiple drug resistance traits. They have been found to carry resistance to ampicillin, chloramphenicol, florfenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT-resistant). A rapid and sensitive multiplex PCR (mPCR)-based assay was developed for the detection of Salmonella serovars from seafood. Six sets of primers which are one primer pair targeting Salmonella specific gene invA (284 bp), two Salmonella pathogenicity island 2 (SPI-2) genes ssaT (780 bp) and sseF (888 bp) and three antibiotic resistance genes floR (198 bp), sul1 (425 bp), tetG (550 bp) were used for the study. The specificity and sensitivity of the assay were tested by spiking shrimp/fish/clam homogenate with viable cells of Salmonella. This assay allows for the cost effective and reliable detection of pathogenic Salmonella enterica from seafood. The mPCR developed in the present study proved to be a potent analytical tool for the rapid identification of multidrug-resistant Salmonella serovars from seafood.
Collapse
Affiliation(s)
- Vijaya Kumar Deekshit
- Department of Fisheries Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore 575002, India
| | | | | | | | | |
Collapse
|
22
|
Development of a multiplexed PCR assay combined with propidium monoazide treatment for rapid and accurate detection and identification of three viable Salmonella enterica serovars. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.05.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Preechakasedkit P, Pinwattana K, Dungchai W, Siangproh W, Chaicumpa W, Tongtawe P, Chailapakul O. Development of a one-step immunochromatographic strip test using gold nanoparticles for the rapid detection of Salmonella typhi in human serum. Biosens Bioelectron 2012; 31:562-6. [DOI: 10.1016/j.bios.2011.10.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/16/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
|
24
|
Pui CF, Wong WC, Chai LC, Lee HY, Noorlis A, Zainazor TCT, Tang JYH, Ghazali FM, Cheah YK, Nakaguchi Y, Nishibuchi M, Radu S. Multiplex PCR for the concurrent detection and differentiation of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium. Trop Med Health 2011; 39:9-15. [PMID: 22028607 PMCID: PMC3153144 DOI: 10.2149/tmh.2010-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/02/2011] [Indexed: 11/11/2022] Open
Abstract
Salmonellosis outbreaks involving typhoid fever and human gastroenteritis are important diseases in tropical countries where hygienic conditions are often not maintained. A rapid and sensitive method to detect Salmonella spp., Salmonella Typhi and Salmonella Typhimurium is needed to improve control and surveillance of typhoid fever and Salmonella gastroenteritis. Our objective was the concurrent detection and differentiation of these food-borne pathogens using a multiplex PCR. We therefore designed and optimized a multiplex PCR using three specific PCR primer pairs for the simultaneous detection of these pathogens. The concentration of each of the primer pairs, magnesium chloride concentration, and primer annealing temperature were optimized before verification of the specificity of the primer pairs. The target genes produced amplicons at 429 bp, 300 bp and 620 bp which were shown to be 100% specific to each target bacterium, Salmonella spp., Salmonella Typhi and Salmonella Typhimurium, respectively.
Collapse
Affiliation(s)
- Chai Fung Pui
- Center of Excellence for Food Safety Research, Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|