1
|
Sánchez-Rey LE, Moreno-Sarmiento N, Grijalba-Bernal EP, Quiroga-Cubides G. Physiological response of Metarhizium rileyi with linoleic acid supplementation. Fungal Biol 2024; 128:1827-1835. [PMID: 38876535 DOI: 10.1016/j.funbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Metarhizium rileyi has a broad biocontrol spectrum but is highly sensitive to abiotic factors. A Colombian isolate M. rileyi Nm017 has shown notorious potential against Helicoverpa zea. However, it has a loss of up to 22 % of its conidial germination after drying, which limits its potential as a biocontrol agent and further commercialization. Conidial desiccation resistance can be enhanced by nutritional supplements, which promotes field adaptability and facilitates technological development as a biopesticide. In this study, the effect of culture medium supplemented with linoleic acid on desiccation tolerance in Nm017 conidia was evaluated. Results showed that using a 2 % linoleic acid-supplemented medium increased the relative germination after drying by 41 % compared to the control treatment, without affecting insecticidal activity on H. zea. Also, the fungus increased the synthesis of trehalose, glucose, and erythritol during drying, independently of linoleic acid use. Ultrastructural analyses of the cell wall-membrane showed a loss of thickness by 22 % and 25 %, in samples obtained from 2 % linoleic acid supplementation and the control, respectively. Regarding its morphological characteristics, conidia inner area from both treatments did not change after drying. However, conidia from the control had a 24 % decrease in length/width ratio, whereas there was no alteration in conidia from acid linoleic. The average value of dry conidia elasticity coefficient from linoleic acid treatment was 200 % above the control. Medium supplementation with linoleic acid is a promising fermentation strategy for obtaining more tolerant conidia without affecting production and biocontrol parameters, compatible solutes synthesis, or modifying its cell configuration.
Collapse
Affiliation(s)
- Leidy Esther Sánchez-Rey
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 #26-85 Edificio Manuel Ancizar, Bogotá, Colombia
| | - Nubia Moreno-Sarmiento
- Instituto de Biotecnología, Universidad Nacional de Colombia, Carrera 45 #26-85 Edificio Manuel Ancizar, Bogotá, Colombia
| | - Erika Paola Grijalba-Bernal
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Centro de Investigación Tibaitatá, kilómetro 14 vía Mosquera-Bogotá, Cundinamarca, Colombia
| | - Ginna Quiroga-Cubides
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Centro de Investigación Tibaitatá, kilómetro 14 vía Mosquera-Bogotá, Cundinamarca, Colombia.
| |
Collapse
|
2
|
Yeo J, Jeon YW. Impact of Polyethylene-Glycol-Induced Water Potential on Methane Yield and Microbial Consortium Dynamics in the Anaerobic Degradation of Glucose. Bioengineering (Basel) 2024; 11:433. [PMID: 38790299 PMCID: PMC11117670 DOI: 10.3390/bioengineering11050433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the relationship between water potential (Ψ) and the cation-induced inhibition of methane production in anaerobic digesters. The Ψ around methanogens was manipulated using polyethylene glycol (PEG) in a batch anaerobic reactor, ranging from -0.92 to -5.10 MPa. The ultimate methane potential (Bu) decreased significantly from 0.293 to 0.002 Nm3 kg-1-VSadded as Ψ decreased. When Ψ lowered from -0.92 MPa to -1.48 MPa, the community distribution of acetoclastic Methanosarcina decreased from 59.62% to 40.44%, while those of hydrogenotrophic Methanoculleus and Methanobacterium increased from 17.70% and 1.30% to 36.30% and 18.07%, respectively. These results mirrored changes observed in methanogenic communities affected by cation inhibition with KCl. Our findings strongly indicate that the inhibitory effect of cations on methane production may stem more from the water stress induced by cations than from their direct toxic effects. This study highlights the importance of considering Ψ dynamics in understanding cation-mediated inhibition in anaerobic digesters, providing insights into optimizing microbial processes for enhanced methane production from organic substrates.
Collapse
Affiliation(s)
- Jin Yeo
- Biogas Research Center, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Yong-Woo Jeon
- Environmental Technology Division, Korea Testing Laboratory, Seoul 08389, Republic of Korea
| |
Collapse
|
3
|
Hamill PG, Stevenson A, McMullan PE, Williams JP, Lewis ADR, S S, Stevenson KE, Farnsworth KD, Khroustalyova G, Takemoto JY, Quinn JP, Rapoport A, Hallsworth JE. Microbial lag phase can be indicative of, or independent from, cellular stress. Sci Rep 2020; 10:5948. [PMID: 32246056 PMCID: PMC7125082 DOI: 10.1038/s41598-020-62552-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Measures of microbial growth, used as indicators of cellular stress, are sometimes quantified at a single time-point. In reality, these measurements are compound representations of length of lag, exponential growth-rate, and other factors. Here, we investigate whether length of lag phase can act as a proxy for stress, using a number of model systems (Aspergillus penicillioides; Bacillus subtilis; Escherichia coli; Eurotium amstelodami, E. echinulatum, E. halophilicum, and E. repens; Mrakia frigida; Saccharomyces cerevisiae; Xerochrysium xerophilum; Xeromyces bisporus) exposed to mechanistically distinct types of cellular stress including low water activity, other solute-induced stresses, and dehydration-rehydration cycles. Lag phase was neither proportional to germination rate for X. bisporus (FRR3443) in glycerol-supplemented media (r2 = 0.012), nor to exponential growth-rates for other microbes. In some cases, growth-rates varied greatly with stressor concentration even when lag remained constant. By contrast, there were strong correlations for B. subtilis in media supplemented with polyethylene-glycol 6000 or 600 (r2 = 0.925 and 0.961), and for other microbial species. We also analysed data from independent studies of food-spoilage fungi under glycerol stress (Aspergillus aculeatinus and A. sclerotiicarbonarius); mesophilic/psychrotolerant bacteria under diverse, solute-induced stresses (Brochothrix thermosphacta, Enterococcus faecalis, Pseudomonas fluorescens, Salmonella typhimurium, Staphylococcus aureus); and fungal enzymes under acid-stress (Terfezia claveryi lipoxygenase and Agaricus bisporus tyrosinase). These datasets also exhibited diversity, with some strong- and moderate correlations between length of lag and exponential growth-rates; and sometimes none. In conclusion, lag phase is not a reliable measure of stress because length of lag and growth-rate inhibition are sometimes highly correlated, and sometimes not at all.
Collapse
Affiliation(s)
- Philip G Hamill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - James P Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Abiann D R Lewis
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Sudharsan S
- Department of Chemistry, PGP College of Arts and Science, NH-7, Karur Main Road, Paramathi, Namakkal, Tamil Nadu, 637 207, India
| | - Kath E Stevenson
- Special Collections and Archives, McClay Library, Queen's University Belfast, 10 College Park Avenue, Belfast, BT7 1LP, Northern Ireland
| | - Keith D Farnsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Galina Khroustalyova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Jon Y Takemoto
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan, UT, 84322, USA
| | - John P Quinn
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland.
| |
Collapse
|
4
|
Sartori M, Nesci A, García J, Passone MA, Montemarani A, Etcheverry M. Efficacy of epiphytic bacteria to prevent northern leaf blight caused by Exserohilum turcicum in maize. Rev Argent Microbiol 2017; 49:75-82. [PMID: 28188093 DOI: 10.1016/j.ram.2016.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 06/21/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022] Open
Abstract
Eight potential biological control agents (BCAs) were evaluated in planta in order to assess their effectiveness in reducing disease severity of northern leaf blight caused by Exserohilum turcicum. The assay was carried out in greenhouse. Twenty-six-day-old plants, V4 phenological stage, were inoculated with antagonists by foliar spray. Only one biocontrol agent was used per treatment. Ten days after this procedure, all treatments were inoculated with E. turcicum by foliar application. Treatments performed were: C-Et: control of E. turcicum; T1: isolate 1 (Enterococcus genus)+E. turcicum; T2: isolate 2 (Corynebacterium genus)+E. turcicum; T3: isolate 3 (Pantoea genus)+E. turcicum; T4: isolate 4 (Corynebacterium genus)+E. turcicum; T5: isolate 5 (Pantoea genus)+E. turcicum; T6: isolate 6 (Bacillus genus)+E. turcicum; T7: isolate 7 (Bacillus genus)+E. turcicum; T8: isolate 8 (Bacillus genus)+E. turcicum. Monitoring of antagonists on the phyllosphere was performed at different times. Furthermore, the percentage of infected leaves and, plant and leaf incidence were determined. Foliar application of different bacteria significantly reduced the leaf blight between 30-78% and 39-56% at 20 and 39 days respectively. It was observed that in the V10 stage of maize plants, isolate 8 (Bacillus spp.) caused the greatest effect on reducing the severity of northern leaf blight. Moreover, isolate 8 was the potential BCA that showed more stability in the phyllosphere. At 39 days, all potential biocontrol agents had a significant effect on controlling the disease caused by E. turcicum.
Collapse
Affiliation(s)
- Melina Sartori
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Julián García
- Oro Verde, Servicios fitosanitarios, Río Cuarto, Córdoba, Argentina
| | - María A Passone
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Analía Montemarani
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Miriam Etcheverry
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
5
|
O'Callaghan M. Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 2016; 100:5729-46. [PMID: 27188775 PMCID: PMC4909795 DOI: 10.1007/s00253-016-7590-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 11/29/2022]
Abstract
There is increasing interest in the use of beneficial microorganisms as alternatives to chemical pesticides and synthetic fertilisers in agricultural production. Application of beneficial microorganisms to seeds is an efficient mechanism for placement of microbial inocula into soil where they will be well positioned to colonise seedling roots and protect against soil-borne diseases and pests. However, despite the long history of inoculation of legume seeds with Rhizobia spp. and clear laboratory demonstration of the ability of a wide range of other beneficial microorganisms to improve crop performance, there are still very few commercially available microbial seed inoculants. Seed inoculation techniques used for research purposes are often not feasible at a commercial scale and there are significant technical challenges in maintaining viable microbial inocula on seed throughout commercial seed treatment processes and storage. Further research is needed before the benefits of a wide range of environmentally sensitive potential seed inoculants can be captured for use in agriculture, ecosystem restoration and bioremediation. There is no single solution to the challenge of improving the ability of seed inoculants to establish and function consistently in the field. Development of novel formulations that maintain the viability of both inoculant and seed during storage will result from multidisciplinary research in microbial and seed physiology and adjuvant chemistry.
Collapse
Affiliation(s)
- Maureen O'Callaghan
- Lincoln Science Centre, AgResearch Ltd, Private Bag 4749, Christchurch, 8140, New Zealand.
| |
Collapse
|