1
|
Bragagnolo N, Audette GF. The 1.3 Å resolution structure of the truncated group Ia type IV pilin from Pseudomonas aeruginosa strain P1. Acta Crystallogr D Struct Biol 2024; 80:834-849. [PMID: 39607821 PMCID: PMC11626772 DOI: 10.1107/s205979832401132x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
The type IV pilus is a diverse molecular machine capable of conferring a variety of functions and is produced by a wide range of bacterial species. The ability of the pilus to perform host-cell adherence makes it a viable target for the development of vaccines against infection by human pathogens such as Pseudomonas aeruginosa. Here, the 1.3 Å resolution crystal structure of the N-terminally truncated type IV pilin from P. aeruginosa strain P1 (ΔP1) is reported, the first structure of its phylogenetically linked group (group I) to be discussed in the literature. The structure was solved from X-ray diffraction data that were collected 20 years ago with a molecular-replacement search model generated using AlphaFold; the effectiveness of other search models was analyzed. Examination of the high-resolution ΔP1 structure revealed a solvent network that aids in maintaining the fold of the protein. On comparing the sequence and structure of P1 with a variety of type IV pilins, it was observed that there are cases of higher structural similarities between the phylogenetic groups of P. aeruginosa than there are between the same phylogenetic group, indicating that a structural grouping of pilins may be necessary in developing antivirulence drugs and vaccines. These analyses also identified the α-β loop as the most structurally diverse domain of the pilins, which could allow it to serve a role in pilus recognition. Studies of ΔP1 in vitro polymerization demonstrate that the optimal hydrophobic catalyst for the oligomerization of the pilus from strain K122 is not conducive for pilus formation of ΔP1; a model of a three-start helical assembly using the ΔP1 structure indicates that the α-β loop and the D-loop prevent in vitro polymerization.
Collapse
Affiliation(s)
- Nicholas Bragagnolo
- Department of ChemistryYork University4700 Keele StreetTorontoOntarioM3J 1P3Canada
| | - Gerald F. Audette
- Department of ChemistryYork University4700 Keele StreetTorontoOntarioM3J 1P3Canada
| |
Collapse
|
2
|
Arefian Jazi M, Hajikhani B, Goudarzi M, Ebrahimipour G. Exploiting immunopotential PAPI-1 encoded type IVb major pilin targeting Pseudomonas aeruginosa. Heliyon 2024; 10:e36859. [PMID: 39281519 PMCID: PMC11401190 DOI: 10.1016/j.heliyon.2024.e36859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) significantly contributes to nosocomial infections and necessitates research into novel treatment methods. For the first time, this research evaluated the immunoprotective potential of recombinant PAPI-1 encoded type IV pili targeting P. aeruginosa in BALB/C mice. The target sequence was identified, and a PilS2-encoding vector was constructed. The vector was then expressed and purified in E. coli BL21 (DE3). The PilS2 protein was inoculated into BALB/C mice in four groups, with or without alum, to measure total IgG, its subclasses, and cytokines. MTT and opsonophagocytosis tests were used to examine the immunological response. PilS2, especially when paired with alum, boosts the humoral immune response by enhancing IgG and IL-4 levels. However, PilS2 did not affect IL-17 or IFN-γ and only increased lymphocyte proliferation. Antibodies targeting PilS2 increased phagocytic cell death of P. aeruginosa by over 95 %, indicating possible therapies for P. aeruginosa infections. Our study on the immunopotentiation of P. aeruginosa PilS2 paves the way for pilin-based vaccines and immunotherapy targeting this pathogen.
Collapse
Affiliation(s)
- Mojgan Arefian Jazi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Microbiology, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Carvia-Hermoso C, Cuéllar V, Bernabéu-Roda LM, van Dillewijn P, Soto MJ. Sinorhizobium meliloti GR4 Produces Chromosomal- and pSymA-Encoded Type IVc Pili That Influence the Interaction with Alfalfa Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:628. [PMID: 38475474 DOI: 10.3390/plants13050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Type IVc Pili (T4cP), also known as Tad or Flp pili, are long thin microbial filaments that are made up of small-sized pilins. These appendages serve different functions in bacteria, including attachment, biofilm formation, surface sensing, motility, and host colonization. Despite their relevant role in diverse microbial lifestyles, knowledge about T4cP in bacteria that establish symbiosis with legumes, collectively referred to as rhizobia, is still limited. Sinorhizobium meliloti contains two clusters of T4cP-related genes: flp-1 and flp-2, which are located on the chromosome and the pSymA megaplasmid, respectively. Bundle-forming pili associated with flp-1 are involved in the competitive nodulation of alfalfa plants, but the role of flp-2 remains elusive. In this work, we have performed a comprehensive bioinformatic analysis of T4cP genes in the highly competitive S. meliloti GR4 strain and investigated the role of its flp clusters in pilus biogenesis, motility, and in the interaction with alfalfa. Single and double flp-cluster mutants were constructed on the wild-type genetic background as well as in a flagellaless derivative strain. Our data demonstrate that both chromosomal and pSymA flp clusters are functional in pili biogenesis and contribute to surface translocation and nodule formation efficiency in GR4. In this strain, the presence of flp-1 in the absence of flp-2 reduces the competitiveness for nodule occupation.
Collapse
Affiliation(s)
- Cristina Carvia-Hermoso
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Virginia Cuéllar
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lydia M Bernabéu-Roda
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pieter van Dillewijn
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - María J Soto
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
4
|
Zhang J, Li S, Sun T, Zong Y, Luo Y, Wei Y, Zhang W, Zhao K. Oscillation of type IV pili regulated by the circadian clock in cyanobacterium Synechococcus elongatus PCC7942. SCIENCE ADVANCES 2024; 10:eadd9485. [PMID: 38266097 PMCID: PMC10807798 DOI: 10.1126/sciadv.add9485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Type IV pili (TFP) are known to be functionally related to cell motilities and natural transformation in many bacteria. However, the molecular and ecological functions of the TFP have rarely been reported for photosynthetic cyanobacteria. Here, by labeling pili in model cyanobacterium Synechococcus elongatus PCC 7942 (Syn7942), we have quantitatively characterized the TFP and its driven twitching motility in situ at the single-cell level. We found an oscillating pattern of TFP in accordance with the light and dark periods during light-dark cycles, which is correlated positively to the oscillating pattern of the natural transformation efficiency. We further showed that the internal circadian clock plays an important role in regulating the oscillating pattern of TFP, which is also supported by evidences at the molecular level by tracking the expression of 16 TFP-related genes. This study adds a detailed picture toward the gap between TFP and its relations to circadian regulations in Syn7942.
Collapse
Affiliation(s)
- Jingchao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Shubin Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Tao Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, P.R. China
| | - Yiwu Zong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yan Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yufei Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Weiwen Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, P.R. China
| | - Kun Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and The Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
5
|
Vahvelainen N, Bozkurt E, Maula T, Johansson A, Pöllänen MT, Ihalin R. Pilus PilA of the naturally competent HACEK group pathogen Aggregatibacter actinomycetemcomitans stimulates human leukocytes and interacts with both DNA and proinflammatory cytokines. Microb Pathog 2022; 173:105843. [DOI: 10.1016/j.micpath.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
|
6
|
Oki H, Kawahara K, Iimori M, Imoto Y, Nishiumi H, Maruno T, Uchiyama S, Muroga Y, Yoshida A, Yoshida T, Ohkubo T, Matsuda S, Iida T, Nakamura S. Structural basis for the toxin-coregulated pilus-dependent secretion of Vibrio cholerae colonization factor. SCIENCE ADVANCES 2022; 8:eabo3013. [PMID: 36240278 PMCID: PMC9565799 DOI: 10.1126/sciadv.abo3013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Colonization of the host intestine is the most important step in Vibrio cholerae infection. The toxin-coregulated pilus (TCP), an operon-encoded type IVb pilus (T4bP), plays a crucial role in this process, which requires an additional secreted protein, TcpF, encoded on the same TCP operon; however, its mechanisms of secretion and function remain elusive. Here, we demonstrated that TcpF interacts with the minor pilin, TcpB, of TCP and elucidated the crystal structures of TcpB alone and in complex with TcpF. The structural analyses reveal how TCP recognizes TcpF and its secretory mechanism via TcpB-dependent pilus elongation and retraction. Upon binding to TCP, TcpF forms a flower-shaped homotrimer with its flexible N terminus hooked onto the trimeric interface of TcpB. Thus, the interaction between the minor pilin and the N terminus of the secreted protein, namely, the T4bP secretion signal, is key for V. cholerae colonization and is a new potential therapeutic target.
Collapse
Affiliation(s)
- Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Minato Iimori
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yuka Imoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Haruka Nishiumi
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Susumu Uchiyama
- Graduate School of Engineering, Osaka University, Osaka, Japan
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- U-Medico Inc., Suita, Osaka, Japan
| | - Yuki Muroga
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akihiro Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tetsuya Iida
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Ellison CK, Whitfield GB, Brun YV. Type IV Pili: Dynamic Bacterial Nanomachines. FEMS Microbiol Rev 2021; 46:6425739. [PMID: 34788436 DOI: 10.1093/femsre/fuab053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteria and archaea rely on appendages called type IV pili (T4P) to participate in diverse behaviors including surface sensing, biofilm formation, virulence, protein secretion, and motility across surfaces. T4P are broadly distributed fibers that dynamically extend and retract, and this dynamic activity is essential for their function in broad processes. Despite the essentiality of dynamics in T4P function, little is known about the role of these dynamics and molecular mechanisms controlling them. Recent advances in microscopy have yielded insight into the role of T4P dynamics in their diverse functions and recent structural work has expanded what is known about the inner workings of the T4P motor. This review discusses recent progress in understanding the function, regulation, and mechanisms of T4P dynamics.
Collapse
Affiliation(s)
- Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Gregory B Whitfield
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Zhang J, Li S, Sun T, Zong Y, Zhang W, Zhao K. A simple, switchable pili-labelling method by plasmid-based replacement of pilin. Environ Microbiol 2021; 23:2692-2703. [PMID: 33848059 DOI: 10.1111/1462-2920.15515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/06/2021] [Indexed: 11/26/2022]
Abstract
Labelling of Type IV pili (TFP) can greatly improve our understanding of the pivotal roles of TFP in a variety of bacterial activities including motility, surface sensing and DNA-uptake etc. Here we show a simple and switchable pili-labelling method by plasmid-based inducible replacement of PilA without genetic modification in bacterial genome employed by complicated methods. Using this method, we characterized pili morphology and twitching motility of Pseudomonas aeruginosa in details. More importantly, we demonstrate its application in studying the replenishment dynamics of pilin pool of P. aeruginosa.
Collapse
Affiliation(s)
- Jingchao Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shubin Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tao Sun
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China
| | - Yiwu Zong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China
| | - Kun Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
9
|
Conradi FD, Mullineaux CW, Wilde A. The Role of the Cyanobacterial Type IV Pilus Machinery in Finding and Maintaining a Favourable Environment. Life (Basel) 2020; 10:life10110252. [PMID: 33114175 PMCID: PMC7690835 DOI: 10.3390/life10110252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Type IV pili (T4P) are proteinaceous filaments found on the cell surface of many prokaryotic organisms and convey twitching motility through their extension/retraction cycles, moving cells across surfaces. In cyanobacteria, twitching motility is the sole mode of motility properly characterised to date and is the means by which cells perform phototaxis, the movement towards and away from directional light sources. The wavelength and intensity of the light source determine the direction of movement and, sometimes in concert with nutrient conditions, act as signals for some cyanobacteria to form mucoid multicellular assemblages. Formation of such aggregates or flocs represents an acclimation strategy to unfavourable environmental conditions and stresses, such as harmful light conditions or predation. T4P are also involved in natural transformation by exogenous DNA, secretion processes, and in cellular adaptation and survival strategies, further cementing the role of cell surface appendages. In this way, cyanobacteria are finely tuned by external stimuli to either escape unfavourable environmental conditions via phototaxis, exchange genetic material, and to modify their surroundings to fit their needs by forming multicellular assemblies.
Collapse
Affiliation(s)
- Fabian D. Conradi
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg; Germany
- Correspondence:
| |
Collapse
|
10
|
Ahmadbeigi Y, Chirani AS, Soleimani N, Mahdavi M, Goudarzi M. Immunopotentiation of the engineered low-molecular-weight pilin targeting Pseudomonas aeruginosa: A combination of immunoinformatics investigation and active immunization. Mol Immunol 2020; 124:70-82. [PMID: 32540517 DOI: 10.1016/j.molimm.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023]
Abstract
Several vaccine candidates have been introduced for immunization against Pseudomonas aeruginosa strains. Despite extensive efforts in recent decades, there is no accurate immunogenic candidate against this pathogen in the market yet. Due to the rapid increase in several drug-resistant strains, P. aeruginosa has caused various health concerns worldwide. It encodes many specific virulence features, which can be used as an appropriate vaccine candidate. The primary stage of the pathogenesis of P. aeruginosa is the expression of many dynamic adhesive molecules, such as type IV pili (T4P), which acts as a principal colonization factor. It has been confirmed that three different subtypes of T4P, including type IVa (T4aP), type IVb (T4bP) and tight adherence (Tad) pili are expressed by P. aeruginosa. The IVa fimbriae type is almost the main cause of challenges to design an effective pili based-immunotherapy method. Nevertheless, in terms of heterogeneity, variability and hidden conserved binding site of T4aP, this attitude has been remained controversial and there is no permitted human study based on IVa pilin commercially. The engineered synthetic peptide-based vaccines are highly talented to mimic the target. In this research, for the first time, some dominant immunogenic features of the Flp protein, such as both B- and T-cell-associated epitopes, presence of IgE-associated epitopes, solvent-accessible surface area were evaluated by analytical immunoinformatics methods. In addition, we designed the engineered Flp pilin as an effective immunogenic substance against several clinically important P. aeruginosa strains. Moreover, by practical active immunization approaches, the humoral and cellular immune response against the extremely conserved region of the engineered synthetic Flp (EFlp) formulated in Montanide ISA 266 compared to the control group. The results of active immunization against EFlp significantly signified that EFlp-Montanide ISA 266 (EFLP-M) strongly could induce both humoral and cellular immune responses. We concluded that Flp pilin has therapeutic potential against numerous clinically significant P. aeruginosa strains and can be served as a novel immunogen for further investigations for development of effective immunotherapy methods against P. aeruginosa as a dexterous pathogen.
Collapse
Affiliation(s)
- Yasaman Ahmadbeigi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Alireza Salimi Chirani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran; Departments of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
The Evolution of Protein Secretion Systems by Co-option and Tinkering of Cellular Machineries. Trends Microbiol 2020; 28:372-386. [DOI: 10.1016/j.tim.2020.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
|
12
|
Jacobsen T, Bardiaux B, Francetic O, Izadi-Pruneyre N, Nilges M. Structure and function of minor pilins of type IV pili. Med Microbiol Immunol 2019; 209:301-308. [PMID: 31784891 PMCID: PMC7248040 DOI: 10.1007/s00430-019-00642-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Type IV pili are versatile and highly flexible fibers formed on the surface of many Gram-negative and Gram-positive bacteria. Virulence and infection rate of several pathogenic bacteria, such as Neisseria meningitidis and Pseudomonas aeruginosa, are strongly dependent on the presence of pili as they facilitate the adhesion of the bacteria to the host cell. Disruption of the interactions between the pili and the host cells by targeting proteins involved in this interaction could, therefore, be a treatment strategy. A type IV pilus is primarily composed of multiple copies of protein subunits called major pilins. Additional proteins, called minor pilins, are present in lower abundance, but are essential for the assembly of the pilus or for its specific functions. One class of minor pilins is required to initiate the formation of pili, and may form a complex similar to that identified in the related type II secretion system. Other, species-specific minor pilins in the type IV pilus system have been shown to promote additional functions such as DNA binding, aggregation and adherence. Here, we will review the structure and the function of the minor pilins from type IV pili.
Collapse
Affiliation(s)
- Theis Jacobsen
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France.,Sorbonne Université, Complexité du Vivant, 75005, Paris, France
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France.
| |
Collapse
|
13
|
Andrade M, Wang N. The Tad Pilus Apparatus of ' Candidatus Liberibacter asiaticus' and Its Regulation by VisNR. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1175-1187. [PMID: 30925227 DOI: 10.1094/mpmi-02-19-0052-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus huanglongbing (HLB) is one of the most destructive diseases affecting citrus plants. 'Candidatus Liberibacter asiaticus', an uncultivated α-proteobacteria, is the most widely spread causal agent of HLB and is transmitted by the Asian citrus psyllid Diaphorina citri. 'Ca. L. asiaticus' attachment to the psyllid midgut is believed to be critical to further infect other organs, including the salivary gland. In this study, the type IVc tight adherence (Tad) pilus locus encoded by 'Ca. L. asiaticus' was characterized. The Tad loci are conserved among members of Rhizobiaceae, including 'Ca. L. asiaticus' and Agrobacterium spp. Ectopic expression of the 'Ca. L. asiaticus' cpaF gene, an ATPase essential for the biogenesis and secretion of the Tad pilus, restored the adherence phenotype in cpaF mutant of A. tumefaciens, indicating CpaF of 'Ca. L. asiaticus' was functional and critical for bacterial adherence mediated by Tad pilus. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that 'Ca. L. asiaticus' Tad pilus-encoding genes and 'Ca. L. asiaticus' pilin gene flp3 were upregulated in psyllids compared with in planta. A bacterial one-hybrid assay showed that 'Ca. L. asiaticus' VisN and VisR, members of the LuxR transcriptional factor family, were bound to the flp3 promoter. VisNR regulate flp3. Negative regulation of the flp3 promoter by both VisN and VisR was demonstrated using a shuttle strategy, with analysis of the phenotypes and immunoblotting together with quantification of the expression of the flp3 promoter fused to the β-galactosidase reporter gene. Comparative expression analysis confirmed that 'Ca. L. asiaticus' visNR was less expressed in the psyllid than in the plant host. Further, motility and biofilm phenotypes of the visNR mutant of A. tumefaciens were fully complemented by expressing 'Ca. L. asiaticus' visNR together. The physical interaction between VisN and VisR was confirmed by pull-down and stability assays. The interaction of the flp3 promoter with VisR was verified by electrophoretic mobility shift assay. Taken together, the results revealed the contribution of the Tad pilus apparatus in the colonization of the insect vector by 'Ca. L. asiaticus' and shed light on the involvement of VisNR in regulation of the Tad locus.
Collapse
Affiliation(s)
- Maxuel Andrade
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Nian Wang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- China-USA Citrus Huanglongbing Joint Laboratory (A joint laboratory of the University of Florida Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
14
|
Denise R, Abby SS, Rocha EPC. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol 2019; 17:e3000390. [PMID: 31323028 PMCID: PMC6668835 DOI: 10.1371/journal.pbio.3000390] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/31/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Processes of molecular innovation require tinkering and shifting in the function of existing genes. How this occurs in terms of molecular evolution at long evolutionary scales remains poorly understood. Here, we analyse the natural history of a vast group of membrane-associated molecular systems in Bacteria and Archaea-the type IV filament (TFF) superfamily-that diversified in systems involved in flagellar or twitching motility, adhesion, protein secretion, and DNA uptake. The phylogeny of the thousands of detected systems suggests they may have been present in the last universal common ancestor. From there, two lineages-a bacterial and an archaeal-diversified by multiple gene duplications, gene fissions and deletions, and accretion of novel components. Surprisingly, we find that the 'tight adherence' (Tad) systems originated from the interkingdom transfer from Archaea to Bacteria of a system resembling the 'EppA-dependent' (Epd) pilus and were associated with the acquisition of a secretin. The phylogeny and content of ancestral systems suggest that initial bacterial pili were engaged in cell motility and/or DNA uptake. In contrast, specialised protein secretion systems arose several times independently and much later in natural history. The functional diversification of the TFF superfamily was accompanied by genetic rearrangements with implications for genetic regulation and horizontal gene transfer: systems encoded in fewer loci were more frequently exchanged between taxa. This may have contributed to their rapid evolution and spread across Bacteria and Archaea. Hence, the evolutionary history of the superfamily reveals an impressive catalogue of molecular evolution mechanisms that resulted in remarkable functional innovation and specialisation from a relatively small set of components.
Collapse
Affiliation(s)
- Rémi Denise
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Sophie S. Abby
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| |
Collapse
|
15
|
Various Evolutionary Trajectories Lead to Loss of the Tobramycin-Potentiating Activity of the Quorum-Sensing Inhibitor Baicalin Hydrate in Burkholderia cenocepacia Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.02092-18. [PMID: 30670425 DOI: 10.1128/aac.02092-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
Combining antibiotics with potentiators that increase their activity is a promising strategy to tackle infections caused by antibiotic-resistant bacteria. As potentiators do not interfere with essential processes, it has been hypothesized that they are less likely to induce resistance. However, evidence supporting this hypothesis is lacking. In the present study, we investigated whether Burkholderia cenocepacia J2315 biofilms develop reduced susceptibility toward one such adjuvant, baicalin hydrate (BH). Biofilms were repeatedly and intermittently treated with tobramycin (TOB) alone or in combination with BH for 24 h. After treatment, the remaining cells were quantified using plate counting. After 15 cycles, biofilm cells were less susceptible to TOB and TOB+BH compared to the start population, and the potentiating effect of BH toward TOB was lost. Whole-genome sequencing was performed to probe which changes were involved in the reduced effect of BH, and mutations in 14 protein-coding genes were identified (including mutations in genes involved in central metabolism and in BCAL0296, encoding an ABC transporter). No changes in the MIC or MBC of TOB or changes in the number of persister cells were observed. However, basal intracellular levels of reactive oxygen species (ROS) and ROS levels found after treatment with TOB were markedly decreased in the evolved populations. In addition, in evolved cultures with mutations in BCAL0296, a significantly reduced uptake of TOB was observed. Our results indicate that B. cenocepacia J2315 biofilms rapidly lose susceptibility toward the antibiotic-potentiating activity of BH and point to changes in central metabolism, reduced ROS production, and reduced TOB uptake as mechanisms.
Collapse
|
16
|
The shufflon of IncI1 plasmids is rearranged constantly during different growth conditions. Plasmid 2019; 102:51-55. [PMID: 30885787 DOI: 10.1016/j.plasmid.2019.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022]
Abstract
One of the factors that can affect conjugation of IncI1 plasmids, amongst others, is the genetic region known as the shufflon. This multiple inversion system modifies the pilus tip proteins used during conjugation, thus affecting the affinity for different recipient cells. Although recombination is known to occur in in vitro conditions, little is known about the regulation and the extent of recombination that occurs. To measure the recombination of the shufflon, we have amplified the entire shufflon region and sequenced the amplicons using nanopore long-read sequencing. This method was effective to determine the order of the segments of the shufflon and allow for the analysis of the shufflon variants that are present in a heterogeneous pool of templates. Analysis was performed over different growth phases and after addition of cefotaxime. Furthermore, analysis was performed in different E. coli host cells to determine if recombination is likely to be influenced. Recombination of the shufflon was constantly ongoing in all conditions that were measured, although no differences in the amount of different shufflon variants or the rate at which novel variants were formed could be found. As previously reported, some variants were abundant in the population while others were scarce. This leads to the conclusion that the shufflon is continuously recombining at a constant rate, or that the method used here was not sensitive enough to detect differences in this rate. For one of the plasmids, the host cell appeared to have an effect on the specific shufflon variants that were formed which were not predominant in another host, indicating that host factors may be involved. As previously reported, the pilV-A and pilV-A' ORFs are formed at higher frequencies than other pilV ORFs. These results demonstrate that the recombination that occurs within the shufflon is not random. While any regulation of the shufflon affected by these in vitro conditions could not be revealed, the method of amplifying large regions for long-read sequencing for the analysis of multiple inversion systems proved effective.
Collapse
|
17
|
Interplay of a secreted protein with type IVb pilus for efficient enterotoxigenic Escherichia coli colonization. Proc Natl Acad Sci U S A 2018; 115:7422-7427. [PMID: 29941571 PMCID: PMC6048534 DOI: 10.1073/pnas.1805671115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To avoid the mucosal barrier and attach to the intestinal epithelium, enteric pathogens have evolved a unique proteinaceous fiber called type IVb pilus (T4bP). Despite its importance for bacterial pathogenesis, little is known about the adhesion mechanisms of T4bP, especially regarding the role of the minor pilin subunit located at its tip. Here, we show that the type IVb minor pilin CofB of CFA/III from enterotoxigenic Escherichia coli (ETEC) plays a role not only in T4bP assembly by forming a trimeric initiator complex, but also in bacterial adhesion by anchoring a secreted protein, CofJ, at the trimerization interface of H-type lectin domain. These findings expand our knowledge of T4P biology and provide important insights for developing therapeutics against ETEC infection. Initial attachment and subsequent colonization of the intestinal epithelium comprise critical events allowing enteric pathogens to survive and express their pathogenesis. In enterotoxigenic Escherichia coli (ETEC), these are mediated by a long proteinaceous fiber termed type IVb pilus (T4bP). We have reported that the colonization factor antigen/III (CFA/III), an operon-encoded T4bP of ETEC, possesses a minor pilin, CofB, that carries an H-type lectin domain at its tip. Although CofB is critical for pilus assembly by forming a trimeric initiator complex, its importance for bacterial attachment remains undefined. Here, we show that T4bP is not sufficient for bacterial attachment, which also requires a secreted protein CofJ, encoded within the same CFA/III operon. The crystal structure of CofB complexed with a peptide encompassing the binding region of CofJ showed that CofJ interacts with CofB by anchoring its flexible N-terminal extension to be embedded deeply into the expected carbohydrate recognition site of the CofB H-type lectin domain. By combining this structure and physicochemical data in solution, we built a plausible model of the CofJ–CFA/III pilus complex, which suggested that CofJ acts as a molecular bridge by binding both T4bP and the host cell membrane. The Fab fragments of a polyclonal antibody against CofJ significantly inhibited bacterial attachment by preventing the adherence of secreted CofJ proteins. These findings signify the interplay between T4bP and a secreted protein for attaching to and colonizing the host cell surface, potentially constituting a therapeutic target against ETEC infection.
Collapse
|
18
|
Identification and Characterization of Differentially-Regulated Type IVb Pilin Genes Necessary for Predation in Obligate Bacterial Predators. Sci Rep 2017; 7:1013. [PMID: 28432347 PMCID: PMC5430801 DOI: 10.1038/s41598-017-00951-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/17/2017] [Indexed: 11/08/2022] Open
Abstract
Bdellovibrio bacteriovorus is an obligate predator of bacteria that grows and divides within the periplasm of its prey. Functions involved in the early steps of predation have been identified and characterized, but mediators of prey invasion are still poorly detailed. By combining omics data available for Bdellovibrio and like organisms (BALO’s), we identified 43 genes expressed in B. bacteriovorus during the early interaction with prey. These included genes in a tight adherence (TAD) operon encoding for two type IVb fimbriae-like pilin proteins (flp1 and flp2), and their processing and export machinery. Two additional flp genes (flp3 and flp4) were computationally identified at other locations along the chromosome, defining the largest and most diverse type IVb complement known in bacteria to date. Only flp1, flp2 and flp4 were expressed; their respective gene knock-outs resulted in a complete loss of the predatory ability without losing the ability to adhere to prey cells. Additionally, we further demonstrate differential regulation of the flp genes as the TAD operon of BALOs with different predatory strategies is controlled by a flagellar sigma factor FliA, while flp4 is not. Finally, we show that FliA, a known flagellar transcriptional regulator in other bacteria, is an essential Bdellovibrio gene.
Collapse
|
19
|
Chang YW, Kjær A, Ortega DR, Kovacikova G, Sutherland JA, Rettberg LA, Taylor RK, Jensen GJ. Architecture of the Vibrio cholerae toxin-coregulated pilus machine revealed by electron cryotomography. Nat Microbiol 2017; 2:16269. [PMID: 28165453 PMCID: PMC5302817 DOI: 10.1038/nmicrobiol.2016.269] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Yi-Wei Chang
- California Institute of Technology, Pasadena, California 91125, USA
| | - Andreas Kjær
- University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Davi R Ortega
- California Institute of Technology, Pasadena, California 91125, USA
| | | | - John A Sutherland
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Lee A Rettberg
- Howard Hughes Medical Institute, Pasadena, California 91125, USA
| | - Ronald K Taylor
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Grant J Jensen
- California Institute of Technology, Pasadena, California 91125, USA.,Howard Hughes Medical Institute, Pasadena, California 91125, USA
| |
Collapse
|
20
|
Saldaña-Ahuactzi Z, Rodea GE, Cruz-Córdova A, Rodríguez-Ramírez V, Espinosa-Mazariego K, González-Montalvo MA, Ochoa SA, González-Pedrajo B, Eslava-Campos CA, López-Villegas EO, Hernández-Castro R, Arellano-Galindo J, Patiño-López G, Xicohtencatl-Cortes J. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A. Front Microbiol 2016; 7:1201. [PMID: 27536289 PMCID: PMC4971541 DOI: 10.3389/fmicb.2016.01201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells.
Collapse
Affiliation(s)
- Zeus Saldaña-Ahuactzi
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico; Instituto de Fisiología Celular at the Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Gerardo E Rodea
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico; Instituto de Fisiología Celular at the Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Viridiana Rodríguez-Ramírez
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Karina Espinosa-Mazariego
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Martín A González-Montalvo
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Carlos A Eslava-Campos
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Edgar O López-Villegas
- Laboratorio Central de Microscopía, Departamento de Investigación-SEPI, Instituto Politecnico Nacional Ciudad de México, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González" Ciudad de México, Mexico
| | - José Arellano-Galindo
- Departamento de Infectología, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| |
Collapse
|
21
|
Kawahara K, Oki H, Fukakusa S, Yoshida T, Imai T, Maruno T, Kobayashi Y, Motooka D, Iida T, Ohkubo T, Nakamura S. Homo-trimeric Structure of the Type IVb Minor Pilin CofB Suggests Mechanism of CFA/III Pilus Assembly in Human Enterotoxigenic Escherichia coli. J Mol Biol 2016; 428:1209-1226. [PMID: 26876601 DOI: 10.1016/j.jmb.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
Abstract
In gram-negative bacteria, the assembly of type IV pilus (T4P) and the evolutionally related pseudopilus of type II secretion system involves specialized structural proteins called pilins and pseudopilins, respectively, and is dynamically regulated to promote bacterial pathogenesis. Previous studies have suggested that a structural "tip"-like hetero-complex formed through the interaction of at least three minor (pseudo) pilins plays an important role in this process, while some members of the pathogenic type IVb subfamily are known to have only one such minor pilin subunit whose function is still unknown. Here, we determined the crystal structure of the type IVb minor pilin CofB of colonization factor antigen/III from human enterotoxigenic Escherichia coli at 1.88-Å resolution. The crystal structure, in conjunction with physicochemical analysis in solution, reveals a symmetrical homo-trimeric arrangement distinct from the hetero-complexes of minor (pseudo) pilins observed in other T4P and type II secretion systems. Each CofB monomer adopts a unique three-domain architecture, in which the C-terminal β-sheet-rich lectin domain can effectively initiate trimer association of its pilin-like N-terminal domain through extensive hydrophobic interactions followed by domain swapping at the central hinge-like domain. Deletion of cofB produces a phenotype with no detectable pili formation on the cell surface, while molecular modeling indicates that the characteristic homo-trimeric structure of CofB is well situated at the pilus tip of colonization factor antigen/III formed by the major pilin CofA, suggesting a role for the minor pilin in the efficient initiation of T4P assembly.
Collapse
Affiliation(s)
- Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroya Oki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunsuke Fukakusa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Iida
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Matthey N, Blokesch M. The DNA-Uptake Process of Naturally Competent Vibrio cholerae. Trends Microbiol 2015; 24:98-110. [PMID: 26614677 DOI: 10.1016/j.tim.2015.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
The sophisticated DNA-uptake machinery used during natural transformation is still poorly characterized, especially in Gram-negative bacteria where the transforming DNA has to cross two membranes as well as the peptidoglycan layer before entering the cytoplasm. The DNA-uptake machinery was hypothesized to take the form of a pseudopilus, which, upon repeated cycles of extension and retraction, would pull external DNA towards the cell surface or into the periplasmic space, followed by translocation across the cytoplasmic membrane. In this review, we summarize recent advances on the DNA-uptake machinery of V. cholerae, highlighting the presence of an extended competence-induced pilus and the contribution of a conserved DNA-binding protein that acts as a ratchet and reels DNA into the periplasm.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
23
|
Transcriptomic Analysis of Yersinia enterocolitica Biovar 1B Infecting Murine Macrophages Reveals New Mechanisms of Extracellular and Intracellular Survival. Infect Immun 2015; 83:2672-85. [PMID: 25895974 DOI: 10.1128/iai.02922-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/10/2015] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26 °C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37 °C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.
Collapse
|
24
|
Prehna G, Ramirez BE, Lovering AL. The lifestyle switch protein Bd0108 of Bdellovibrio bacteriovorus is an intrinsically disordered protein. PLoS One 2014; 9:e115390. [PMID: 25514156 PMCID: PMC4267844 DOI: 10.1371/journal.pone.0115390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/21/2014] [Indexed: 01/15/2023] Open
Abstract
Bdellovibrio bacteriovorus is a δ-proteobacterium that preys upon Salmonella spp., E. coli, and other Gram-negative bacteria. Bdellovibrio can grow axenically (host-independent, HI, rare and mutation-driven) or subsist via a predatory lifecycle (host-dependent, HD, the usual case). Upon contact with prey, B. bacteriovorus enters the host periplasm from where it slowly drains the host cytosol of nutrients for its own replication. At the core of this mechanism is a retractile pilus, whose architecture is regulated by the protein Bd0108 and its interaction with the neighboring gene product Bd0109. Deletion of bd0108 results in negligible pilus formation, whereas an internal deletion (the one that instigates host-independence) causes mis-regulation of pilus length. These mutations, along with a suite of naturally occurring bd0108 mutant strains, act to control the entry to HI growth. To further study the molecular mechanism of predatory regulation, we focused on the apparent lifecycle switch protein Bd0108. Here we characterize the solution structure and dynamics of Bd0108 using nuclear magnetic resonance (NMR) spectroscopy complemented with additional biophysical methods. We then explore the interaction between Bd0108 and Bd0109 in detail utilizing isothermal titration calorimetry (ITC) and NMR spectroscopy. Together our results demonstrate that Bd0108 is an intrinsically disordered protein (IDP) and that the interaction with Bd0109 is of low affinity. Furthermore, we observe that Bd0108 retains an IDP nature while binding Bd0109. From our data we conclude that Bdellovibrio bacteriovorus utilizes an intrinsically disordered protein to regulate its pilus and control predation signaling.
Collapse
Affiliation(s)
- Gerd Prehna
- Center for Structural Biology, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Benjamin E. Ramirez
- Center for Structural Biology, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Andrew L. Lovering
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Lassaux P, Conchillo-Solé O, Manjasetty BA, Yero D, Perletti L, Belrhali H, Daura X, Gourlay LJ, Bolognesi M. Redefining the PF06864 Pfam family based on Burkholderia pseudomallei PilO2(Bp) S-SAD crystal structure. PLoS One 2014; 9:e94981. [PMID: 24728008 PMCID: PMC3984277 DOI: 10.1371/journal.pone.0094981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/21/2014] [Indexed: 01/07/2023] Open
Abstract
Type IV pili are surface-exposed filaments and bacterial virulence factors, represented by the Tfpa and Tfpb types, which assemble via specific machineries. The Tfpb group is further divided into seven variants, linked to heterogeneity in the assembly machineries. Here we focus on PilO2(Bp), a protein component of the Tfpb R64 thin pilus variant assembly machinery from the pathogen Burkholderia pseudomallei. PilO2(Bp) belongs to the PF06864 Pfam family, for which an improved definition is presented based on newly derived Hidden Markov Model (HMM) profiles. The 3D structure of the N-terminal domain of PilO2(Bp) (N-PilO2(Bp)), here reported, is the first structural representative of the PF06864 family. N-PilO2(Bp) presents an actin-like ATPase fold that is shown to be present in BfpC, a different variant assembly protein; the new HMM profiles classify BfpC as a PF06864 member. Our results provide structural insight into the PF06864 family and on the Type IV pili assembly machinery.
Collapse
Affiliation(s)
| | - Oscar Conchillo-Solé
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Babu A. Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes- European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Grenoble, France
| | - Daniel Yero
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lucia Perletti
- Department of Biosciences, University of Milan, Milan, Italy
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes- European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, Grenoble, France
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | | | - Martino Bolognesi
- Department of Biosciences, University of Milan, Milan, Italy
- Interdisciplinary Centre for Nanostructured Materials and Interfaces and Consiglio Nazionale delle Ricerche, Institute of Biophysics, c/o University of Milan, Milan, Italy
| |
Collapse
|
26
|
ExpR coordinates the expression of symbiotically important, bundle-forming Flp pili with quorum sensing in Sinorhizobium meliloti. Appl Environ Microbiol 2014; 80:2429-39. [PMID: 24509921 DOI: 10.1128/aem.04088-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IVb pili in enteropathogenic bacteria function as a host colonization factor by mediating tight adherence to host cells, but their role in bacterium-plant symbiosis is currently unknown. The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains two clusters encoding proteins for type IVb pili of the Flp (fimbrial low-molecular-weight protein) subfamily. To establish the role of Flp pili in the symbiotic interaction of S. meliloti and its host, Medicago sativa, we deleted pilA1, which encodes the putative pilin subunit in the chromosomal flp-1 cluster and conducted competitive nodulation assays. The pilA1 deletion strain formed 27% fewer nodules than the wild type. Transmission electron microscopy revealed the presence of bundle-forming pili protruding from the polar and lateral region of S. meliloti wild-type cells. The putative pilus assembly ATPase CpaE1 fused to mCherry showed a predominantly unilateral localization. Transcriptional reporter gene assays demonstrated that expression of pilA1 peaks in early stationary phase and is repressed by the quorum-sensing regulator ExpR, which also controls production of exopolysaccharides and motility. Binding of acyl homoserine lactone-activated ExpR to the pilA1 promoter was confirmed with electrophoretic mobility shift assays. A 17-bp consensus sequence for ExpR binding was identified within the 28-bp protected region by DNase I footprinting analyses. Our results show that Flp pili are important for efficient symbiosis of S. meliloti with its plant host. The temporal inverse regulation of exopolysaccharides and pili by ExpR enables S. meliloti to achieve a coordinated expression of cellular processes during early stages of host interaction.
Collapse
|
27
|
Takhar HK, Kemp K, Kim M, Howell PL, Burrows LL. The platform protein is essential for type IV pilus biogenesis. J Biol Chem 2013; 288:9721-9728. [PMID: 23413032 DOI: 10.1074/jbc.m113.453506] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A systematic genetic analysis was performed to identify the inner membrane proteins essential for type IV pilus (T4P) expression in Pseudomonas aeruginosa. By inactivating the retraction aspect of pilus function, genes essential for T4P assembly were discriminated. In contrast to previous studies in the T4P system of Neisseria spp., we found that components of the inner membrane subcomplex consisting of PilMNOP were not essential for surface pilus expression, whereas the highly conserved inner membrane protein PilC was essential. Here, we present data that PilC may coordinate the activity of cytoplasmic polymerization (PilB) and depolymerization (PilT) ATPases via their interactions with its two cytoplasmic domains. Using in vitro co-affinity purification, we show that PilB interacts with the N-terminal cytoplasmic domain of PilC. We hypothesized that PilT similarly interacts with the PilC C-terminal cytoplasmic domain. Overexpression of that domain in the wild-type protein reduced twitching motility by ∼50% compared with the vector control. Site-directed mutagenesis of conserved T4P-specific residues in the PilC C-terminal domain yielded mutant proteins that supported wild-type pilus assembly but had a reduced capacity to support twitching motility, suggesting impairment of putative PilC-PilT interactions. Taken together, our results show that PilC is an essential inner membrane component of the T4P system, controlling both pilus assembly and disassembly.
Collapse
Affiliation(s)
- Herlinder K Takhar
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1
| | - Kevin Kemp
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1
| | - Melissa Kim
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1
| | - P Lynne Howell
- Program in Molecular Structure & Function, The Hospital for Sick Children, and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada.
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1.
| |
Collapse
|
28
|
Buddelmeijer N, Espinosa-Urgel M. Getting in touch: microbial molecular devices for cell-cell and cell-surface interactions. Res Microbiol 2012; 163:577-8. [PMID: 23124117 DOI: 10.1016/j.resmic.2012.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|