1
|
Viggor S, Jõesaar M, Peterson C, Teras R, Kivisaar M. Potential of Indigenous Strains Isolated from the Wastewater Treatment Plant of a Crude Oil Refinery. Microorganisms 2023; 11:microorganisms11030752. [PMID: 36985325 PMCID: PMC10051678 DOI: 10.3390/microorganisms11030752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Contamination of the environment with crude oil or other fuels is an enormous disaster for all organisms. The microbial communities for bioremediation have been an effective tool for eliminating pollution. This study aimed to determine individual cultures’ and a strain mixture’s ability to utilize alkanes (single alkanes and crude oil). The proper study of pure cultures is necessary to design synergistically working consortia. The Acinetobacter venetianus ICP1 and Pseudomonas oleovorans ICTN13 strains isolated from a wastewater treatment plant of a crude oil refinery can grow in media containing various aromatic and aliphatic hydrocarbons. The genome of the strain ICP1 contains four genes encoding alkane hydroxylases, whose transcription depended on the length of the alkane in the media. We observed that the hydrophobic cells of the strain ICP1 adhered to hydrophobic substrates, and their biofilm formation increased the bioavailability and biodegradation of the hydrocarbons. Although strain ICTN13 also has one alkane hydroxylase-encoding gene, the growth of the strain in a minimal medium containing alkanes was weak. Importantly, the growth of the mixture of strains in the crude oil-containing medium was enhanced compared with that of the single strains, probably due to the specialization in the degradation of different hydrocarbon classes and co-production of biosurfactants.
Collapse
Affiliation(s)
- Signe Viggor
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
- Correspondence:
| | - Merike Jõesaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Celeste Peterson
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Riho Teras
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| |
Collapse
|
2
|
Plasmids as Key Players in Acinetobacter Adaptation. Int J Mol Sci 2022; 23:ijms231810893. [PMID: 36142804 PMCID: PMC9501444 DOI: 10.3390/ijms231810893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
This review briefly summarizes the data on the mechanisms of development of the adaptability of Acinetobacters to various living conditions in the environment and in the clinic. A comparative analysis of the genomes of free-living and clinical strains of A. lwoffii, as well as the genomes of A. lwoffii and A. baumannii, has been carried out. It has been shown that plasmids, both large and small, play a key role in the formation of the adaptability of Acinetobacter to their living conditions. In particular, it has been demonstrated that the plasmids of various strains of Acinetobacter differ from each other in their structure and gene composition depending on the lifestyle of their host bacteria. Plasmids of modern strains are enriched with antibiotic-resistant genes, while the content of genes involved in resistance to heavy metals and arsenic is comparable to plasmids from modern and ancient strains. It is concluded that Acinetobacter plasmids may ensure the survival of host bacteria under conditions of various types of environmental and clinical stresses. A brief overview of the main mechanisms of horizontal gene transfer on plasmids inherent in Acinetobacter strains is also given.
Collapse
|
3
|
Rosales Delgado S, Alzate Arbeláez AF, Zapata Acosta K, Cortés FB, Rojano BA. Improvement of probiotic viability through the design of novel biomaterials using coffee pulp wastes and Lactobacillus rhamnosus. FOOD SCI TECHNOL INT 2022:10820132221100683. [PMID: 35549737 DOI: 10.1177/10820132221100683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The immobilization of bacteria cells has shown to be an efficient technology to improve cell viability. This study used lyophilized and pulverized coffee pulp (LPC) and LPC functionalized with theobromine at two concentrations, 3.1 w/w and 2.4 w/w named as LPF1 and LPF2, respectively, to immobilize Lactobacillus rhamnosus ATCC 53103 cells (biomaterials) and increase the viability of the cell at storage and gastrointestinal conditions. To characterize the biomaterials, SEM, Dynamic Light Scattering, TGA, , FTIR and Isoeletrc Point measurements (or zeta potential measurements) were carried out. To evaluate the effectiveness of immobilization, cell viability as a function of storage time and under simulated gastrointestinal conditions was evaluated. Regarding the characterization of the materials, the particle sizes were 21.7 to 334.4 nm and they experienced mass losses of less than 10% at 100°C. The FTIR indicated the presence of functional groups related to caffeine, chlorogenic acid, sucrose, arabinogalactans, carbohydrates, and proteins in all biomaterials. The sorption kinetic parameters showed an adsorptive capacity between 3.0 × 109 and 8.0 × 109 CFU.g-1, being LPF1 the best materials to immobilize the cells, associated with LPF1 surface properties. The viability was higher for immobilized cells than for free cells, when left in storage and under simulated gastric conditions. Finally, the biomaterials could be used in the preparation of probiotic diets based on lactobacilli. To the best of our knowledge, this is the first study regarding the use of waste from coffee agribusiness to develop probiotic biocarriers which opens up possibilities for future developments.
Collapse
Affiliation(s)
- Stephania Rosales Delgado
- Grupo Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Medellín, Colombia
| | - Andrés Felipe Alzate Arbeláez
- Grupo Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Medellín, Colombia
| | - Karol Zapata Acosta
- Grupo de Fenómenos de Superficie, Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia
| | - Farid B Cortés
- Grupo de Fenómenos de Superficie, Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia
| | - Benjamín A Rojano
- Grupo Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Medellín, Colombia
| |
Collapse
|
4
|
Zhou Z, Liu Y, Pan J, Cron BR, Toner BM, Anantharaman K, Breier JA, Dick GJ, Li M. Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes. ISME JOURNAL 2020; 14:3136-3148. [PMID: 32820229 DOI: 10.1038/s41396-020-00745-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022]
Abstract
Deep-sea hydrothermal plumes are considered natural laboratories for understanding ecological and biogeochemical interactions. Previous studies focused on interactions between microorganisms and inorganic, reduced hydrothermal inputs including sulfur, hydrogen, iron, and manganese. However, little is known about transformations of organic compounds, especially methylated, sulfur-containing compounds, and petroleum hydrocarbons. Here, we reconstructed nine gammaproteobacterial metagenome-assembled genomes, affiliated with Methylococcales, Methylophaga, and Cycloclasticus, from three hydrothermal ecosystems. We present evidence that these three groups have high transcriptional activities of genes encoding cycling of C1-compounds, petroleum hydrocarbons, and organic sulfur in hydrothermal plumes. This includes oxidation of methanethiol, the simplest thermochemically-derived organic sulfur, for energy metabolism in Methylococcales and Cycloclasticus. Together with active transcription of genes for thiosulfate and methane oxidation in Methylococcales, these results suggest an adaptive strategy of versatile and simultaneous use of multiple available electron donors. Meanwhile, the first near-complete MAG of hydrothermal Methylophaga aminisulfidivorans and its transcriptional profile point to active chemotaxis targeting small organic compounds. Petroleum hydrocarbon-degrading Cycloclasticus are abundant and active in plumes of oil spills as well as deep-sea vents, suggesting that they are indigenous and effectively respond to stimulus of hydrocarbons in the deep sea. These findings suggest that these three groups of Gammaproteobacteria transform organic carbon and sulfur compounds via versatile and opportunistic metabolism and modulate biogeochemistry in plumes of hydrothermal systems as well as oil spills, thus contributing broad ecological impact to the deep ocean globally.
Collapse
Affiliation(s)
- Zhichao Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Brandi R Cron
- Department of Earth and Environmental Sciences, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Brandy M Toner
- Department of Earth and Environmental Sciences, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.,Department of Soil, Water, and Climate, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John A Breier
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Brovedan M, Repizo GD, Marchiaro P, Viale AM, Limansky A. Characterization of the diverse plasmid pool harbored by the blaNDM-1-containing Acinetobacter bereziniae HPC229 clinical strain. PLoS One 2019; 14:e0220584. [PMID: 31743332 PMCID: PMC6863613 DOI: 10.1371/journal.pone.0220584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter bereziniae is an environmental microorganism with increasing clinical incidence, and may thus provide a model for a bacterial species bridging the gap between the environment and the clinical setting. A. bereziniae plasmids have been poorly studied, and their characterization could offer clues on the causes underlying the leap between these two different habitats. Here we characterized the whole plasmid content of A. bereziniae HPC229, a clinical strain previously reported to harbor a 44-kbp plasmid, pNDM229, conferring carbapenem and aminoglycoside resistance. We identified five extra plasmids in HPC229 ranging from 114 to 1.3 kbp, including pAbe229-114 (114 kbp) encoding a MOBP111 relaxase and carrying heavy metal resistance, a bacteriophage defense BREX system and four different toxin-antitoxin (TA) systems. Two other replicons, pAbe229-15 (15.4 kbp) and pAbe229-9 (9.1 kbp), both encoding MOBQ1 relaxases and also carrying TA systems, were found. The three latter plasmids contained Acinetobacter Rep_3 superfamily replication initiator protein genes, and functional analysis of their transfer regions revealed the mobilizable nature of them. HPC229 also harbors two smaller plasmids, pAbe229-4 (4.4 kbp) and pAbe229-1 (1.3 kbp), the former bearing a ColE1-type replicon and a TA system, and the latter lacking known replication functions. Comparative sequence analyses against deposited Acinetobacter genomes indicated that the above five HPC229 plasmids were unique, although some regions were also present in other of these genomes. The transfer, replication, and adaptive modules in pAbe229-15, and the stability module in pAbe229-9, were bordered by sites potentially recognized by XerC/XerD site-specific tyrosine recombinases, thus suggesting a potential mechanism for their acquisition. The presence of Rep_3 and ColE1-based replication modules, different mob genes, distinct adaptive functions including resistance to heavy metal and other environmental stressors, as well as antimicrobial resistance genes, and a high content of XerC/XerD sites among HPC229 plasmids provide evidence of substantial links with bacterial species derived from both environmental and clinical habitats.
Collapse
Affiliation(s)
- Marco Brovedan
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Guillermo D. Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Patricia Marchiaro
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Alejandro M. Viale
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- * E-mail: (AMV); (AL)
| | - Adriana Limansky
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- * E-mail: (AMV); (AL)
| |
Collapse
|
6
|
Sharma RS, Karmakar S, Kumar P, Mishra V. Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration. Ecol Evol 2019; 9:2263-2304. [PMID: 30847110 PMCID: PMC6392359 DOI: 10.1002/ece3.4743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Theories in soil biology, such as plant-microbe interactions and microbial cooperation and antagonism, have guided the practice of ecological restoration (ecorestoration). Below-ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the development of above-ground biodiversity (vegetation structure). The role of rhizosphere bacteria in plant growth has been largely investigated but the role of phages (bacterial viruses) has received a little attention. Below the ground, phages govern the ecology and evolution of microbial communities by affecting genetic diversity, host fitness, population dynamics, community composition, and nutrient cycling. However, few restoration efforts take into account the interactions between bacteria and phages. Unlike other phages, filamentous phages are highly specific, nonlethal, and influence host fitness in several ways, which make them useful as target bacterial inocula. Also, the ease with which filamentous phages can be genetically manipulated to express a desired peptide to track and control pathogens and contaminants makes them useful in biosensing. Based on ecology and biology of filamentous phages, we developed a hypothesis on the application of phages in environment to derive benefits at different levels of biological organization ranging from individual bacteria to ecosystem for ecorestoration. We examined the potential applications of filamentous phages in improving bacterial inocula to restore vegetation and to monitor changes in habitat during ecorestoration and, based on our results, recommend a reorientation of the existing framework of using microbial inocula for such restoration and monitoring. Because bacterial inocula and biomonitoring tools based on filamentous phages are likely to prove useful in developing cost-effective methods of restoring vegetation, we propose that filamentous phages be incorporated into nature-based restoration efforts and that the tripartite relationship between phages, bacteria, and plants be explored further. Possible impacts of filamentous phages on native microflora are discussed and future areas of research are suggested to preclude any potential risks associated with such an approach.
Collapse
Affiliation(s)
- Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| |
Collapse
|
7
|
Fraraccio S, Strejcek M, Dolinova I, Macek T, Uhlik O. Secondary compound hypothesis revisited: Selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE). Sci Rep 2017; 7:8406. [PMID: 28814712 PMCID: PMC5559444 DOI: 10.1038/s41598-017-07760-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cis-1,2-dichloroethylene (cDCE), which is a common hazardous compound, often accumulates during incomplete reductive dechlorination of higher chlorinated ethenes (CEs) at contaminated sites. Simple monoaromatics, such as toluene and phenol, have been proven to induce biotransformation of cDCE in microbial communities incapable of cDCE degradation in the absence of other carbon sources. The goal of this microcosm-based laboratory study was to discover non-toxic natural monoaromatic secondary plant metabolites (SPMEs) that could enhance cDCE degradation in a similar manner to toluene and phenol. Eight SPMEs were selected on the basis of their monoaromatic molecular structure and widespread occurrence in nature. The suitability of the SPMEs chosen to support bacterial growth and to promote cDCE degradation was evaluated in aerobic microbial cultures enriched from cDCE-contaminated soil in the presence of each SPME tested and cDCE. Significant cDCE depletions were achieved in cultures enriched on acetophenone, phenethyl alcohol, p-hydroxybenzoic acid and trans-cinnamic acid. 16S rRNA gene sequence analysis of each microbial community revealed ubiquitous enrichment of bacteria affiliated with the genera Cupriavidus, Rhodococcus, Burkholderia, Acinetobacter and Pseudomonas. Our results provide further confirmation of the previously stated secondary compound hypothesis that plant metabolites released into the rhizosphere can trigger biodegradation of environmental pollutants, including cDCE.
Collapse
Affiliation(s)
- Serena Fraraccio
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| | - Michal Strejcek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Iva Dolinova
- Technical University of Liberec, Liberec, Czech Republic
| | - Tomas Macek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| |
Collapse
|
8
|
Jain P, Srikanth S, Kumar M, Sarma PM, Singh MP, Lal B. Bio-electro catalytic treatment of petroleum produced water: Influence of cathode potential upliftment. BIORESOURCE TECHNOLOGY 2016; 219:652-658. [PMID: 27544915 DOI: 10.1016/j.biortech.2016.08.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Treatment of petroleum produced water (PPW) was studied using bioelectrochemical system (BES) under uplifted cathode potential. The treatment efficiency in terms of COD and hydrocarbon removal was observed at 91.25% and 76.60% respectively, along with the reduction in TDS during BES operation under 400mV of cathode potential. There was also a reduction in concentration of sulfates, however, it was not significant at, since oxidative conditions are being maintained at anode. Improved oxidation of PPW at anode also resulted in good power output (-20.47mA) and also depicted improved fuel cell behaviour. The electrochemical analysis in terms of cyclic/linear sweep voltammetry also showed well correlation with the observed treatment efficiencies. The microbial dynamics of the BES after loading real field wastewater showed the dominance of species that are reported to be effective for petroleum crude oil degradation.
Collapse
Affiliation(s)
- Pratiksha Jain
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Sandipam Srikanth
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Manoj Kumar
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Priyangshu M Sarma
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India; ONGC Energy Center, Oil and Natural Gas Corporation Limited (ONGC), SCOPE Minar, Laxmi Nagar, New Delhi 110092, India
| | - M P Singh
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Banwari Lal
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India; The Energy and Resources Institute (TERI), India Habitat Centre, Lodhi Road, New Delhi 110003, India.
| |
Collapse
|
9
|
Comparative Genomics of the Extreme Acidophile Acidithiobacillus thiooxidans Reveals Intraspecific Divergence and Niche Adaptation. Int J Mol Sci 2016; 17:ijms17081355. [PMID: 27548157 PMCID: PMC5000751 DOI: 10.3390/ijms17081355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 11/17/2022] Open
Abstract
Acidithiobacillus thiooxidans known for its ubiquity in diverse acidic and sulfur-bearing environments worldwide was used as the research subject in this study. To explore the genomic fluidity and intraspecific diversity of Acidithiobacillus thiooxidans (A. thiooxidans) species, comparative genomics based on nine draft genomes was performed. Phylogenomic scrutiny provided first insights into the multiple groupings of these strains, suggesting that genetic diversity might be potentially correlated with their geographic distribution as well as geochemical conditions. While these strains shared a large number of common genes, they displayed differences in gene content. Functional assignment indicated that the core genome was essential for microbial basic activities such as energy acquisition and uptake of nutrients, whereas the accessory genome was thought to be involved in niche adaptation. Comprehensive analysis of their predicted central metabolism revealed that few differences were observed among these strains. Further analyses showed evidences of relevance between environmental conditions and genomic diversification. Furthermore, a diverse pool of mobile genetic elements including insertion sequences and genomic islands in all A. thiooxidans strains probably demonstrated the frequent genetic flow (such as lateral gene transfer) in the extremely acidic environments. From another perspective, these elements might endow A. thiooxidans species with capacities to withstand the chemical constraints of their natural habitats. Taken together, our findings bring some valuable data to better understand the genomic diversity and econiche adaptation within A. thiooxidans strains.
Collapse
|
10
|
Wang X, Zhao X, Li H, Jia J, Liu Y, Ejenavi O, Ding A, Sun Y, Zhang D. Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation. Res Microbiol 2016; 167:731-744. [PMID: 27475037 DOI: 10.1016/j.resmic.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022]
Abstract
Uncultivable microorganisms account for over 99% of all species on the planet, but their functions are yet not well characterized. Though many cultivable degraders for n-alkanes have been intensively investigated, the roles of functional n-alkane degraders remain hidden in the natural environment. This study introduces the novel magnetic nanoparticle-mediated isolation (MMI) technology in Nigerian soils and successfully separates functional microbes belonging to the families Oxalobacteraceae and Moraxellaceae, which are dominant and responsible for alkane metabolism in situ. The alkR-type n-alkane monooxygenase genes, instead of alkA- or alkP-type, were the key functional genes involved in the n-alkane degradation process. Further physiological investigation via a BIOLOG PM plate revealed some carbon (Tween 20, Tween 40 and Tween 80) and nitrogen (tyramine, l-glutamine and d-aspartic acid) sources promoting microbial respiration and n-alkane degradation. With further addition of promoter carbon or nitrogen sources, the separated functional alkane degraders significantly improved n-alkane biodegradation rates. This suggests that MMI is a promising technology for separating functional microbes from complex microbiota, with deeper insight into their ecological functions and influencing factors. The technique also broadens the application of the BIOLOG PM plate for physiological research on functional yet uncultivable microorganisms.
Collapse
Affiliation(s)
- Xinzi Wang
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xiaohui Zhao
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hanbing Li
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China
| | - Yueqiao Liu
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Odafe Ejenavi
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Dayi Zhang
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
11
|
Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, Vidoudez C, Amann R, Meyerdierks A. HeterotrophicProteobacteriain the vicinity of diffuse hydrothermal venting. Environ Microbiol 2016; 18:4348-4368. [DOI: 10.1111/1462-2920.13304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Dimitri V. Meier
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Wolfgang Bach
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
| | - Peter R. Girguis
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | | | - Eoghan P. Reeves
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
- University of Bergen, Department of Earth Science and Centre for Geobiology; Postboks 7803 N-5020 Bergen Norway
| | - Michael Richter
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Charles Vidoudez
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Anke Meyerdierks
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| |
Collapse
|
12
|
Genomic and phenotypic characterization of the species Acinetobacter venetianus. Sci Rep 2016; 6:21985. [PMID: 26902269 PMCID: PMC4763211 DOI: 10.1038/srep21985] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 11/10/2022] Open
Abstract
Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized for their capability to degrade n-alkanes and thus may represent interesting model systems to implement this process. Although a preliminary experimental characterization of the overall hydrocarbon degradation capability has been performed for five of them, to date, the genetic/genomic features underlying such molecular processes have not been identified. Here we have integrated genomic and phenotypic information for six A. venetianus strains, i.e. VE-C3, RAG-1T, LUH 13518, LUH 7437, LUH 5627 and LUH 8758. Besides providing a thorough description of the A. venetianus species, these data were exploited to infer the genetic features (presence/absence patterns of genes) and the short-term evolutionary events possibly responsible for the variability in n-alkane degradation efficiency of these strains, including the mechanisms of interaction with the fuel droplet and the subsequent catabolism of this pollutant.
Collapse
|
13
|
A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Appl Biochem Biotechnol 2015; 178:224-50. [DOI: 10.1007/s12010-015-1881-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
|
14
|
Lin J, Gan L, Chen Z, Naidu R. Biodegradation of tetradecane using Acinetobacter venetianus immobilized on bagasse. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Mukhopadhyay A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 2015; 23:498-508. [DOI: 10.1016/j.tim.2015.04.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 02/06/2023]
|
16
|
Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea). BIOMED RESEARCH INTERNATIONAL 2015; 2015:981829. [PMID: 26273661 PMCID: PMC4530241 DOI: 10.1155/2015/981829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/01/2015] [Accepted: 02/01/2015] [Indexed: 11/17/2022]
Abstract
Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.
Collapse
|
17
|
Rizzi E. The pyrosequencing protocol for bacterial genomes. Methods Mol Biol 2015; 1231:49-75. [PMID: 25343858 DOI: 10.1007/978-1-4939-1720-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pyrosequencing methodology was applied in 2005 by 454 Lifesciences to the emerging field of next generation sequencing (NGS), revolutionizing the way of DNA sequencing. In the last years the same strategy grew up and was technologically updated, reaching a high throughput in terms of amount of generated sequences (reads) per run and in terms of length of sequence up to values of 800-1,000 bases. These features of pyrosequencing perfectly fit to bacterial genome sequencing for the de novo assemblies and resequencing as well. The approaches of shotgun and paired ends sequencing allow the bacterial genome finishing providing a high-quality data in few days with unprecedented results.
Collapse
Affiliation(s)
- Ermanno Rizzi
- National Research Council (CNR), Institute for Biomedical Technologies (ITB), Via F.lli Cervi 93, 20090, Segrate, MI, Italy,
| |
Collapse
|
18
|
Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:2533-48. [PMID: 25693672 DOI: 10.1007/s00253-015-6439-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/11/2023]
Abstract
Acinetobacter occupies an important position in nature because of its ubiquitous presence in diverse environments such as soils, fresh water, oceans, sediments, and contaminated sites. Versatile metabolic characteristics allow species of this genus to catabolize a wide range of natural compounds, implying active participation in the nutrient cycle in the ecosystem. On the other hand, multi-drug-resistant Acinetobacter baumannii causing nosocomial infections with high mortality has been raising serious concerns in medicine. Due to the ecological and clinical importance of the genus, Acinetobacter was proposed as a model microorganism for environmental microbiological studies, pathogenicity tests, and industrial production of chemicals. For these reasons, Acinetobacter has attracted significant attention in scientific and biotechnological fields, but only limited research areas such as natural transformation and aromatic compound degradation have been intensively investigated, while important physiological characteristics including quorum sensing, motility, and stress response have been neglected. The aim of this review is to summarize the recent achievements in Acinetobacter research with a special focus on strain DR1 and to compare the similarities and differences between species or other genera. Research areas that require more attention in future research are also suggested.
Collapse
Affiliation(s)
- Jaejoon Jung
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
19
|
Touchon M, Cury J, Yoon EJ, Krizova L, Cerqueira GC, Murphy C, Feldgarden M, Wortman J, Clermont D, Lambert T, Grillot-Courvalin C, Nemec A, Courvalin P, Rocha EPC. The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol 2014; 6:2866-82. [PMID: 25313016 PMCID: PMC4224351 DOI: 10.1093/gbe/evu225] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacterial genomics has greatly expanded our understanding of microdiversification patterns within a species, but analyses at higher taxonomical levels are necessary to understand and predict the independent rise of pathogens in a genus. We have sampled, sequenced, and assessed the diversity of genomes of validly named and tentative species of the Acinetobacter genus, a clade including major nosocomial pathogens and biotechnologically important species. We inferred a robust global phylogeny and delimited several new putative species. The genus is very ancient and extremely diverse: Genomes of highly divergent species share more orthologs than certain strains within a species. We systematically characterized elements and mechanisms driving genome diversification, such as conjugative elements, insertion sequences, and natural transformation. We found many error-prone polymerases that may play a role in resistance to toxins, antibiotics, and in the generation of genetic variation. Surprisingly, temperate phages, poorly studied in Acinetobacter, were found to account for a significant fraction of most genomes. Accordingly, many genomes encode clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems with some of the largest CRISPR-arrays found so far in bacteria. Integrons are strongly overrepresented in Acinetobacter baumannii, which correlates with its frequent resistance to antibiotics. Our data suggest that A. baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection. The outstanding diversification of the species occurred largely by horizontal transfer, including some allelic recombination, at specific hotspots preferentially located close to the replication terminus. Our work sets a quantitative basis to understand the diversification of Acinetobacter into emerging resistant and versatile pathogens.
Collapse
Affiliation(s)
- Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France CNRS, UMR3525, Paris, France
| | - Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France CNRS, UMR3525, Paris, France
| | - Eun-Jeong Yoon
- Unité des Agents Antibactériens, Institut Pasteur, Paris, France
| | - Lenka Krizova
- Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic
| | | | - Cheryl Murphy
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | | | | | - Thierry Lambert
- Unité des Agents Antibactériens, Institut Pasteur, Paris, France
| | | | - Alexandr Nemec
- Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic.
| | | | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France CNRS, UMR3525, Paris, France
| |
Collapse
|
20
|
Travisany D, Cortés MP, Latorre M, Di Genova A, Budinich M, Bobadilla-Fazzini RA, Parada P, González M, Maass A. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment. Res Microbiol 2014; 165:743-52. [PMID: 25148779 DOI: 10.1016/j.resmic.2014.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/25/2022]
Abstract
Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments.
Collapse
Affiliation(s)
- Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Mauricio Latorre
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alex Di Genova
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Marko Budinich
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | | | - Pilar Parada
- BioSigma S.A., Loteo Los Libertadores, Lote 106, Colina, Chile
| | - Mauricio González
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Department of Mathematical Engineering, Universidad de Chile, Beauchef 851, 5th Floor, Santiago, Chile.
| |
Collapse
|
21
|
Sarkar A, Kazy SK, Sar P. Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8645-8662. [PMID: 24764001 DOI: 10.1007/s11356-014-2759-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Ten different Gram-negative arsenic (As)-resistant and As-transforming bacteria isolated from As-rich groundwater of West Bengal were characterized to assess their role in As mobilization. 16S rRNA gene analysis confirmed the affiliation of these bacteria to genera Achromobacter, Brevundimonas, Rhizobium, Ochrobactrum, and Pseudoxanthomonas. Along with superior As-resistance and As-transformation abilities, the isolates showed broad metabolic capacity in terms of utilizing a variety of electron donors and acceptors (including As) under aerobic and anaerobic conditions, respectively. Arsenic transformation studies performed under various conditions indicated highly efficient As(3+) oxidation or As(5+) reduction kinetics. Genes encoding As(3+) oxidase (aioA), cytosolic As(5+) reductase (arsC), and As(3+) efflux pump (arsB and acr3) were detected within the test isolates. Sequence analyses suggested that As homeostasis genes (particularly arsC, arsB, and acr3) were acquired by most of the bacteria through horizontal gene transfer. A strong correlation between As resistance phenotype and the presence of As(3+) transporter genes was observed. Microcosm study showed that bacterial strain having cytosolic As(5+) reductase property could play important role in mobilizing As (as As(3+)) from subsurface sediment.
Collapse
Affiliation(s)
- Angana Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | | | |
Collapse
|
22
|
Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014; 71:292-301. [DOI: 10.1111/2049-632x.12125] [Citation(s) in RCA: 480] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/15/2013] [Accepted: 12/15/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Paolo Visca
- Department of Sciences; Roma Tre University; Rome Italy
| | - Kevin J. Towner
- Department of Clinical Microbiology; Nottingham University Hospitals NHS Trust; Queen's Medical Centre; Nottingham UK
| |
Collapse
|