1
|
Fracchia F, Mangeot-Peter L, Jacquot L, Martin F, Veneault-Fourrey C, Deveau A. Colonization of Naive Roots from Populus tremula × alba Involves Successive Waves of Fungi and Bacteria with Different Trophic Abilities. Appl Environ Microbiol 2021; 87:e02541-20. [PMID: 33452025 PMCID: PMC8105020 DOI: 10.1128/aem.02541-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
Through their roots, trees interact with a highly complex community of microorganisms belonging to various trophic guilds and contributing to tree nutrition, development, and protection against stresses. Tree roots select for specific microbial species from the bulk soil communities. The root microbiome formation is a dynamic process, but little is known on how the different microorganisms colonize the roots and how the selection occurs. To decipher whether the final composition of the root microbiome is the product of several waves of colonization by different guilds of microorganisms, we planted sterile rooted cuttings of gray poplar obtained from plantlets propagated in axenic conditions in natural poplar stand soil. We analyzed the root microbiome at different time points between 2 and 50 days of culture by combining high-throughput Illumina MiSeq sequencing of the fungal ribosomal DNA internal transcribed spacer and bacterial 16S rRNA amplicons with confocal laser scanning microscopy observations. The microbial colonization of poplar roots took place in three stages, but bacteria and fungi had different dynamics. Root bacterial communities were clearly different from those in the soil after 2 days of culture. In contrast, if fungi were also already colonizing roots after 2 days, the initial communities were very close to that in the soil and were dominated by saprotrophs. They were slowly replaced by endophytes and ectomycorhizal fungi. The replacement of the most abundant fungal and bacterial community members observed in poplar roots over time suggest potential competition effect between microorganisms and/or a selection by the host.IMPORTANCE The tree root microbiome is composed of a very diverse set of bacterial and fungal communities. These microorganisms have a profound impact on tree growth, development, and protection against different types of stress. They mainly originate from the bulk soil and colonize the root system, which provides a unique nutrient-rich environment for a diverse assemblage of microbial communities. In order to better understand how the tree root microbiome is shaped over time, we observed the composition of root-associated microbial communities of naive plantlets of poplar transferred in natural soil. The composition of the final root microbiome relies on a series of colonization stages characterized by the dominance of different fungal guilds and bacterial community members over time. Our observations suggest an early stabilization of bacterial communities, whereas fungal communities are established following a more gradual pattern.
Collapse
Affiliation(s)
- F Fracchia
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | - L Jacquot
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - F Martin
- Université de Lorraine, INRAE, IAM, Nancy, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, China
| | | | - A Deveau
- Université de Lorraine, INRAE, IAM, Nancy, France
| |
Collapse
|
2
|
Uroz S, Picard L, Turpault MP, Auer L, Armengaud J, Oger P. Dual transcriptomics and proteomics analyses of the early stage of interaction between Caballeronia mineralivorans PML1(12) and mineral. Environ Microbiol 2020; 22:3838-3862. [PMID: 32656915 DOI: 10.1111/1462-2920.15159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Minerals and rocks represent essential reservoirs of nutritive elements for the long-lasting functioning of forest ecosystems developed on nutrient-poor soils. While the presence of effective mineral weathering bacteria was evidenced in the rhizosphere of different plants, the molecular mechanisms involved remain uncharacterized. To fill this gap, we combined transcriptomic, proteomics, geo-chemical and physiological analyses to decipher the potential molecular mechanisms explaining the mineral weathering effectiveness of strain PML1(12) of Caballeronia mineralivorans. Considering the early-stage of the interaction between mineral and bacteria, we identified the genes and proteins differentially expressed when: (i) the environment is depleted of certain essential nutrients (i.e., Mg and Fe), (ii) a mineral is added and (iii) the carbon source (i.e., glucose vs mannitol) differs. The integration of these data demonstrates that strain PML1(12) is capable of (i) mobilizing iron through the production of a non-ribosomal peptide synthetase-independent siderophore, (ii) inducing chemotaxis and motility in response to nutrient availability and (iii) strongly acidifying its environment in the presence of glucose using a suite of GMC oxidoreductases to weather mineral. These results provide new insights into the molecular mechanisms involved in mineral weathering and their regulation and highlight the complex sequence of events triggered by bacteria to weather minerals.
Collapse
Affiliation(s)
- Stéphane Uroz
- INRAE, UMR1136 « Interactions Arbres-Microorganismes », Université de Lorraine, Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des écosystèmes forestiers », Champenoux, F-54280, France
| | - Laura Picard
- INRAE, UMR1136 « Interactions Arbres-Microorganismes », Université de Lorraine, Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des écosystèmes forestiers », Champenoux, F-54280, France
| | - Marie-Pierre Turpault
- INRAE, UR1138 « Biogéochimie des écosystèmes forestiers », Champenoux, F-54280, France
| | - Lucas Auer
- INRAE, UMR1136 « Interactions Arbres-Microorganismes », Université de Lorraine, Champenoux, F-54280, France
| | - Jean Armengaud
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 30200 Bagnols-sur-Cèze, France
| | - Phil Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Lyon, France, Univ Lyon, Villeurbanne, F-69622, France
| |
Collapse
|
3
|
Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2019.e00246] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
4
|
Nicolitch O, Feucherolles M, Churin JL, Fauchery L, Turpault MP, Uroz S. A microcosm approach highlights the response of soil mineral weathering bacterial communities to an increase of K and Mg availability. Sci Rep 2019; 9:14403. [PMID: 31591410 PMCID: PMC6779897 DOI: 10.1038/s41598-019-50730-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/31/2019] [Indexed: 11/24/2022] Open
Abstract
The access and recycling of the base cations are essential processes for the long-lasting functioning of forest ecosystems. While the role of soil bacterial communities has been demonstrated in mineral weathering and tree nutrition, our understanding of the link between the availability of base cations and the functioning of these communities remains limited. To fill this gap, we developed a microcosm approach to investigate how an increase in key base cations (potassium or magnesium) impacted the taxonomic and functional structures of the bacterial communities. During a 2-month period after fertilization with available potassium or magnesium, soil properties, global functions (metabolic potentials and respiration) as well as mineral weathering bioassays and 16S rRNA amplicon pyrosequencing were monitored. Our analyses showed no or small variations in the taxonomic structure, total densities and global functions between the treatments. In contrast, a decrease in the frequency and effectiveness of mineral weathering bacteria was observed in the fertilized treatments. Notably, quantitative PCR targeting specific genera known for their mineral weathering ability (i.e., Burkholderia and Collimonas) confirmed this decrease. These new results suggest that K and Mg cation availability drives the distribution of the mineral weathering bacterial communities in forest soil.
Collapse
Affiliation(s)
- O Nicolitch
- INRA, Université de Lorraine, UMR 1136 "Interactions Arbres Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
- INRA UR 1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France
| | - M Feucherolles
- INRA, Université de Lorraine, UMR 1136 "Interactions Arbres Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
| | - J-L Churin
- INRA, Université de Lorraine, UMR 1136 "Interactions Arbres Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
| | - L Fauchery
- INRA, Université de Lorraine, UMR 1136 "Interactions Arbres Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
| | - M-P Turpault
- INRA UR 1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France
| | - S Uroz
- INRA, Université de Lorraine, UMR 1136 "Interactions Arbres Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France.
- INRA UR 1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France.
| |
Collapse
|
5
|
Sousa LPD, da Silva MJD, Mondego JMC. Leaf-associated bacterial microbiota of coffee and its correlation with manganese and calcium levels on leaves. Genet Mol Biol 2018; 41:455-465. [PMID: 29782032 PMCID: PMC6082234 DOI: 10.1590/1678-4685-gmb-2017-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/14/2017] [Indexed: 01/16/2023] Open
Abstract
Coffee is one of the most valuable agricultural commodities and the plants’
leaves are the primary site of infection for most coffee diseases, such as the
devastating coffee leaf rust. Therefore, the use of bacterial microbiota that
inhabits coffee leaves to fight infections could be an alternative agricultural
method to protect against coffee diseases. Here, we report the leaf-associated
bacteria in three coffee genotypes over the course of a year, with the aim to
determine the diversity of bacterial microbiota. The results indicate a
prevalence of Enterobacteriales in Coffea canephora,
Pseudomonadales in C. arabica ‘Obatã’, and an intriguing lack
of bacterial dominance in C. arabica ‘Catuaí’. Using PERMANOVA
analyses, we assessed the association between bacterial abundance in the coffee
genotypes and environmental parameters such as temperature, precipitation, and
mineral nutrients in the leaves. We detected a close relationship between the
amount of Mn and the abundance of Pseudomonadales in ‘Obatã’ and the amount of
Ca and the abundance of Enterobacteriales in C. canephora. We
suggest that mineral nutrients can be key drivers that shape leaf microbial
communities.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico, Campinas, SP, Brazil.,Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia Universidade de Campinas (UNICAMP), Campinas, SP, Brazil.,Programa de Pós Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcio José da da Silva
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
6
|
Marupakula S, Mahmood S, Jernberg J, Nallanchakravarthula S, Fahad ZA, Finlay RD. Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition. Environ Microbiol 2017; 19:4736-4753. [PMID: 28967195 DOI: 10.1111/1462-2920.13939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns.
Collapse
Affiliation(s)
- Srisailam Marupakula
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Shahid Mahmood
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Johanna Jernberg
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Srivathsa Nallanchakravarthula
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Zaenab A Fahad
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Roger D Finlay
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| |
Collapse
|
7
|
Uroz S, Oger P. Caballeronia mineralivorans sp. nov., isolated from oak- Scleroderma citrinum mycorrhizosphere. Syst Appl Microbiol 2017; 40:345-351. [DOI: 10.1016/j.syapm.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
|
8
|
Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities. Appl Environ Microbiol 2017; 83:AEM.02684-16. [PMID: 28003192 DOI: 10.1128/aem.02684-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
Although minerals represent important soil constituents, their impact on the diversity and structure of soil microbial communities remains poorly documented. In this study, pure mineral particles with various chemistries (i.e., obsidian, apatite, and calcite) were considered. Each mineral type was conditioned in mesh bags and incubated in soil below different tree stands (beech, coppice with standards, and Corsican pine) for 2.5 years to determine the relative impacts of mineralogy and mineral weatherability on the taxonomic and functional diversities of mineral-associated bacterial communities. After this incubation period, the minerals and the surrounding bulk soil were collected to determine mass loss and to perform soil analyses, enzymatic assays, and cultivation-dependent and -independent analyses. Notably, our 16S rRNA gene pyrosequencing analyses revealed that after the 2.5-year incubation period, the mineral-associated bacterial communities strongly differed from those of the surrounding bulk soil for all tree stands considered. When focusing only on minerals, our analyses showed that the bacterial communities associated with calcite, the less recalcitrant mineral type, significantly differed from those that colonized obsidian and apatite minerals. The cultivation-dependent analysis revealed significantly higher abundances of effective mineral-weathering bacteria on the most recalcitrant minerals (i.e., apatite and obsidian). Together, our data showed an enrichment of Betaproteobacteria and effective mineral-weathering bacteria related to the Burkholderia and Collimonas genera on the minerals, suggesting a key role for these taxa in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems.IMPORTANCE Forests are usually developed on nutrient-poor and rocky soils, while nutrient-rich soils have been dedicated to agriculture. In this context, nutrient recycling and nutrient access are key processes in such environments. Deciphering how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems.
Collapse
|
9
|
Kelly LC, Colin Y, Turpault MP, Uroz S. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing. MICROBIAL ECOLOGY 2016; 72:428-442. [PMID: 27138048 DOI: 10.1007/s00248-016-0774-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.
Collapse
Affiliation(s)
- L C Kelly
- INRA, UMR1136 "Interactions Arbres-Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
- Université de Lorraine, UMR1136 "Interactions Arbres-Microorganismes", 54500, Vandoeuvre-lès-Nancy, France
- School of Science and the Environment, Division of Biology and Conservation Ecology, Manchester Metropolitan University, M1 5GD, Manchester, UK
| | - Y Colin
- INRA, UMR1136 "Interactions Arbres-Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
- Université de Lorraine, UMR1136 "Interactions Arbres-Microorganismes", 54500, Vandoeuvre-lès-Nancy, France
- INRA UR1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France
| | - M-P Turpault
- INRA UR1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France
| | - S Uroz
- INRA, UMR1136 "Interactions Arbres-Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France.
- Université de Lorraine, UMR1136 "Interactions Arbres-Microorganismes", 54500, Vandoeuvre-lès-Nancy, France.
- INRA UR1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France.
| |
Collapse
|
10
|
Uroz S, Kelly LC, Turpault MP, Lepleux C, Frey-Klett P. The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities. Trends Microbiol 2015; 23:751-762. [DOI: 10.1016/j.tim.2015.10.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/17/2022]
|
11
|
Brantner JS, Senko JM. Response of soil-associated microbial communities to intrusion of coal mine-derived acid mine drainage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8556-8563. [PMID: 24971467 DOI: 10.1021/es502261u] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A system has been identified in which coal mine-derived acid mine drainage (AMD) flows as a 0.5-cm-deep sheet over the terrestrial surface. This flow regime enhances the activities of Fe(II) oxidizing bacteria, which catalyze the oxidative precipitation of Fe from AMD. These activities give rise to Fe(III) (hydr)oxide-rich deposits (referred to as an iron mound) overlying formerly pristine soil. This iron mound has developed with no human intervention, indicating that microbiological activities associated with iron mounds may be exploited as an inexpensive and sustainable approach to remove Fe(II) from AMD. To evaluate the changes in microbial activities and communities that occur when AMD infiltrates initially pristine soil, we incubated AMD-unimpacted soil with site AMD. Continuous exposure of soil to AMD induced progressively greater rates of Fe(II) biooxidation. The development of Fe(II) oxidizing activities was enhanced by inoculation of soil with microorganisms associated with mature iron mound sediment. Evaluation of pyrosequencing-derived 16S rRNA gene sequences recovered from incubations revealed the development of microbial community characteristics that were similar to those of the mature iron mound sediment. Our results indicate that upon mixing of AMD with pristine soil, microbial communities develop that mediate rapid oxidative precipitation of Fe from AMD.
Collapse
Affiliation(s)
- Justin S Brantner
- Department of Biology, ‡Integrated Biosciences Program, and §Department of Geosciences, The University of Akron , Akron, Ohio 44325, United States
| | | |
Collapse
|