1
|
Ma ZS. Revisiting microgenderome: detecting and cataloguing sexually unique and enriched species in human microbiomes. BMC Biol 2024; 22:284. [PMID: 39639265 PMCID: PMC11622641 DOI: 10.1186/s12915-024-02025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Microgenderome or arguably more accurately microsexome refers to studies on sexual dimorphism of human microbiomes aimed at investigating bidirectional interactions between human microbiomes, sex hormones, and immune systems. It is important because of its implications to disease susceptibility and therapy, in which men and women demonstrate divergence in many diseases especially autoimmune diseases. In a previous report [1], we presented analyses of several key ecological aspects of microgenderome by leveraging the large datasets of the HMP (human microbiome project) but failed to offer species-level composition differences such as sexually unique species (US) and enriched species (ES). Existing approaches, for such tasks, including differential species relative abundance analysis and differential network analysis, possess certain limitations given that virtually all rely on species abundance alone or are univariate, while ignoring species distribution information across samples. Obviously, it is both species abundance and distribution that shape/drive the structure and dynamics of human microbiomes, and both should be equally responsible for the universal heterogeneity of microbiomes including the sexual dimorphism. RESULTS Here, we fill the gap by taking advantages of a recently developed computational algorithm, species specificity, and specificity diversity (SSD) framework (refer to the companion article) to reanalyze the HMP and complementary seminovaginal microbiome datasets. The SSD framework can randomly search and catalogue the sexually specific unique/enriched species with statistical rigor, guided by species specificity (a synthetic metric of abundance and distribution) and specificity diversity (SD). The SSD framework reveals that men seem to have more unique species than women in their gut and reproductive system microbiomes, but women seem to have more unique species than men in the airway, oral, and skin microbiomes, which is likely due to sexual dimorphism in the hormone and immune systems. We further investigate co-dependency and heterogeneity of those sexually unique/enriched species across 15 body sites, with core/periphery network analyses. CONCLUSIONS This study not only produced sexually unique/enriched species in the human microbiomes and analyzed their codependency and heterogeneity but also further validated the robustness of the SSD framework presented in the companion article, by performing all negative control tests based on the HMP gut microbiome samples.
Collapse
Affiliation(s)
- Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Department of Entomology, College of Plant Protection, Hebei Agricultural University, Baoding, China.
- Microbiome Medicine and Advanced AI Lab, Cambridge, MA, 02138, USA.
- Faculty of Arts and Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
2
|
Hamamah S, Barry F, Vannier S, Anahory T, Haahtela T, Antó JM, Chapron C, Ayoubi JM, Czarlewski W, Bousquet J. Infertility, IL-17, IL-33 and Microbiome Cross-Talk: The Extended ARIA-MeDALL Hypothesis. Int J Mol Sci 2024; 25:11981. [PMID: 39596052 PMCID: PMC11594021 DOI: 10.3390/ijms252211981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Infertility, defined as the inability to obtain pregnancy after 12 months of regular unprotected sexual intercourse, has increased in prevalence over the past decades, similarly to chronic, allergic, autoimmune, or neurodegenerative diseases. A recent ARIA-MeDALL hypothesis has proposed that all these diseases are linked to dysbiosis and to some cytokines such as interleukin 17 (IL-17) and interleukin 33 (IL-33). Our paper suggests that endometriosis, a leading cause of infertility, is linked to endometrial dysbiosis and two key cytokines, IL-17 and IL-33, which interact with intestinal dysbiosis. Intestinal dysbiosis contributes to elevated estrogen levels, a primary factor in endometriosis. Estrogens strongly activate IL-17 and IL-33, supporting the existence of a gut-endometrial axis as a significant contributor to infertility.
Collapse
Affiliation(s)
- Samir Hamamah
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
- INSERM DEFE, Université de Montpellier, 34090 Montpellier, France
| | - Fatima Barry
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
- INSERM DEFE, Université de Montpellier, 34090 Montpellier, France
| | - Sarah Vannier
- Gynécologie Médicale, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France;
| | - Tal Anahory
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, 00250 Helsinki, Finland;
| | - Josep M. Antó
- ISGlobal, Barcelona Institute for Global Health, 08036 Barcelona, Spain;
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Charles Chapron
- Service de Gynécologie-Obs., Hôpital Cochin, 75014 Paris, France;
| | - Jean-Marc Ayoubi
- Gynécologie et médecine de la Reproduction, Hôpital Foch, 92150 Suresnes, France;
| | | | - Jean Bousquet
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| |
Collapse
|
3
|
Jendraszak M, Skibińska I, Kotwicka M, Andrusiewicz M. The elusive male microbiome: revealing the link between the genital microbiota and fertility. Critical review and future perspectives. Crit Rev Clin Lab Sci 2024; 61:559-587. [PMID: 38523477 DOI: 10.1080/10408363.2024.2331489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
There is a growing focus on understanding the role of the male microbiome in fertility issues. Although research on the bacterial communities within the male reproductive system is in its initial phases, recent discoveries highlight notable variations in the microbiome's composition and abundance across distinct anatomical regions like the skin, foreskin, urethra, and coronary sulcus. To assess the relationship between male genitourinary microbiome and reproduction, we queried various databases, including MEDLINE (available via PubMed), SCOPUS, and Web of Science to obtain evidence-based data. The literature search was conducted using the following terms "gut/intestines microbiome," "genitourinary system microbiome," "microbiome and female/male infertility," "external genital tract microbiome," "internal genital tract microbiome," and "semen microbiome." Fifty-one relevant papers were analyzed, and eleven were strictly semen quality or male fertility related. The male microbiome, especially in the accessory glands like the prostate, seminal vesicles, and bulbourethral glands, has garnered significant interest because of its potential link to male fertility and reproduction. Studies have also found differences in bacterial diversity present in the testicular tissue of normozoospermic men compared to azoospermic suggesting a possible role of bacterial dysbiosis and reproduction. Correlation between the bacterial taxa in the genital microbiota of sexual partners has also been found, and sexual activity can influence the composition of the urogenital microbiota. Exploring the microbial world within the male reproductive system and its influence on fertility opens doors to developing ways to prevent, diagnose, and treat infertility. The present work emphasizes the importance of using consistent methods, conducting long-term studies, and deepening our understanding of how the reproductive tract microbiome works. This helps make research comparable, pinpoint potential interventions, and smoothly apply microbiome insights to real-world clinical practices.
Collapse
Affiliation(s)
- Magdalena Jendraszak
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Izabela Skibińska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
4
|
Ma Y, Yu X, Liu YF, Song B, Sun Z, Zhao S. Immunoregulation and male reproductive function: Impacts and mechanistic insights into inflammation. Andrology 2024. [PMID: 39428853 DOI: 10.1111/andr.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
This paper investigates the complex relationship between the immune system and male reproductive processes, emphasizing how chronic inflammation can adversely affect male reproductive health. The immune system plays a dual role; it protects and regulates reproductive organs and spermatogenesis while maintaining reproductive health through immune privilege in the testes and the activities of various immune cells and cytokines. However, when chronic inflammation persists or intensifies, it can disrupt this balance, leading to immune attacks on reproductive tissues and resulting in infertility.This study provides a detailed analysis of how chronic inflammation can impair sperm production, sperm quality, and the secretion of gonadal hormones both directly and indirectly. It also delves into the critical roles of testicular immune privilege, various immune cells, and cytokines in sustaining reproductive health and examines the impacts of infections, autoimmune diseases, and environmental factors on male fertility.
Collapse
Affiliation(s)
- Yingjie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinru Yu
- School of PharmacyJinan, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bihan Song
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhengao Sun
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengtian Zhao
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Binzhou Medical University Hospital, Yantai, Shandong, China
- Institute of Urology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Jin J, Yim HCH, Chang HME, Wang Y, Choy KHK, Chan SY, Alqawasmeh OAM, Liao J, Jiang XT, Chan DYL, Fok EKL. DEFB119 stratifies dysbiosis with distorted networks in the seminal microbiome associated with male infertility. PNAS NEXUS 2024; 3:pgae419. [PMID: 39359400 PMCID: PMC11443970 DOI: 10.1093/pnasnexus/pgae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Infertility is associated with the alteration of the seminal microbiome. However, the onset of dysbiosis remains controversial and the involvement of host factors remains elusive. This study investigates the alterations of the seminal microbiome in male infertility and examines the association and function of DEFB119, a reproductive-tract-specific host antimicrobial peptide, on the seminal microbiome and male fertility. While we observed comparable genera, diversity and evenness of bacterial communities, a marked decrease in the modularity of the metacommunities was observed in patients with abnormal spermiogram (n = 57) as compared to the control (n = 30). A marked elevation of DEFB119 was observed in a subpopulation of male infertile patients (n = 5). Elevated seminal DEFB119 was associated with a decrease in the observed genera, diversity and evenness of bacterial communities, and further distortion of the metacommunities. Mediation analysis suggests the involvement of elevated DEFB119 and dysbiosis of the seminal microbiome in mediating the abnormalities in the spermiogram. Functional experiments showed that recombinant DEFB119 significantly decrease the progressive motility of sperm in patients with abnormal spermiogram. Moreover, DEFB119 demonstrated species-specific antimicrobial activity against common seminal and nonseminal species. Our work identifies an important host factor that mediates the host-microbiome interaction and stratifies the seminal microbiome associated with male infertility. These results may lead to a new diagnostic method for male infertility and regimens for formulating the microbiome in the reproductive tract and other organ systems.
Collapse
Affiliation(s)
- Jing Jin
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Howard Chi Ho Yim
- Faculty of Medicine and Health, Microbiome Research Centre, St George and Sutherland Campus, School of Clinical Medicine, The University of New South Wales, Sydney 2217, Australia
| | - Hsiao Mei Ellie Chang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yiwei Wang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kathleen Hoi Kei Choy
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Sze Yan Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Odai A M Alqawasmeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jinyue Liao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xiao-Tao Jiang
- Faculty of Medicine and Health, Microbiome Research Centre, St George and Sutherland Campus, School of Clinical Medicine, The University of New South Wales, Sydney 2217, Australia
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ellis Kin Lam Fok
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, PR China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, PR China
| |
Collapse
|
6
|
Camarini R, Marianno P, Hanampa-Maquera M, Oliveira SDS, Câmara NOS. Prenatal Stress and Ethanol Exposure: Microbiota-Induced Immune Dysregulation and Psychiatric Risks. Int J Mol Sci 2024; 25:9776. [PMID: 39337263 PMCID: PMC11431796 DOI: 10.3390/ijms25189776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Changes in maternal gut microbiota due to stress and/or ethanol exposure can have lasting effects on offspring's health, particularly regarding immunity, inflammation response, and susceptibility to psychiatric disorders. The literature search for this review was conducted using PubMed and Scopus, employing keywords and phrases related to maternal stress, ethanol exposure, gut microbiota, microbiome, gut-brain axis, diet, dysbiosis, progesterone, placenta, prenatal development, immunity, inflammation, and depression to identify relevant studies in both preclinical and human research. Only a limited number of reviews were included to support the arguments. The search encompassed studies from the 1990s to the present. This review begins by exploring the role of microbiota in modulating host health and disease. It then examines how disturbances in maternal microbiota can affect the offspring's immune system. The analysis continues by investigating the interplay between stress and dysbiosis, focusing on how prenatal maternal stress influences both maternal and offspring microbiota and its implications for susceptibility to depression. The review also considers the impact of ethanol consumption on gut dysbiosis, with an emphasis on the effects of prenatal ethanol exposure on both maternal and offspring microbiota. Finally, it is suggested that maternal gut microbiota dysbiosis may be significantly exacerbated by the combined effects of stress and ethanol exposure, leading to immune system dysfunction and chronic inflammation, which could increase the risk of depression in the offspring. These interactions underscore the potential for novel mental health interventions that address the gut-brain axis, especially in relation to maternal and offspring health.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Maylin Hanampa-Maquera
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Samuel Dos Santos Oliveira
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
7
|
Yuan C, Xie K, Feng L, Gao S, Cai L. The role and challenges of regulating endometrial microbiome in uterine health and diseases. Crit Rev Microbiol 2024; 50:937-954. [PMID: 38488586 DOI: 10.1080/1040841x.2024.2320247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/10/2024] [Indexed: 10/09/2024]
Abstract
The uterine environment provides necessary conditions for the existence of endometrial microbiota, which in turn plays an important role in maintaining the homeostasis of the uterine environment. The endometrial microbiome is highly susceptible to external factors such as age, hormones, menstrual, pregnancy, etc. When the microbiota is imbalanced, it will further promote the occurrence of uterine diseases such as endometritis and endometrial cancer. Regulating the microbiome of the endometrium is of positive significance for promoting uterine health. Among them, antibiotics, probiotics, prebiotics, and microbial transplantation may be important pathways for regulating endometrial microbiota in the future. However, there is currently no unified plan for evaluating the endometrial microbiota. In addition, due to the small sample size, it is easy to be contaminated by exogenous bacterial DNA, which poses great challenges for studying the mechanism of microbial community regulating uterine health. Therefore, there are still many areas worth exploring for the future of endometrial microbiome.
Collapse
Affiliation(s)
- Chongshan Yuan
- Department of Obstetrics, China-Japan Union hospital of Jilin University, Changchun, Jilin, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Kunyu Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China-Japan Union hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
McNamara KB, Dungan AM, Blackall LL, Simmons LW. Microbial biomarkers as indicators of sperm viability in an insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240734. [PMID: 39309259 PMCID: PMC11416813 DOI: 10.1098/rsos.240734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Our understanding of microbial variation in male reproductive tissues is poorly understood, both regarding how it varies spatially across different tissues and its ability to affect male sperm and semen quality. To redress this gap, we explored the relationship between male sperm viability and male gut and reproductive tract microbiomes in the Pacific field cricket, Teleogryllus oceanicus. We selected cohorts of males within our populations with the highest and lowest natural sperm viability and characterized the bacterial microbiota present in the gut, testes, seminal vesicle, accessory glands and the spermatophore (ejaculate) using 16S ribosomal RNA gene metabarcoding. We identified bacterial taxa corresponding to sperm viability, highlighting for the first time an association between the host's microbial communities and male competitive fertilization success. We also found significant spatial variation in bacterial community structure of reproductive tissue types. Our data demonstrate the importance of considering the microbial diversity of both the host gut and reproductive tract when investigating male fertility in wildlife and potentially human clinical settings.
Collapse
Affiliation(s)
- Kathryn B. McNamara
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Ashley M. Dungan
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Linda L. Blackall
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology & School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| |
Collapse
|
9
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
10
|
Zheng Y, Ye L, Du J, Huang L, Lun M, He M, Xiao G, Du W, Liu C, Chen L. Changes in the microbial community of semen exposed to different simulated forensic situations. Microbiol Spectr 2024; 12:e0012524. [PMID: 38980015 PMCID: PMC11302308 DOI: 10.1128/spectrum.00125-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024] Open
Abstract
Semen is one of the common body fluids in sexual crime cases. The current methods of semen identification have certain limitations, so it is necessary to search for other methods. In addition, there are few reports of microbiome changes in body fluids under simulated crime scenes. It is essential to further reveal the changes in semen microbiomes after exposure to various simulated crime scenes. Semen samples from eight volunteers were exposed in closed plastic bags, soil, indoor, cotton, polyester, and wool fabrics. A total of 68 samples (before and after exposure) were collected, detected by 16S rDNA sequencing, and analyzed for the microbiome signature. Finally, a random forest model was constructed for body fluid identification. After exposure, the relative abundance of Pseudomonas and Rhodococcus changed dramatically in almost all groups. In addition, the treatment with the closed plastic bags or soil groups had a greater impact on the semen microbiome. According to the Shannon indices, the alpha diversity of the closed plastic bags and soil groups was much lower than that of the other groups. Attention should be given to the above two scenes in practical work of forensic medicine. In this study, the accuracy of semen recognition was 100%. The exposed semen can still be correctly identified as semen based on its microbiota characteristics. In summary, semen microbiomes exposed to simulated crime scenes still have good application potential for body fluid identification. IMPORTANCE In this study, the microbiome changes of semen exposed to different environments were observed, and the exposed semen microbiome still has a good application potential in body fluid identification.
Collapse
Affiliation(s)
- Yangyang Zheng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Homy Genetics Incorporation, Foshan, China
| | - Linying Ye
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyu Du
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Litao Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Miaoqiang Lun
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiyun He
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guichao Xiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Weian Du
- Guangdong Homy Genetics Incorporation, Foshan, China
| | - Chao Liu
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou, China
| | - Ling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Núñez-Montero K, Leal K, Rojas-Villalta D, Castro M, Larronde C, Wagenknecht L, Contreras MJ. 16s gene metagenomic characterization in healthy stallion semen. Res Vet Sci 2024; 176:105354. [PMID: 38981836 DOI: 10.1016/j.rvsc.2024.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Studies on the bacterial composition of seminal samples have primarily focused on species isolated from semen and their effects on fertility and reproductive health. Culture-independent techniques, such as 16S rRNA gene sequencing and shotgun metagenomics, have revolutionized our ability to identify unculturable bacteria, which comprise >90% of the microbiome. These techniques allow for comprehensive analysis of microbial communities in seminal samples, shedding light on their interactions and roles. In this study, we characterized the taxonomic diversity of seminal microbial communities in healthy stallions using 16S rRNA gene sequencing. Semen samples were collected from four stallions during the reproductive season, and DNA was extracted for sequencing. The results revealed a diverse array of bacterial taxa, with Firmicutes, Bacteroidota, and Proteobacteria being predominant phyla. At the family and genus levels, significant variations were observed among individuals, with individual variability in microbial richness and diversity standing out. Moreover, each stallion showed a distinct microbial fingerprint, indicating the presence of a characteristic microbial core for each stallion. These results underscore the importance of considering individual microbial profiles in understanding reproductive health and fertility outcomes.
Collapse
Affiliation(s)
- Kattia Núñez-Montero
- Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Karla Leal
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Macarena Castro
- Doctorado en Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Carolina Larronde
- Facultad de La Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | | | - María José Contreras
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile.
| |
Collapse
|
12
|
Alqawasmeh OAM, Jiang XT, Cong L, Wu W, Leung MBW, Chung JPW, Yim HCH, Fok EKL, Chan DYL. Vertical transmission of microbiomes into embryo culture media and its association with assisted reproductive outcomes. Reprod Biomed Online 2024; 49:103977. [PMID: 38824761 DOI: 10.1016/j.rbmo.2024.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 06/04/2024]
Abstract
RESEARCH QUESTION Can microbes vertically transmit from semen and follicular fluid to embryo culture media during assisted reproductive technology (ART) treatment? DESIGN Spent embryo culture media (SECM), seminal fluid and follicular fluid samples were collected from 61 couples with infertility undergoing ART treatment at the Prince of Wales Hospital, Hong Kong SAR, China. Metagenomic analysis was conducted using 16s rRNA sequencing to identify the source of microbes in SECM, correlation between the semen microbiome and male infertility, and correlation between the follicular fluid microbiome and female infertility. RESULTS Microbial vertical transmission into SECM was reported in 82.5% of cases, and semen was the main source of contamination in conventional IVF cases. The increased abundances of Staphylococcus spp. and Streptococcus anginosus in semen had negative impacts on total motility and sperm count, respectively (P < 0.001). Significant increases in abundance of the genera Prophyromonas, Neisseria and Facklamia were observed in follicular fluid in women with anovulation, uterine factor infertility and unexplained infertility, respectively (P < 0.01). No significant correlation was found between the bacteria identified in all sample types and ART outcomes, including fertilization rate, embryo development, number of available embryos, and clinical pregnancy rate. CONCLUSION Embryo culture media can be contaminated during ART treatment, not only by seminal microbes but also by follicular fluid and other sources of microbes. Strong correlations were found between specific microbial taxa in semen and sperm quality, and between the follicular fluid microbiome and the aetiology of female infertility. However, no significant association was found between the microbiomes of SECM, semen and follicular fluid and ART outcomes.
Collapse
Affiliation(s)
- Odai A M Alqawasmeh
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Medicine, University of Dundee, Dundee, UK
| | - Xiao-Tao Jiang
- Microbiome Research Centre, St George and Sutherland Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Luping Cong
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Waner Wu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Biomedical Science, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Maran B W Leung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacqueline P W Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Howard Chi Ho Yim
- Microbiome Research Centre, St George and Sutherland Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Ellis K L Fok
- Department of Biomedical Science, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China.
| | - David Y L Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Li G, Shen Q, Gao Y, Ma C, Song B, Wang C, Tang D, He X, Cao Y. The microbiota continuum along the upper reproductive tract of male rat and its relation to semen parameters. Heliyon 2024; 10:e32556. [PMID: 39183864 PMCID: PMC11341332 DOI: 10.1016/j.heliyon.2024.e32556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 08/27/2024] Open
Abstract
Given the physiological function and anatomical location of the reproductive tract, studying the upper reproductive tract microbiota may be essential for studying male infertility and other male diseases. This study aimed to characterize the microbiota of the upper reproductive tract male rats and investigate whether specific microbial compositions are associated with sperm parameters. 16S rRNA gene sequencing was used to characterize the microbial composition in the testis, epididymis, seminal vesicles, vas deferens and prostate tissues of the rats. The results showed significant enrichment of Methyloperoxococcus spp. in testicular tissues, Jeotgalicoccus spp. in epididymal tissues. Spearman's correlation analysis revealed that the abundance of several bacterial genera in epididymal, testicular, and seminal vesicle gland tissues correlated with several sperm activity parameters. Our findings provide detailed information on characterizing the upper reproductive tract microbiome in male rats, as well as a potentially crucial link between the reproductive system microbiota and sperm quality.
Collapse
Affiliation(s)
- Guanjian Li
- Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
| | - Qunshan Shen
- Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yang Gao
- Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Cong Ma
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Bing Song
- Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
| | - Chao Wang
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Dongdong Tang
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Xiaojin He
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxia Cao
- Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
| |
Collapse
|
14
|
Henkel R. Leukocytospermia and/or Bacteriospermia: Impact on Male Infertility. J Clin Med 2024; 13:2841. [PMID: 38792382 PMCID: PMC11122306 DOI: 10.3390/jcm13102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infertility is a globally underestimated public health concern affecting almost 190 million people, i.e., about 17.5% of people during their lifetime, while the prevalence of male factor infertility is about 7%. Among numerous other causes, the prevalence of male genital tract infections reportedly ranges between 10% and 35%. Leukocytospermia is found in 30% of infertile men and up to 20% in fertile men. Bacterial infections cause an inflammatory response attracting leukocytes, which produce reactive oxygen species (ROS) and release cytokines, both of which can cause damage to sperm, rendering them dysfunctional. Although leukocytospermia and bacteriospermia are both clinical conditions that can negatively affect male fertility, there is still debate about their impact on assisted reproduction outcomes and management. According to World Health Organization (WHO) guidelines, leukocytes should be determined by means of the Endtz test or with monoclonal antibodies against CD15, CD68 or CD22. The cut-off value proposed by the WHO is 1 × 106 peroxidase-positive cells/mL. For bacteria, Gram staining and semen culture are regarded as the "gold standard", while modern techniques such as PCR and next-generation sequencing (NGS) are allowing clinicians to detect a wider range of pathogens. Whereas the WHO manual does not specify a specific value as a cut-off for bacterial contamination, several studies consider semen samples with more than 103 colony-forming units (cfu)/mL as bacteriospermic. The pathogenic mechanisms leading to sperm dysfunction include direct interaction of bacteria with the male germ cells, bacterial release of spermatotoxic substances, induction of pro-inflammatory cytokines and ROS, all of which lead to oxidative stress. Clinically, bacterial infections, including "silent" infections, are treatable, with antibiotics being the treatment of choice. Yet, non-steroidal antiphlogistics or antioxidants should also be considered to alleviate inflammatory lesions and improve semen quality. In an assisted reproduction set up, sperm separation techniques significantly reduce the bacterial load in the semen. Nonetheless, contamination of the semen sample with skin commensals should be prevented by applying relevant hygiene techniques. In patients where leukocytospermia is detected, the causes (e.g. infection, inflammation, varicocele, smoking, etc.) of the leukocyte infiltration have to be identified and addressed with antibiotics, anti-inflammatories or antioxidants in cases where high oxidative stress levels are detected. However, no specific strategy is available for the management of leukocytospermia. Therefore, the relationship between bacteriospermia and leukocytospermia as well as their specific impact on functional sperm parameters and reproductive outcome variables such as fertilization or clinical pregnancy must be further investigated. The aim of this narrative review is to provide an update on the current knowledge on leukocytospermia and bacteriospermia and their impact on male fertility.
Collapse
Affiliation(s)
- Ralf Henkel
- LogixX Pharma Ltd., Merlin House, Brunel Road, Theale, Reading RG7 4AB, UK;
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
15
|
Banchi P, Spanoghe L, Maes D, Morrell J, Van Soom A. The reproductive microbiome in dogs: Friend or foe? Vet J 2024; 304:106100. [PMID: 38484870 DOI: 10.1016/j.tvjl.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
The microbiome of the reproductive tract is an area of research in full development. Specifically, the microbiome may be involved in reproductive health, disease, and pregnancy outcomes, as has been shown in humans and animals, including dogs. The aim of the present review was to summarize current knowledge on the microbiome of the canine reproductive tract, to expose the controversial role that some bacterial agents may play in canine subfertility, and to highlight future research perspectives. This review discussed whether the use of antimicrobials in dogs is appropriate to increase reproductive performance and to treat subfertility without proper diagnosis, and the possible use of probiotics to modulate the reproductive canine microbiome. Finally, we indicate areas in which scientific knowledge is currently lacking, and could be promising directions for future research.
Collapse
Affiliation(s)
- Penelope Banchi
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium; Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| | - Lotte Spanoghe
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Jane Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
16
|
Carter KA, France MT, Rutt L, Bilski L, Martinez-Greiwe S, Regan M, Brotman RM, Ravel J. Sexual transmission of urogenital bacteria: whole metagenome sequencing evidence from a sexual network study. mSphere 2024; 9:e0003024. [PMID: 38358269 PMCID: PMC10964427 DOI: 10.1128/msphere.00030-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
Sexual transmission of the urogenital microbiota may contribute to adverse sexual and reproductive health outcomes. The extent of sexual transmission of the urogenital microbiota is unclear as prior studies largely investigated specific pathogens. We used epidemiologic data and whole metagenome sequencing to characterize urogenital microbiota strain concordance between participants of a sexual network study. Individuals who screened positive for genital Chlamydia trachomatis were enrolled and referred their sexual contacts from the prior 60-180 days. Snowball recruitment of sexual contacts continued for up to four waves. Vaginal swabs and penile urethral swabs were collected for whole metagenome sequencing. We evaluated bacterial strain concordance using inStrain and network analysis. We defined concordance as ≥99.99% average nucleotide identity over ≥50% shared coverage; we defined putative sexual transmission as concordance between sexual contacts with <5 single-nucleotide polymorphisms per megabase. Of 138 participants, 74 (54%) were female; 120 (87%) had genital chlamydia; and 43 (31%) were recruited contacts. We identified 115 strain-concordance events among 54 participants representing 25 bacterial species. Seven events (6%) were between sexual contacts including putative heterosexual transmission of Fannyhessea vaginae, Gardnerella leopoldii, Prevotella amnii, Sneathia sanguinegens, and Sneathia vaginalis (one strain each), and putative sexual transmission of Lactobacillus iners between female contacts. Most concordance events (108, 94%) were between non-contacts, including eight female participants connected through 18 Lactobacillus crispatus and 3 Lactobacillus jensenii concordant strains, and 14 female and 2 male participants densely interconnected through 52 Gardnerella swidsinskii concordance events.IMPORTANCEEpidemiologic evidence consistently indicates bacterial vaginosis (BV) is sexually associated and may be sexually transmitted, though sexual transmission remains subject to debate. This study is not capable of demonstrating BV sexual transmission; however, we do provide strain-level metagenomic evidence that strongly supports heterosexual transmission of BV-associated species. These findings strengthen the evidence base that supports ongoing investigations of concurrent male partner treatment for reducing BV recurrence. Our data suggest that measuring the impact of male partner treatment on F. vaginae, G. leopoldii, P. amnii, S. sanguinegens, and S. vaginalis may provide insight into why a regimen does or does not perform well. We also observed a high degree of strain concordance between non-sexual-contact female participants. We posit that this may reflect limited dispersal capacity of vaginal bacteria coupled with individuals' comembership in regional transmission networks where transmission may occur between parent and child at birth, cohabiting individuals, or sexual contacts.
Collapse
Affiliation(s)
- Kayla A. Carter
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lindsay Rutt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Bilski
- School of Nursing, University of Maryland, Baltimore, Maryland, USA
| | | | - Mary Regan
- School of Nursing, University of Maryland, Baltimore, Maryland, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Gao H, Liu Q, Wang X, Li T, Li H, Li G, Tan L, Chen Y. Deciphering the role of female reproductive tract microbiome in reproductive health: a review. Front Cell Infect Microbiol 2024; 14:1351540. [PMID: 38562966 PMCID: PMC10982509 DOI: 10.3389/fcimb.2024.1351540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Relevant studies increasingly indicate that female reproductive health is confronted with substantial challenges. Emerging research has revealed that the microbiome interacts with the anatomy, histology, and immunity of the female reproductive tract, which are the cornerstone of maintaining female reproductive health and preventing adverse pregnancy outcomes. Currently, the precise mechanisms underlying their interaction and impact on physiological functions of the reproductive tract remain elusive, constituting a prominent area of investigation within the field of female reproductive tract microecology. From this new perspective, we explore the mechanisms of interactions between the microbiome and the anatomy, histology, and immunity of the female reproductive tract, factors that affect the composition of the microbiome in the female reproductive tract, as well as personalized medicine approaches in managing female reproductive tract health based on the microbiome. This study highlights the pivotal role of the female reproductive tract microbiome in maintaining reproductive health and influencing the occurrence of reproductive tract diseases. These findings support the exploration of innovative approaches for the prevention, monitoring and treatment of female reproductive tract diseases based on the microbiome.
Collapse
Affiliation(s)
- Hong Gao
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Qiao Liu
- School of Nursing, University of South China, Hengyang, China
| | - Xiaolan Wang
- Center for a Combination of Obstetrics and Gynecology and Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Li
- Department of Obstetrics, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huanhuan Li
- Department of Gynaecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Genlin Li
- Center for a Combination of Obstetrics and Gynecology and Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingling Tan
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yahui Chen
- School of Nursing, University of South China, Hengyang, China
| |
Collapse
|
18
|
Banchi P, Bertolotti L, Spanoghe L, Ali Hassan H, Lannoo J, Domain G, Henzel KS, Gaillard V, Rota A, Van Soom A. Characterization of the semen microbiota of healthy stud dogs using 16S RNA sequencing. Theriogenology 2024; 216:1-7. [PMID: 38141548 DOI: 10.1016/j.theriogenology.2023.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The reproductive microbiota of male dogs has never been investigated using culture-independent sequencing techniques. The purpose of the present study was to get seminal knowledge on the microbiota of the ejaculate. Specifically, factors as the fraction of the ejaculate, the sperm quality (normospermia, teratozoospermia), and the living environment were evaluated. The sperm-rich and the prostatic fractions of the ejaculate were collected from healthy stud dogs. Following the sperm analysis, samples from twenty animals (normospermic n = 10 and teratozoospermic n = 10) were stored at - 80 °C until further processing including DNA extraction and 16S rRNA sequencing. Alpha- (Shannon index) and beta- (Bray-Curtis, Unweighted UniFrac) diversities were assessed and compared (PERMANOVA) based on the group of samples (biological samples from the ejaculate and controls), the fraction of the ejaculate (sperm-rich and prostatic fractions), the animal group (normospermia and teratozoospermia), and the living environment of the animal (kennel or pet living in-house). The most abundant bacterial phyla in canine semen samples were Proteobacteria, Firmicutes, and Actinobacteria. Overall, the dominant bacterial family was that of Pasteurellaceae The genus Mycoplasma was never detected. No differences in terms of bacterial composition were found based on the fraction of the ejaculate and based on the animal group (P > 0.05). On the other hand, differences in alpha and beta diversities were highlighted based on the living environment (P = 0.001). Overall, the results of the present study provide preliminary insights on dog semen microbiota, opening a new chapter in the field of canine andrology. Our results suggest that the environment may play a role in influencing the reproductive microbiota of male dogs and that the prostatic fraction of the ejaculate can be used for further research as a representative of the semen microbiota.
Collapse
Affiliation(s)
- P Banchi
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium; Department of Veterinary Science, University of Torino, 10095, Grugliasco, Italy.
| | - L Bertolotti
- Department of Veterinary Science, University of Torino, 10095, Grugliasco, Italy
| | - L Spanoghe
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - H Ali Hassan
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - J Lannoo
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - G Domain
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - K S Henzel
- Royal Canin Research Center, 30470, Aimargues, France
| | - V Gaillard
- Royal Canin Research Center, 30470, Aimargues, France
| | - A Rota
- Department of Veterinary Science, University of Torino, 10095, Grugliasco, Italy
| | - A Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
19
|
Corral-Vazquez C, Blanco J, Sarrate Z, Anton E. Unraveling the Intricacies of the Seminal Microbiome and Its Impact on Human Fertility. BIOLOGY 2024; 13:150. [PMID: 38534419 PMCID: PMC10967773 DOI: 10.3390/biology13030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Although the microbial communities from seminal fluid were an unexplored field some decades ago, their characteristics and potential roles are gradually coming to light. Therefore, a complex and specific microbiome population with commensal niches and fluctuating species has started to be revealed. In fact, certain clusters of bacteria have been associated with fertility and health, while the outgrowth of several species is potentially correlated with infertility indicators. This constitutes a compelling reason for outlining the external elements that may induce changes in the seminal microbiome composition, like lifestyle factors, gut microbiota, pathologies, prebiotics, and probiotics. In this review, we summarize the main findings about seminal microbiome, its origins and composition, its relationship with fertility, health, and influence factors, while reminding readers of the limitations and advantages introduced from technical variabilities during the experimental procedures.
Collapse
Affiliation(s)
| | | | | | - Ester Anton
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (C.C.-V.); (J.B.); (Z.S.)
| |
Collapse
|
20
|
Neto FTL, Viana MC, Cariati F, Conforti A, Alviggi C, Esteves SC. Effect of environmental factors on seminal microbiome and impact on sperm quality. Front Endocrinol (Lausanne) 2024; 15:1348186. [PMID: 38455659 PMCID: PMC10918436 DOI: 10.3389/fendo.2024.1348186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Objective This review provides a comprehensive overview of the existing research on the seminal microbiome and its association with male infertility, while also highlighting areas that warrant further investigation. Methods A narrative review was conducted, encompassing all relevant studies published between 1980-2023 on the male reproductive tract microbiome in humans. This review considered studies utilizing culture-based, polymerase chain reaction (PCR)-based, and next-generation sequencing (NGS)-based methodologies to analyze the microbiome. Data extraction encompassed sample types (semen or testicular tissue), study designs, participant characteristics, employed techniques, and critical findings. Results We included 37 studies comprising 9,310 participants. Among these, 16 studies used culture-based methods, 16 utilized NGS, and five employed a combination of methods for microorganism identification. Notably, none of the studies assessed fungi or viruses. All NGS-based studies identified the presence of bacteria in all semen samples. Two notable characteristics of the seminal microbiome were observed: substantial variability in species composition among individuals and the formation of microbial communities with a dominant species. Studies examining the testicular microbiome revealed that the testicular compartment is not sterile. Interestingly, sexually active couples shared 56% of predominant genera, and among couples with positive cultures in both partners, 61% of them shared at least one genital pathogen. In couples with infertility of known causes, there was an overlap in bacterial composition between the seminal and vaginal microbiomes, featuring an increased prevalence of Staphylococcus and Streptococcus genera. Furthermore, the seminal microbiome had discernible effects on reproductive outcomes. However, bacteria in IVF culture media did not seem to impact pregnancy rates. Conclusion Existing literature underscores that various genera of bacteria colonize the male reproductive tract. These organisms do not exist independently; instead, they play a pivotal role in regulating functions and maintaining hemostasis. Future research should prioritize longitudinal and prospective studies and investigations into the influence of infertility causes and commonly prescribed medication to enhance our understanding of the seminal microbiota's role in reproductive health.
Collapse
Affiliation(s)
| | - Marina C. Viana
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
| | - Federica Cariati
- Department of Public Health, University of Naples Federico II, Napoli, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples, Federico II, Naples, Italy
| | - Carlo Alviggi
- Department of Public Health, University of Naples Federico II, Napoli, Italy
| | - Sandro C. Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
- Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Zhang Z, Ma Q, Zhang L, Ma L, Wang D, Yang Y, Jia P, Wu Y, Wang F. Human papillomavirus and cervical cancer in the microbial world: exploring the vaginal microecology. Front Cell Infect Microbiol 2024; 14:1325500. [PMID: 38333037 PMCID: PMC10850380 DOI: 10.3389/fcimb.2024.1325500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
The vaginal microbiota plays a crucial role in female reproductive health and is considered a biomarker for predicting disease outcomes and personalized testing. However, its relationship with human papillomavirus (HPV) infection and cervical cancer is not yet clear. Therefore, this article provides a review of the association between the vaginal microbiota, HPV infection, and cervical cancer. We discuss the composition of the vaginal microbiota, its dysbiosis, and its relationship with HPV infection, as well as potential mechanisms in the development of cervical cancer. In addition, we assess the feasibility of treatment strategies such as probiotics and vaginal microbiota transplantation to modulate the vaginal microbiota for the prevention and treatment of diseases related to HPV infection and cervical cancer. In the future, extensive replication studies are still needed to gain a deeper understanding of the complex relationship between the vaginal microbiota, HPV infection, and cervical cancer, and to clarify the role of the vaginal microbiota as a potential biomarker for predicting disease outcomes, thus providing a theoretical basis for personalized testing.
Collapse
Affiliation(s)
- Zhemei Zhang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Qingmei Ma
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Lei Zhang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Li Ma
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Danni Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Yongqing Yang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Pengxia Jia
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Yang Wu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Fang Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| |
Collapse
|
22
|
Graziottin A. Maintaining vulvar, vaginal and perineal health: Clinical considerations. WOMEN'S HEALTH (LONDON, ENGLAND) 2024; 20:17455057231223716. [PMID: 38396383 PMCID: PMC10894559 DOI: 10.1177/17455057231223716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 02/25/2024]
Abstract
Knowledge of female genital anatomy and physiology is often inadequate or incorrect among women. Precise patient-physician conversations can be inhibited by a reluctance or inability to speak accurately about the vulva and vagina, with the terms often being used interchangeably. There is a paucity of scientific evidence and clinical guidelines to support women and physicians in ensuring best practices in feminine hygiene. In this review, the unmet needs in the field are highlighted. Evidence is provided for the complex array of physiological and pathological systems, mechanisms and behaviours that either protect or, if inappropriate, predispose the vulva and vagina to infections, irritation or other conditions. The need for attention to perineal health is recommended, given the interdependence of perineal and vulvar microbiota and the risk of colonic pathogens reaching the vulva and the vagina. Differences in feminine hygiene practices can vary widely across the world and among varying age groups, and suboptimal habits (such as vaginal douching or the use of certain cleansers) can be associated with increased risks of vulvar and vaginal conditions. Critical areas for discussion when advising women on their intimate health include: advice surrounding aesthetic vulvar cosmetic trends (such as depilation and genital cosmetic surgery), bowel health and habits, and protection against sexually transmitted infections. Routine, once-daily (maximum twice-daily) washing of the vulva with a pH-balanced, mild cleanser is optimal, ideally soon after bowel voiding, when feasible. Due to the finely balanced ecosystems of the vulva, the vagina and the perineal area, a scientific and clinical perspective is essential when determining the most appropriate vulvar cleansers based on their components. Correct intimate care may contribute to improved genital and sexual health and overall well-being. An increased awareness of correct practices will empower women to be the advocates of their own intimate health.
Collapse
Affiliation(s)
- Alessandra Graziottin
- Centre of Gynaecology and Medical Sexology, San Raffaele Resnati Hospital, Milan, Italy
- Specialty School, Department of Obstetrics and Gynecology, University of Verona, Verona, Italy
- Specialty School of Endocrinology and Metabolic Disease, Federico II University, Naples, Italy
- Alessandra Graziottin Foundation for the Cure and Care of Pain in Women, NPO, Milan, Italy
| |
Collapse
|
23
|
Samarra A, Flores E, Bernabeu M, Cabrera-Rubio R, Bäuerl C, Selma-Royo M, Collado MC. Shaping Microbiota During the First 1000 Days of Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:1-28. [PMID: 39060728 DOI: 10.1007/978-3-031-58572-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Given that the host-microbe interaction is shaped by the immune system response, it is important to understand the key immune system-microbiota relationship during the period from conception to the first years of life. The present work summarizes the available evidence concerning human reproductive microbiota, and also, the microbial colonization during early life, focusing on the potential impact on infant development and health outcomes. Furthermore, we conclude that some dietary strategies including specific probiotics and other-biotics could become potentially valuable tools to modulate the maternal-neonatal microbiota during this early critical window of opportunity for targeted health outcomes throughout the entire lifespan.
Collapse
Affiliation(s)
- Anna Samarra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Eduard Flores
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Manuel Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain.
| |
Collapse
|
24
|
Day E, Galiwango RM, Park D, Huibner S, Aziz M, Anok A, Nnamutete J, Isabirye Y, Wasswa JB, Male D, Kigozi G, Tobian AA, Prodger JL, Liu CM, Kaul R. Insertive vaginal sex is associated with altered penile immunology and enrichment of Gardnerella vaginalis in uncircumcised Ugandan men. Am J Reprod Immunol 2024; 91:e13801. [PMID: 38282609 PMCID: PMC10825315 DOI: 10.1111/aji.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024] Open
Abstract
PROBLEM HIV susceptibility is linked to the penile immune milieu (particularly IL-8 levels) and microbiome. The effects of insertive vaginal sex itself on penile immunology and microbiota are not well described. METHOD OF STUDY We compared the immune milieu and microbiology of the coronal sulcus (CS) and distal urethra in 47 uncircumcised Ugandan men reporting ever (n = 42) or never (n = 5) having had vaginal intercourse. Soluble immune factors were assayed by multiplex ELISA, and penile bacteria abundance by 16S rRNA qPCR and sequencing. Co-primary endpoints were penile levels of IL-8 and soluble E-cadherin. RESULTS Independent of classical STIs, men reporting prior vaginal sex demonstrated elevated IL-8 levels in both the coronal sulcus (1.78 vs. 0.81 log10 pg/mL, p = .021) and urethra (2.93 vs. 2.30 log10 pg/mL; p = .003), with a strong inverse relationship between urethral IL-8 levels and the time from last vaginal sex (r = -0.436; p = .004). Vaginal sex was also associated with elevated penile IL-1α/β and soluble E-cadherin (sEcad), a marker of epithelial disruption. Gardnerella vaginalis (Gv) was only present in the penile microbiome of men reporting prior vaginal sex, and urethral Gv absolute abundance was strongly associated with urethral inflammation (r = 0.556; p < .001); corynebacteria were enriched in the CS of men reporting no prior vaginal sex and were associated with reduced CS inflammation. CONCLUSIONS Sexual intercourse was associated with sustained changes in penile immunology, potentially mediated through microbial alterations, in particular the urethral abundance of G. vaginalis. Future studies should further characterize the effects of sexual debut on penile bacteria and immunology.
Collapse
Affiliation(s)
- Erin Day
- Department of Microbiology and Immunology, Western University, Ontario, Canada
| | - Ronald M. Galiwango
- Departments of Immunology and Medicine, University of Toronto, Ontario, Canada
- Rakai Health Sciences Program, Kalisizo, Uganda
| | - Daniel Park
- George Washington Milken Institute School of Public Health, Washington DC, USA
| | - Sanja Huibner
- Departments of Immunology and Medicine, University of Toronto, Ontario, Canada
| | - Maliha Aziz
- George Washington Milken Institute School of Public Health, Washington DC, USA
| | - Aggrey Anok
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | | | | | - Deo Male
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | - Aaron A.R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica L. Prodger
- Department of Microbiology and Immunology, Western University, Ontario, Canada
| | - Cindy M. Liu
- George Washington Milken Institute School of Public Health, Washington DC, USA
| | - Rupert Kaul
- Departments of Immunology and Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
25
|
Liu Z, Liu J, Geng J, Wu E, Zhu J, Cong B, Wu R, Sun H. Metatranscriptomic characterization of six types of forensic samples and its potential application to body fluid/tissue identification: A pilot study. Forensic Sci Int Genet 2024; 68:102978. [PMID: 37995518 DOI: 10.1016/j.fsigen.2023.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Microorganisms are potential markers for identifying body fluids (venous and menstrual blood, semen, saliva, and vaginal secretion) and skin tissue in forensic genetics. Existing published studies have mainly focused on investigating microbial DNA by 16 S rRNA gene sequencing or metagenome shotgun sequencing. We rarely find microbial RNA level investigations on common forensic body fluid/tissue. Therefore, the use of metatranscriptomics to characterize common forensic body fluids/tissue has not been explored in detail, and the potential application of metatranscriptomics in forensic science remains unknown. Here, we performed 30 metatranscriptome analyses on six types of common forensic sample from healthy volunteers by massively parallel sequencing. After quality control and host RNA filtering, a total of 345,300 unigenes were assembled from clean reads. Four kingdoms, 137 phyla, 267 classes, 488 orders, 985 families, 2052 genera, and 4690 species were annotated across all samples. Alpha- and beta-diversity and differential analysis were also performed. As a result, the saliva and skin groups demonstrated high alpha diversity (Simpson index), while the venous blood group exhibited the lowest diversity despite a high Chao1 index. Specifically, we discussed potential microorganism contamination and the "core microbiome," which may be of special interest to forensic researchers. In addition, we implemented and evaluated artificial neural network (ANN), random forest (RF), and support vector machine (SVM) models for forensic body fluid/tissue identification (BFID) using genus- and species-level metatranscriptome profiles. The ANN and RF prediction models discriminated six forensic body fluids/tissue, demonstrating that the microbial RNA-based method could be applied to BFID. Unlike metagenomic research, metatranscriptomic analysis can provide information about active microbial communities; thus, it may have greater potential to become a powerful tool in forensic science for microbial-based individual identification. This study represents the first attempt to explore the application potential of metatranscriptome profiles in forensic science. Our findings help deepen our understanding of the microorganism community structure at the RNA level and are beneficial for other forensic applications of metatranscriptomics.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Enlin Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianzhang Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
26
|
Davies R, Minhas S, Jayasena CN. Next-Generation Sequencing to Elucidate the Semen Microbiome in Male Reproductive Disorders. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:25. [PMID: 38256286 PMCID: PMC10819355 DOI: 10.3390/medicina60010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Mean sperm counts are declining at an accelerated rate and infertility is increasingly becoming a public health concern. It is now understood that human semen, previously considered to be sterile, harbours its own specific microbiome. Via activated leucocytes and the generation of reactive oxygen species, bacteria have the capability of evoking an immune response which may lead to sperm damage. Men with infertility have higher rates of both reactive oxygen species and sperm DNA damage. Due to the lack of sensitivity of routine culture and PCR-based methods, next-generation sequencing technology is being employed to characterise the seminal microbiome. There is a mounting body of studies that share a number of similarities but also a great range of conflicting findings. A lack of stringent decontamination procedures, small sample sizes and heterogeneity in other aspects of methodology makes it difficult to draw firm conclusions from these studies. However, various themes have emerged and evidence of highly conserved clusters of common bacteria can be seen. Depletion or over-representation of specific bacteria may be associated with aberrations in traditional and functional seminal parameters. Currently, the evidence is too limited to inform clinical practice and larger studies are needed.
Collapse
Affiliation(s)
- Rhianna Davies
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK;
| | - Suks Minhas
- Department of Urology, Charing Cross Hospital, Imperial College NHS Trust, London W6 8RF, UK;
| | - Channa N. Jayasena
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK;
| |
Collapse
|
27
|
Roth RS, Liden M, Huttner A. The urobiome in men and women: a clinical review. Clin Microbiol Infect 2023; 29:1242-1248. [PMID: 36028087 DOI: 10.1016/j.cmi.2022.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Antibiotic therapy alone is unable to control recurrent urinary tract infection (UTI); uropathogens have become multiresistant, and alternative strategies are needed. Far from sterile, the urinary tract contains various low-biomass microbiota, some of whose members appear to protect against clinical UTI. OBJECTIVES This narrative review summarizes (a) the current knowledge of male and female urobiomes in healthy and diseased states, as well as their interplay among sexual partners and (b) clinical trials to date assessing probiotic and other nonantibiotic measures to reduce UTI. SOURCES We used the PubMed interface to search Ovid Medline for articles describing urogenital flora, UTI, UTI dysbiosis, the effects of sexual intercourse on urogenital flora, and clinical trials of probiotics as UTI prophylaxis. CONTENT The healthy urobiome of women contains several Lactobacillus species, some of which may impede Escherichia coli growth in the urinary tract. Although Lactobacilli have been found in male urethral microbiota, their presence in male bladder microbiota is less certain. Distal male urethral and vaginal microbiomes of male and sexual female partners influence one another, but more research is needed on the direct interplay of their full urobiomes. Clinical trials assessing the therapeutic potential of Lactobacilli have been largely underpowered and highly varied in tested formulations and routes and frequencies of administration; as such, they have failed to show a clear benefit. Faecal microbiota transplantation for recurrent Clostridium difficile infection was shown, in a retrospective study of seven patients, to reduce recurrent UTI as a side effect. IMPLICATIONS The urobiome in men and women is complex, variable, and still understudied. Although there is hope that Lactobacilli and faecal microbial transplantation could be future nonantibiotic options for recurrent UTI, both require more pharmacologic and clinical research to identify optimal preparations and routes of administration.
Collapse
Affiliation(s)
- Romain S Roth
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Mia Liden
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Angela Huttner
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland; University of Geneva, Faculty of Medicine, Geneva, Switzerland; Center for Clinical Research, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| |
Collapse
|
28
|
Lingasamy P, Modhukur V, Mändar R, Salumets A. Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools. Semin Reprod Med 2023; 41:172-189. [PMID: 38262441 PMCID: PMC10846929 DOI: 10.1055/s-0043-1778017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome-microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome-microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.
Collapse
Affiliation(s)
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Canha-Gouveia A, Di Nisio V, Salumets A, Damdimopoulou P, Coy P, Altmäe S, Sola-Leyva A. The Upper Reproductive System Microbiome: Evidence beyond the Uterus. Semin Reprod Med 2023; 41:190-199. [PMID: 38320577 DOI: 10.1055/s-0043-1778056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The microbiome of the female upper reproductive system has garnered increasing recognition and has become an area of interest in the study of women's health. This intricate ecosystem encompasses a diverse consortium of microorganisms (i.e., microbiota) and their genomes (i.e., microbiome) residing in the female upper reproductive system, including the uterus, the fallopian tubes, and ovaries. In recent years, remarkable advancements have been witnessed in sequencing technologies and microbiome research, indicating the potential importance of the microbial composition within these anatomical sites and its impact in women's reproductive health and overall well-being. Understanding the composition, dynamics, and functions of the microbiome of the female upper reproductive system opens up exciting avenues for improving fertility, treating gynecological conditions, and advancing our comprehension of the intricate interplay between the microbiome and the female reproductive system. The aim of this study is to compile currently available information on the microbial composition of the female upper reproductive system in humans, with a focus beyond the uterus, which has received more attention in recent microbiome studies compared with the fallopian tubes and ovaries. In conclusion, this review underscores the potential role of this microbiome in women's physiology, both in health and disease.
Collapse
Affiliation(s)
- Analuce Canha-Gouveia
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca," Murcia, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Pauliina Damdimopoulou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca," Murcia, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Alberto Sola-Leyva
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
30
|
Liao L, Ye L, Huang L, Yao T, Liang X, Chen L, Shen M. Changes in the microbial community after vaginal fluid exposure in different simulated forensic situations. Forensic Sci Int 2023; 349:111766. [PMID: 37339565 DOI: 10.1016/j.forsciint.2023.111766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
If vaginal fluid is found on clothing or on the body of the suspect, it may indicate the occurrence of sexual assault. Therefore, it is important to collect the victim's vaginal fluid at different sites from the suspect. Previous studies have revealed that fresh vaginal fluids can be identified based on 16S rRNA gene sequencing data. However, the influence of environmental factors on the stability of microbial markers must be investigated before being used in forensic practice. We collected vaginal fluid from nine unrelated individuals and placed each individual of vaginal swab on five different substrates. A total of 54 vaginal swabs were analyzed using 16S rRNA on the V3-V4 regions. Then, we constructed a random forest model including the samples of all vaginal fluids in this study and the other four types of body fluids in our previous studies. The alpha diversity of vaginal samples increased after exposure to the substrate environment for 30 days. The dominant vaginal bacteria were Lactobacillus and Gardnerella, which remained relatively stable after exposure, with Lactobacillus being the most abundant in all substrates, while Gardnerella was more abundant in other substrates than in the polyester fiber substrate. Except for bed sheets, Bifidobacterium significantly declined when placed on other substrates. Rhodococcus and Delftia from the substrate environment migrated to the vaginal samples. Rhodococcus was abundant in polyester fibers, and Delftia was abundant in wool substrates, while those environmental bacteria were all in low abundance in bed sheets. Overall, the bed sheet substrates showed a good retention capacity for the dominant flora and could reduce the number of taxa migrated by the environment compared with the other substrates. Both fresh and exposed vaginal samples of the same individuals could mostly be clustered and clearly distinguished from different individuals, showing the potential of individual identification, and the confusion matrix value of body fluid identification for vaginal samples was 1. In summary, vaginal samples placed on the surface of different substrates retained their stability and demonstrated good application potential for individual and body fluid identification.
Collapse
Affiliation(s)
- Lili Liao
- Hygiene Detection Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medical, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Linying Ye
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Litao Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ting Yao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaomin Liang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai 200063, China.
| | - Mei Shen
- Hygiene Detection Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medical, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
31
|
Colella M, Topi S, Palmirotta R, D'Agostino D, Charitos IA, Lovero R, Santacroce L. An Overview of the Microbiota of the Human Urinary Tract in Health and Disease: Current Issues and Perspectives. Life (Basel) 2023; 13:1486. [PMID: 37511861 PMCID: PMC10381901 DOI: 10.3390/life13071486] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
This article is intended to deepen our knowledge to date regarding the functions of the resident microbiota/microbiome in the urinary system for human health and disease. First, we sought to report the general characteristics (composition and stability) of the normal urinary system microbiota in the different anatomical sites in relation to some factors such as the effect of age, gender and diet, analyzing in detail the functions and the composition of the microbiota in the light of current knowledge. Several pieces of evidence suggest the importance of preserving the micro-ecosystem of the urinary system, and in some cases their relationship with diseases is important for maintaining human health is well understood. The female and male reproductive microbiota have mainly been studied over the past decade. In the past, the arrest was thought to have taken place in a sterile environment. Microorganisms of the microbiota form biofilms, three-dimensional structures, that differ in the reproductive organs and interact with both gametes and the embryo as well as with maternal tissues. These biofilms from the reproductive system also interact with others, such as that of the gastrointestinal tract. Reduction in its diversity intestinal microbiota can disrupt estrogen metabolism and affect the reproductive microbiota. It is therefore understood that its quantitative and qualitative identification is important for microbiota, but also the study of the structures formed by the microorganisms. A dysbiosis with local or systemic causes can lead to serious diseases. The role of probiotics in maintaining microbial population harmony (eubiosis) and preventing certain pathologies of the urinary and reproductive system was also investigated. A negative variation in the qualitative and quantitative composition of certain strains of microorganisms (dysbiosis) due to local or systemic causes can even lead to serious diseases. The role of probiotics in maintaining the healthy balance of microorganism populations (eubiosis), and thus in the prevention of certain pathologies of the urinary and reproductive system, has also been studied.
Collapse
Affiliation(s)
- Marica Colella
- Microbiology and Virology Unit, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan "A. Xhuvani", 3001 Elbasan, Albania
| | - Raffaele Palmirotta
- Microbiology and Virology Unit, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Donato D'Agostino
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan "A. Xhuvani", 3001 Elbasan, Albania
| | - Ioannis Alexandros Charitos
- Respiratory Rehabilitation Unit, Clinical Scientific Institutes Maugeri (IRCCS), Section of Bari, 70124 Bari, Italy
| | - Roberto Lovero
- AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Clinical Pathology Unit, Policlinico University Hospital of Bari, 70124 Bari, Italy
| | - Luigi Santacroce
- Microbiology and Virology Unit, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan "A. Xhuvani", 3001 Elbasan, Albania
| |
Collapse
|
32
|
Magill RG, MacDonald SM. Male infertility and the human microbiome. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1166201. [PMID: 37361341 PMCID: PMC10289028 DOI: 10.3389/frph.2023.1166201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The historical belief in urology was that the genitourinary system should be sterile in a normal, healthy, asymptomatic adult. This idea was perpetuated for decades until research revealed a diverse microbiota existing in human anatomical niches that contributed to both human health and disease processes. In recent years, the search for an etiology and modifiable risk factors in infertility has turned to the human microbiome as well. Changes in the human gut microbiome have been associated with changes in systemic sex hormones and spermatogenesis. Certain microbial species are associated with higher levels of oxidative stress, which may contribute to an environment higher in oxidative reactive potential. Studies have demonstrated a link between increased oxidative reactive potential and abnormal semen parameters in infertile men. It has also been hypothesized that antioxidant probiotics may be able to correct an imbalance in the oxidative environment and improve male fertility, with promising results in small studies. Further, the sexual partner's microbiome may play a role as well; studies have demonstrated an overlap in the genitourinary microbiomes in sexually active couples that become more similar after intercourse. While the potential applications of the microbiome to male fertility is exciting, there is a need for larger studies with uniform microbial sequencing procedures to further expand this topic.
Collapse
Affiliation(s)
- Resa G. Magill
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Susan M. MacDonald
- Department of Urology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
33
|
Veneruso I, Cariati F, Alviggi C, Pastore L, Tomaiuolo R, D'Argenio V. Metagenomics Reveals Specific Microbial Features in Males with Semen Alterations. Genes (Basel) 2023; 14:1228. [PMID: 37372408 DOI: 10.3390/genes14061228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility incidence is rising worldwide, with male infertility accounting for about 50% of cases. To date, several factors have been associated with male infertility; in particular, it has been suggested that semen microbiota may play a role. Here, we report the NGS-based analyses of 20 semen samples collected from men with (Case) and without (Control) semen alterations. Genomic DNA was extracted from each collected sample, and a specific PCR was carried out to amplify the V4-V6 regions of the 16S rRNA. Sequence reactions were carried out on the MiSeq and analyzed by specific bioinformatic tools. We found a reduced richness and evenness in the Case versus the Control group. Moreover, specific genera, the Mannheimia, the Escherichia_Shigella, and the Varibaculum, were significantly increased in the Case compared to the Control group. Finally, we highlighted a correlation between the microbial profile and semen hyperviscosity. Even if further studies are required on larger groups of subjects to confirm these findings and explore mechanistic hypotheses, our results confirm the correlation between semen features and seminal microbiota. These data, in turn, may open the way to the possible use of semen microbiota as an attractive target for developing novel strategies for infertility management.
Collapse
Affiliation(s)
- Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Federica Cariati
- Department of Public Health, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Carlo Alviggi
- Department of Public Health, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Lucio Pastore
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rossella Tomaiuolo
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
34
|
Zuber A, Peric A, Pluchino N, Baud D, Stojanov M. Human Male Genital Tract Microbiota. Int J Mol Sci 2023; 24:ijms24086939. [PMID: 37108103 PMCID: PMC10139050 DOI: 10.3390/ijms24086939] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The human body is vastly colonised by microorganisms, whose impact on health is increasingly recognised. The human genital tract hosts a diverse microbiota, and an increasing number of studies on the male genital tract microbiota suggest that bacteria have a role in male infertility and pathological conditions, such as prostate cancer. Nevertheless, this research field remains understudied. The study of bacterial colonisation of the male genital tract is highly impacted by the invasive nature of sampling and the low abundance of the microbiota. Therefore, most studies relied on the analysis of semen microbiota to describe the colonisation of the male genital tract (MGT), which was thought to be sterile. The aim of this narrative review is to present the results of studies that used next-generation sequencing (NGS) to profile the bacterial colonisation patterns of different male genital tract anatomical compartments and critically highlight their findings and their weaknesses. Moreover, we identified potential research axes that may be crucial for our understanding of the male genital tract microbiota and its impact on male infertility and pathophysiology.
Collapse
Affiliation(s)
- Arnaud Zuber
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Adriana Peric
- 360° Fertility Center Zurich, 8702 Zollikon, Switzerland
| | - Nicola Pluchino
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Milos Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
35
|
Toh E, Xing Y, Gao X, Jordan SJ, Batteiger TA, Batteiger BE, Van Der Pol B, Muzny CA, Gebregziabher N, Williams JA, Fortenberry LJ, Fortenberry JD, Dong Q, Nelson DE. Sexual behavior shapes male genitourinary microbiome composition. Cell Rep Med 2023; 4:100981. [PMID: 36948151 PMCID: PMC10040456 DOI: 10.1016/j.xcrm.2023.100981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/21/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
The origin, composition, and significance of the distal male urethral microbiome are unclear, but vaginal microbiome dysbiosis is linked to new sex partners and several urogynecological syndromes. We characterized 110 urethral specimens from men without urethral symptoms, infections, or inflammation using shotgun metagenomics. Most urethral specimens contain characteristic lactic acid bacteria and Corynebacterium spp. In contrast, several bacteria associated with vaginal dysbiosis were present only in specimens from men who reported vaginal intercourse. Sexual behavior, but not other evaluated behavioral, demographic, or clinical variables, strongly associated with inter-specimen variance in urethral microbiome composition. Thus, the male urethra supports a simple core microbiome that is established independent of sexual exposures but can be re-shaped by vaginal sex. Overall, the results suggest that urogenital microbiology and sexual behavior are inexorably intertwined, and show that the male urethra harbors female urogenital pathobionts.
Collapse
Affiliation(s)
- Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yue Xing
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Xiang Gao
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Stephen J Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresa A Batteiger
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byron E Batteiger
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Barbara Van Der Pol
- Department of Medicine, Division of Infectious Diseases, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christina A Muzny
- Department of Medicine, Division of Infectious Diseases, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Netsanet Gebregziabher
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James A Williams
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lora J Fortenberry
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Dennis Fortenberry
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qunfeng Dong
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA; Center for Biomedical Informatics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
36
|
Webb EM, Holman DB, Schmidt KN, Crouse MS, Dahlen CR, Cushman RA, Snider AP, McCarthy KL, Amat S. A Longitudinal Characterization of the Seminal Microbiota and Antibiotic Resistance in Yearling Beef Bulls Subjected to Different Rates of Gain. Microbiol Spectr 2023; 11:e0518022. [PMID: 36916922 PMCID: PMC10100376 DOI: 10.1128/spectrum.05180-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, we evaluated the seminal and fecal microbiota in yearling beef bulls fed a common diet to achieve moderate (1.13 kg/day) or high (1.80 kg/day) rates of weight gain. Semen samples were collected on days 0 and 112 of dietary intervention (n = 19/group) as well as postbreeding (n = 6/group) using electroejaculation, and the microbiota was assessed using 16S rRNA gene sequencing, quantitative PCR (qPCR), and culturing. The fecal microbiota was also evaluated, and its similarity with seminal microbiota was assessed. A subset of seminal bacterial isolates (n = 33) was screened for resistance against 28 antibiotics. A complex and dynamic microbiota was detected in bovine semen, and the community structure was affected by sampling time (R2 = 0.16, P < 0.001). Microbial richness increased significantly from day 0 to day 112, and diversity increased after breeding (P > 0.05). Seminal microbiota remained unaffected by the differential rates of gain, and its overall composition was distinct from fecal microbiota, with only 6% of the taxa shared between them. A total of 364 isolates from 49 different genera were recovered under aerobic and anaerobic culturing. Among these seminal isolates were pathogenic species and those resistant to several antibiotics. Overall, our results suggest that bovine semen harbors a rich and complex microbiota which changes over time and during the breeding season but appears to be resilient to differential gains achieved via a common diet. Seminal microbiota is distinct from the fecal microbiota and harbors potentially pathogenic and antibiotic-resistant bacterial species. IMPORTANCE Increasing evidence from human and other animal species supports the existence of a commensal microbiota in semen and that this seminal microbiota may influence not only sperm quality and fertility but also female reproduction. Seminal microbiota in bulls and its evolution and factors shaping this community, however, remain largely underexplored. In this study, we characterized the seminal microbiota of yearling beef bulls and its response to the bull age, different weight gains, and mating activity. We compared bacterial composition between seminal and fecal microbiota and evaluated the diversity of culturable seminal bacteria and their antimicrobial resistance. Our results obtained from sequencing, culturing, and antibiotic susceptibility testing provide novel information on the taxonomic composition, evolution, and factors shaping the seminal microbiota of yearling beef bulls. This information will serve as an important basis for further understanding of the seminal microbiome and its involvement in reproductive health and fertility in cattle.
Collapse
Affiliation(s)
- Emily M. Webb
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Kaycie N. Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Matthew S. Crouse
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Robert A. Cushman
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Alexandria P. Snider
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Kacie L. McCarthy
- Department of Animal Sciences, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
37
|
Waltmann A, Thomas C, Duncan JA. The role of the genital microbiota in the acquisition and pathogenesis of sexually transmitted infections. Curr Opin Infect Dis 2023; 36:35-48. [PMID: 36729748 PMCID: PMC10500551 DOI: 10.1097/qco.0000000000000893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW There are an estimated 374 million new sexually transmitted infections (STIs) worldwide every year. Our review article examines the current evidence of how STI acquisition, transmission, and pathogenesis is impacted upon by the genital microbiota, with a focus on epidemiological, biochemical, and immunological features. RECENT FINDINGS At least in women, a genital microbiota dominated by lactobacilli has long been considered optimal for reproductive health, while depletion of lactobacilli may lead to a genital microenvironment dominated by anaerobic pathogens, which can manifest clinically as bacterial vaginosis. Recent research efforts have characterized genital microbiota composition in greater resolution, sometimes at species-level, using proteomics, metabolomics, and deep sequencing. This has enhanced our understanding of how specific microbiota members influence acquisition or clinical manifestation of STI pathogen infection. Other advances include a steady, though still slow, increase in the number of studies that sought to determine the genital (penile or urethral) microbiota of males and how it may impact that of their female partners' genital microbiota and risk of STI acquisition. Altogether, these data enabled us to explore the concept that genital microbiota may be sexually transmitted and influence pathogenesis and clinical presentation of other STI. SUMMARY With STI infection rates increasing worldwide, it is important now more than ever to find novel STI prevention strategies. Understanding if and how the genital microbiota is a modifiable risk factor for STI transmission, acquisition, and clinical manifestation may prove to be an important strategy in our efforts to curb morbidity in at risk populations.
Collapse
Affiliation(s)
- Andreea Waltmann
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Institute for Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cynthia Thomas
- Graduate Program, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph A Duncan
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Institute for Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
38
|
Poole RK, Soffa DR, McAnally BE, Smith MS, Hickman-Brown KJ, Stockland EL. Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing. Animals (Basel) 2023; 13:485. [PMID: 36766374 PMCID: PMC9913168 DOI: 10.3390/ani13030485] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Advancements in 16S rRNA gene amplicon community sequencing have vastly expanded our understanding of the reproductive microbiome and its role in fertility. In humans, Lactobacillus is the overwhelmingly dominant bacteria within reproductive tissues and is known to be commensal and an indicator of fertility in women and men. It is also known that Lactobacillus is not as largely abundant in the reproductive tissues of domestic livestock species. Thus, the objective of this review is to summarize the research to date on both female and male reproductive microbiomes in domestic livestock species (i.e., dairy cattle, beef cattle, swine, small ruminants, and horses). Having a comprehensive understanding of reproductive microbiota and its role in modulating physiological functions will aid in the development of management and therapeutic strategies to improve reproductive efficiency.
Collapse
Affiliation(s)
- Rebecca K. Poole
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bubnov R, Spivak M. Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:133-196. [DOI: 10.1007/978-3-031-19564-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Mehta SD. The Effects of Medical Male Circumcision on Female Partners' Sexual and Reproductive Health. Curr HIV/AIDS Rep 2022; 19:501-507. [PMID: 36367636 PMCID: PMC9759499 DOI: 10.1007/s11904-022-00638-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE OF REVIEW Voluntary medical male circumcision (VMMC) reduces the risk of HIV acquisition by 60% among heterosexual men, provides protection against certain sexually transmitted infections (STI), and leads to penile microbiome composition changes associated with reduced risk of HIV infection. Intuitively, the benefits of VMMC for female sex partners in relation to STI are likely and have been evaluated. The purpose of this review is to examine emerging findings of broader sexual and reproductive health (SRH) benefits of VMMC for female sex partners. RECENT FINDINGS Systematic reviews find strong evidence for beneficial effects of VMMC on female sex partners risk of HPV, cervical dysplasia, cervical cancer, and with likely protection against trichomoniasis and certain genital ulcerative infections. Few studies assess the direct impact of VMMC on the vaginal microbiome (VMB), though several studies demonstrate reductions in BV, which is mediated by the VMB. Studies are lacking regarding male circumcision status and outcomes associated with non-optimal VMB, such as female infertility and adverse pregnancy outcomes. VMMC has positive effects on women's perceptions of sexual function and satisfaction, and perceptions of disease risk and hygiene, without evidence of risk compensation. VMMC has consistent association with a broad range of women's SRH outcomes, highlighting the biological and non-biological interdependencies within sexual relationships, and need for couples-level approaches to optimize SRH for men and women. The paucity of information on VMMC and influence on VMB is a barrier to optimizing VMB-associated SRH outcomes in female partners.
Collapse
Affiliation(s)
- Supriya D Mehta
- Division of Infectious Disease Medicine, Rush University College of Medicine, Chicago, IL, USA.
- Division of Epidemiology & Biostatistics, University of Illinois Chicago School of Public Health, Chicago, IL, 60612, USA.
| |
Collapse
|
41
|
Genital Microbiota and Outcome of Assisted Reproductive Treatment-A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111867. [PMID: 36431002 PMCID: PMC9693990 DOI: 10.3390/life12111867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
The balance between different bacterial species is essential for optimal vaginal health. Microbiome includes the host genome along with microorganism genomes and incorporates the biotic and abiotic factors, reflecting the habitat as a whole. A significant difference exists in the composition and number of the human microbiota in healthy individuals. About one-tenth of the total body microbiota exists in the urogenital tract and these can be identified by microscopy and culture-based methods, quantitative PCR, next generation and whole genome sequencing. The trend of delaying the planning of pregnancy to a later age nowadays has resulted in magnifying the use of assisted reproductive treatment (ART). Hence, genital microbiota and its impact on fertility has generated immense interest in recent years. In this systematic review, we searched the available evidence on the microbiota of the genital tract in women undergoing ART and studied the outcomes of IVF in different microbial compositions. Despite the inconsistency of the studies, it is evident that vaginal, cervical and endometrial microbiota might play a role in predicting ART outcomes. However, there is no clear evidence yet on whether the diversity, richness, quantity, or composition of species in the maternal genital tract significantly affects the outcomes in ARTs.
Collapse
|
42
|
Luecke SM, Webb EM, Dahlen CR, Reynolds LP, Amat S. Seminal and vagino-uterine microbiome and their individual and interactive effects on cattle fertility. Front Microbiol 2022; 13:1029128. [PMID: 36425035 PMCID: PMC9679222 DOI: 10.3389/fmicb.2022.1029128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 09/13/2023] Open
Abstract
Reproductive failure is a major economical drain on cow-calf operations across the globe. It can occur in both males and females and stem from prenatal and postnatal influences. Therefore, the cattle industry has been making efforts to improve fertility and the pregnancy rate in cattle herds as an attempt to maintain sustainability and profitability of cattle production. Despite the advancements made in genetic selection, nutrition, and the implementation of various reproductive technologies, fertility rates have not significantly improved in the past 50 years. This signifies a missing factor or factors in current reproductive management practices that influence successful fertilization and pregnancy. Emerging lines of evidence derived from human and other animals including cattle suggest that the microbial continuum along the male and female reproductive tracts are associated with male and female fertility-that is, fertilization, implantation, and pregnancy success-highlighting the potential for harnessing the male and female reproductive microbiome to improve fertility in cattle. The objective of this narrative review is to provide an overview of the recent studies on the bovine seminal and vagino-uterine microbiome and discuss individual and interactive roles of these microbial communities in defining cattle fertility.
Collapse
Affiliation(s)
- Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Emily M. Webb
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P. Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
43
|
France MT, Brown SE, Rompalo AM, Brotman RM, Ravel J. Identification of shared bacterial strains in the vaginal microbiota of related and unrelated reproductive-age mothers and daughters using genome-resolved metagenomics. PLoS One 2022; 17:e0275908. [PMID: 36288274 PMCID: PMC9604009 DOI: 10.1371/journal.pone.0275908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
It has been suggested that the human microbiome might be vertically transmitted from mother to offspring and that early colonizers may play a critical role in development of the immune system. Studies have shown limited support for the vertical transmission of the intestinal microbiota but the derivation of the vaginal microbiota remains largely unknown. Although the vaginal microbiota of children and reproductive age women differ in composition, the vaginal microbiota could be vertically transmitted. To determine whether there was any support for this hypothesis, we examined the vaginal microbiota of daughter-mother pairs from the Baltimore metropolitan area (ages 14-27, 32-51; n = 39). We assessed whether the daughter's microbiota was similar in composition to their mother's using metataxonomics. Permutation tests revealed that while some pairs did have similar vaginal microbiota, the degree of similarity did not exceed that expected by chance. Genome-resolved metagenomics was used to identify shared bacterial strains in a subset of the families (n = 22). We found a small number of bacterial strains that were shared between mother-daughter pairs but identified more shared strains between individuals from different families, indicating that vaginal bacteria may display biogeographic patterns. Earlier-in-life studies are needed to demonstrate vertical transmission of the vaginal microbiota.
Collapse
Affiliation(s)
- Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah E. Brown
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anne M. Rompalo
- Division of Infectious Diseases, John Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
44
|
Eggersmann TK, Hamala N, Graspeuntner S, Rupp J, Griesinger G. Das intrauterine Mikrobiom – Schrödingers Katze der Reproduktionsmedizin. GYNAKOLOGISCHE ENDOKRINOLOGIE 2022. [DOI: 10.1007/s10304-022-00469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Morawiec E, Czerwiński M, Czerwińska AB, Wiczkowski A. Semen dysbiosis—just a male problem? Front Cell Infect Microbiol 2022; 12:815786. [PMID: 36176582 PMCID: PMC9514095 DOI: 10.3389/fcimb.2022.815786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Seminal microflora is crucial to male fertility. Dysbiosis—disturbance of quantitative ratios of individual bacteria or appearance of pathogenic species—rarely results in symptomatic disease. Inflammation results in decreased sperm production, lower motility, or morphological changes and, in the long term, can cause ejaculatory duct obstruction, leading to infertility. Moreover, it may cause infection of the partner’s female genital tract. Dysbiosis in both partners results in fertility problems, disorders in embryo implantation, or miscarriages. In addition, chronic inflammation of the male genitourinary system may accelerate the appearance of antisperm antibodies. A comprehensive examination of seminal microflora can clarify the causes of infertility or prevent pathological conditions that affect seminal parameters. Seminal microflora as a direct impact on fertility problems as well as a decrease in the effectiveness of assisted reproduction methods, insemination, or in vitro procedures.
Collapse
Affiliation(s)
- Emilia Morawiec
- Department of Microbiology, Faculty of Medicine, University of Technology in Katowice, Katowice, Poland
- Gyncentrum Sp. z o.o. Laboratory of Molecular Biology and Virology, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, Katowice, Poland
- *Correspondence: Emilia Morawiec,
| | - Michał Czerwiński
- Gyncentrum Sp. z o.o. Laboratory of Molecular Biology and Virology, Katowice, Poland
- American Medical Clinic, Katowice, Poland
| | - Anna Bednarska- Czerwińska
- Gyncentrum Sp. z o.o. Laboratory of Molecular Biology and Virology, Katowice, Poland
- Faculty of Medicine, University of Technology in Katowice, Katowice, Poland
| | - Andrzej Wiczkowski
- Department of Microbiology, Faculty of Medicine, University of Technology in Katowice, Katowice, Poland
| |
Collapse
|
46
|
Wang N, Chen L, Yi K, Zhang B, Li C, Zhou X. The effects of microbiota on reproductive health: A review. Crit Rev Food Sci Nutr 2022; 64:1486-1507. [PMID: 36066460 DOI: 10.1080/10408398.2022.2117784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive issues are becoming an increasing global problem. There is increasing interest in the relationship between microbiota and reproductive health. Stable microbiota communities exist in the gut, reproductive tract, uterus, testes, and semen. Various effects (e.g., epigenetic modifications, nervous system, metabolism) of dysbiosis in the microbiota can impair gamete quality; interfere with zygote formation, embryo implantation, and embryo development; and increase disease susceptibility, thus adversely impacting reproductive capacity and pregnancy. The maintenance of a healthy microbiota can protect the host from pathogens, increase reproductive potential, and reduce the rates of adverse pregnancy outcomes. In conclusion, this review discusses microbiota in the male and female reproductive systems of multiple animal species. It explores the effects and mechanisms of microbiota on reproduction, factors that influence microbiota composition, and applications of microbiota in reproductive disorder treatment and detection. The findings support novel approaches for managing reproductive diseases through microbiota improvement and monitoring. In addition, it will stimulate further systematic explorations of microbiota-mediated effects on reproduction.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
47
|
Association between Cervical Microbiota and HPV: Could This Be the Key to Complete Cervical Cancer Eradication? BIOLOGY 2022; 11:biology11081114. [PMID: 35892970 PMCID: PMC9351688 DOI: 10.3390/biology11081114] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The microbiota can modulate immune responses and modify the physiology of the human organism, thereby increasing infective risks and a neoplastic predisposition. In this review, we focus on the composition of the cervical microbiota, to identify the risk of developing Cervical Intraepithelial Neoplasia and better understand the interaction between cervico-vaginal microbiota and human papillomavirus as a means of promoting the identification of new therapeutic strategies. In fact, no therapy for HPV is yet available. A better understanding of the cervical micro-environment could be a key element allowing complete viral clearance to be achieved in largely affected populations. Abstract The heterogeneity of the cervico-vaginal microbiota can be appreciated in various conditions, both pathological and non-pathological, and can vary according to biological and environmental factors. Attempts are still in course to define the interaction and role of the various factors that constitute this community of commensals in immune protection, inflammatory processes, and the onset of precancerous lesions of the cervical epithelium. Despite the many studies on the relationship between microbiota, immunity, and HPV-related cervical tumors, further aspects still need to be probed. In this review article, we will examine the principal characteristics of microorganisms commonly found in cervico-vaginal specimens (i) the factors that notoriously condition the diversity and composition of microbiota, (ii) the role that some families of organisms may play in the onset of HPV-dysplastic lesions and in neoplastic progression, and (iii) possible diagnostic-therapeutic approaches.
Collapse
|
48
|
Garcia-Segura S, del Rey J, Closa L, Garcia-Martínez I, Hobeich C, Castel AB, Vidal F, Benet J, Ribas-Maynou J, Oliver-Bonet M. Seminal Microbiota of Idiopathic Infertile Patients and Its Relationship With Sperm DNA Integrity. Front Cell Dev Biol 2022; 10:937157. [PMID: 35837328 PMCID: PMC9275566 DOI: 10.3389/fcell.2022.937157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The development of new biomarkers for human male infertility is crucial to improve the diagnosis and the prognosis of this disease. Recently, seminal microbiota was shown to be related to sperm quality parameters, suggesting an effect in human fertility and postulating it as a biomarker candidate. However, its relationship to sperm DNA integrity has not been studied yet. The aim of the present study is to characterize the seminal microbiota of a western Mediterranean population and to evaluate its relationship to sperm chromatin integrity parameters, and oxidative stress. For that purpose, 14 samples from sperm donors and 42 samples from infertile idiopathic patients were obtained and were analyzed to assess the composition of the microbiota through full-length 16S rRNA gene sequencing (Illumina MiSeq platform). Microbial diversity and relative abundances were compared to classic sperm quality parameters (macroscopic semen parameters, motility, morphology and concentration), chromatin integrity (global DNA damage, double-stranded DNA breaks and DNA protamination status) and oxidative stress levels (oxidation-reduction potential). The seminal microbiota observed of these samples belonged to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. The most abundant genera were Finegoldia, Peptoniphilus, Anaerococcus, Campylobacter, Streptococcus, Staphylococcus, Moraxella, Prevotella, Ezakiella, Corynebacterium and Lactobacillus. To our knowledge, this is the first detection of Ezakiella genus in seminal samples. Two clusters of microbial profiles were built based on a clustering analysis, and specific genera were found with different frequencies in relation to seminal quality defects. The abundances of several bacteria negatively correlate with the sperm global DNA fragmentation, most notably Moraxella, Brevundimonas and Flavobacterium. The latter two were also associated with higher sperm motility and Brevundimonas additionally with lower oxidative-reduction potential. Actinomycetaceae, Ralstonia and Paenibacillus correlated with reduced chromatin protamination status and increased double-stranded DNA fragmentation. These effects on DNA integrity coincide in many cases with the metabolism or enzymatic activities of these genera. Significant differences between fertile and infertile men were found in the relative presence of the Propionibacteriaceae family and the Cutibacterium, Rhodopseudomonas and Oligotropha genera, which supports its possible involvement in male fertility. Our findings sustain the hypothesis that the seminal microbiome has an effect on male fertility.
Collapse
Affiliation(s)
- Sergio Garcia-Segura
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Javier del Rey
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Laia Closa
- Histocompatibility and Immunogenetics Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iris Garcia-Martínez
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Carlos Hobeich
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
| | | | - Francisco Vidal
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
| | - Jordi Benet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, University of Girona, Girona, Spain
| | - Maria Oliver-Bonet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
49
|
The Complex Interplay between Vaginal Microbiota, HPV Infection, and Immunological Microenvironment in Cervical Intraepithelial Neoplasia: A Literature Review. Int J Mol Sci 2022; 23:ijms23137174. [PMID: 35806188 PMCID: PMC9266651 DOI: 10.3390/ijms23137174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background: in recent years, many studies were carried out to explore the role of vaginal microbiota in HPV infections and cervical intraepithelial neoplasia (CIN) progression. The aim of this study was to conduct a review of the literature to analyze the interaction between the vaginal microbiota, the CIN, and the immunological response. Methods: we performed a literature search, considering papers published between November 2015 and September 2021. Results: despite significant evidence suggesting a role of vaginal microbiota in the pathogenesis of HPV-related lesions, some studies still struggle to demonstrate this correlation. However, the vaginal microbiota of HPV-positive women shows an increased diversity, combined with a reduced relative abundance of Lactobacillus spp. and a higher pH. In cervical dysplasia progression, a strong association is found with new bacteria, and with the deregulation of pathways and hyperexpression of cytokines leading to chronic inflammation. Conclusions: in HPV progression, there is a strong correlation between potential biomarkers, such as Sneathia and Delftia found in community state types IV and II, and chronic inflammation with cytokine overexpression. Better analysis of these factors could be of use in the prevention of the progression of the disease and, eventually, in new therapeutic strategies.
Collapse
|
50
|
A Paternal Fish Oil Diet Preconception Modulates the Gut Microbiome and Attenuates Necrotizing Enterocolitis in Neonatal Mice. Mar Drugs 2022; 20:md20060390. [PMID: 35736193 PMCID: PMC9230221 DOI: 10.3390/md20060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
Epidemiology and animal studies suggest that a paternal history of toxicant exposure contributes to the developmental origins of health and disease. Using a mouse model, our laboratory previously reported that a paternal history of in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased his offspring’s risk of developing necrotizing enterocolitis (NEC). Additionally, our group and others have found that formula supplementation also increases the risk of NEC in both humans and mice. Our murine studies revealed that intervening with a paternal fish oil diet preconception eliminated the TCDD-associated outcomes that are risk factors for NEC (e.g., intrauterine growth restriction, delayed postnatal growth, and preterm birth). However, the efficacy of a paternal fish oil diet in eliminating the risk of disease development in his offspring was not investigated. Herein, reproductive-age male mice exposed to TCDD in utero were weaned to a standard or fish oil diet for one full cycle of spermatogenesis, then mated to age-matched unexposed females. Their offspring were randomized to a strict maternal milk diet or a supplemental formula diet from postnatal days 7–10. Offspring colon contents and intestines were collected to determine the onset of gut dysbiosis and NEC. We found that a paternal fish oil diet preconception reduced his offspring’s risk of toxicant-driven NEC, which was associated with a decrease in the relative abundance of the Firmicutes phylum, but an increase in the relative abundance of the Negativicutes class.
Collapse
|