1
|
Mogrovejo‐Arias DC, Hay MC, Edwards A, Mitchell AC, Steinmann J, Brill FHH, Neumann B. Investigating the resistome of haemolytic bacteria in Arctic soils. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70028. [PMID: 39440916 PMCID: PMC11497493 DOI: 10.1111/1758-2229.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Microorganisms inhabiting hostile Arctic environments express a variety of functional phenotypes, some of clinical interest, such as haemolytic ability and antimicrobial resistance. We studied haemolytic bacterial isolates from Arctic habitats, assessing their minimum inhibitory concentration (MIC) against antimicrobials. We then performed whole genome sequencing and analysed them for features conferring antimicrobial resistance. MIC data showed that Micromonospora spp. belong to 33% non-wild type (NWT) for erythromycin and penicillin and 22% NWT for tetracycline. Both Pseudomonas spp. belong to 43% NWT for nalidixic acid and streptomycin and 29% NWT for colistin. Finally, the Pedobacter isolate was in 80% NWT for antimicrobials tested. Whole-genome sequencing analyses revealed that fluoroquinolones, tetracyclines, macrolides and penams were the most frequent drug classes against which genotypic resistance was found. Additionally, resistance genes to heavy metals and disinfectants were identified. Our research demonstrates the presence of antimicrobial resistance in bacteria from Arctic habitats and highlights the importance of conservation efforts in these environments, where anthropogenic influence is becoming more evident. Furthermore, our data suggest the possible presence of novel resistance mechanisms, which could pose a threat if the responsible genes are transferable between species or become widespread due to environmental stress and alterations brought about by climate change.
Collapse
Affiliation(s)
- Diana C. Mogrovejo‐Arias
- MicroArctic Research, Dr. Brill + Partner GmbH Institut für Hygiene und MikrobiologieHamburgGermany
| | - Melanie C. Hay
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
- Department of Pathobiology and Population SciencesThe Royal Veterinary CollegeBrookmans ParkUK
| | - Arwyn Edwards
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Andrew C. Mitchell
- Department of Geography and Earth SciencesAberystwyth UniversityAberystwythUK
| | - Jörg Steinmann
- Institute of Clinical Microbiology, Infectious Diseases and Infection ControlParacelsus Medical University, Klinikum NürnbergNurembergGermany
| | - Florian H. H. Brill
- MicroArctic Research, Dr. Brill + Partner GmbH Institut für Hygiene und MikrobiologieHamburgGermany
| | - Bernd Neumann
- Institute of Clinical Microbiology, Infectious Diseases and Infection ControlParacelsus Medical University, Klinikum NürnbergNurembergGermany
| |
Collapse
|
2
|
de Menezes GCA, Lopes FAC, Santos KCR, Silva MC, Convey P, Câmara PEAS, Rosa LH. Fungal diversity present in snow sampled in summer in the north-west Antarctic Peninsula and the South Shetland Islands, Maritime Antarctica, assessed using metabarcoding. Extremophiles 2024; 28:23. [PMID: 38575688 DOI: 10.1007/s00792-024-01338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
We assessed the fungal diversity present in snow sampled during summer in the north-west Antarctic Peninsula and the South Shetland Islands, maritime Antarctica using a metabarcoding approach. A total of 586,693 fungal DNA reads were obtained and assigned to 203 amplicon sequence variants (ASVs). The dominant phylum was Ascomycota, followed by Basidiomycota, Mortierellomycota, Chytridiomycota and Mucoromycota. Penicillium sp., Pseudogymnoascus pannorum, Coniochaeta sp., Aspergillus sp., Antarctomyces sp., Phenoliferia sp., Cryolevonia sp., Camptobasidiaceae sp., Rhodotorula mucilaginosa and Bannozyma yamatoana were assessed as abundant taxa. The snow fungal diversity indices were high but varied across the different locations sampled. Of the fungal ASVs detected, only 28 were present all sampling locations. The 116 fungal genera detected in the snow were dominated by saprotrophic taxa, followed by symbiotrophic and pathotrophic. Our data indicate that, despite the low temperature and oligotrophic conditions, snow can host a richer mycobiome than previously reported through traditional culturing studies. The snow mycobiome includes a complex diversity dominated by cosmopolitan, cold-adapted, psychrophilic and endemic taxa. While saprophytes dominate this community, a range of other functional groups are present.
Collapse
Affiliation(s)
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Palmas, Brazil
| | - Karita C R Santos
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Palmas, Brazil
| | - Micheline C Silva
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
- Programa de Pós-Graduação Em Fungos, Algas e Plantas, UFSC, Florianópolis, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Touchette D, Gostinčar C, Whyte LG, Altshuler I. Lichen-associated microbial members are prevalent in the snow microbiome of a sub-arctic alpine tundra. FEMS Microbiol Ecol 2023; 99:fiad151. [PMID: 37977855 DOI: 10.1093/femsec/fiad151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Snow is the largest component of the cryosphere, with its cover and distribution rapidly decreasing over the last decade due to climate warming. It is imperative to characterize the snow (nival) microbial communities to better understand the role of microorganisms inhabiting these rapidly changing environments. Here, we investigated the core nival microbiome, the cultivable microbial members, and the microbial functional diversity of the remote Uapishka mountain range, a massif of alpine sub-arctic tundra and boreal forest. Snow samples were taken over a two-month interval along an altitude gradient with varying degree of anthropogenic traffic and vegetation cover. The core snow alpine tundra/boreal microbiome, which was present across all samples, constituted of Acetobacterales, Rhizobiales and Acidobacteriales bacterial orders, and of Mycosphaerellales and Lecanorales fungal orders, with the dominant fungal taxa being associated with lichens. The snow samples had low active functional diversity, with Richness values ranging from 0 to 19.5. The culture-based viable microbial enumeration ranged from 0 to 8.05 × 103 CFUs/mL. We isolated and whole-genome sequenced five microorganisms which included three fungi, one alga, and one potentially novel bacterium of the Lichenihabitans genus; all of which appear to be part of lichen-associated taxonomic clades.
Collapse
Affiliation(s)
- D Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
- River Ecosystems Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1950, Sion, Switzerland
| | - C Gostinčar
- University of Ljubljana, Department of Biology, Biotechnical Faculty, Ljubljana 1000, Slovenia
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
| | - I Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
- MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1950, Sion, Switzerland
| |
Collapse
|
4
|
Hattori S, Li Z, Yoshida N, Takeuchi N. Isotopic Evidence for Microbial Nitrogen Cycling in a Glacier Interior of High-Mountain Asia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15026-15036. [PMID: 37747413 DOI: 10.1021/acs.est.3c04757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Glaciers are now acknowledged as an important biome globally, but biological processes in the interior of the glacier (englacial) are thought to be slow and to play only a minor role in biogeochemical cycles. In this study, we demonstrate extensive, microbially driven englacial nitrogen cycling in an Asian glacier using the stable isotopes (δ15N, δ18O, and Δ17O values) of nitrate. Apparent decreases in Δ17O values of nitrate in an 8 m shallow firn core from the accumulation area indicate that nitrifiers gradually replaced ∼80% of atmospheric nitrate with nitrate from microbial nitrification on a decadal scale. Nitrate concentrations did not increase with depth in this core, suggesting the presence of nitrate sinks by microbial assimilation and denitrification within the firn layers. The estimated englacial metabolic rate using isotopic mass balance was classified as growth metabolism, which is approximately 2 orders of magnitude more active than previously known cold-environment metabolisms. In a 56 m ice core from the interior of the ablation area, we found less nitrification but continued microbial nitrate consumption, implying that organic matter is microbially accumulated over centuries before appearing on the ablating surface. Such englacial microbial products may support supraglacial microbes, potentially promoting glacial darkening and melting. With predicted global warming and higher nitrogen loads, englacial nutrient cycling and its roles may become increasingly important in the future.
Collapse
Affiliation(s)
- Shohei Hattori
- International Center for Isotope Effects Research (ICIER), Nanjing University, Nanjing 210023, China
- Frontiers Science Center for Critical Earth Material Cycling, State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Zhongqin Li
- State Key Laboratory of Cryospheric Sciences/Tien Shan Glaciological Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Naohiro Yoshida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
- National Institute of Information and Communications Technology, Tokyo 184-8795, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
5
|
Broadwell ELM, Pickford RE, Perkins RG, Sgouridis F, Williamson CJ. Adaptation versus plastic responses to temperature, light, and nitrate availability in cultured snow algal strains. FEMS Microbiol Ecol 2023; 99:fiad088. [PMID: 37553143 PMCID: PMC10481995 DOI: 10.1093/femsec/fiad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
Snow algal blooms are widespread, dominating low temperature, high light, and oligotrophic melting snowpacks. Here, we assessed the photophysiological and cellular stoichiometric responses of snow algal genera Chloromonas spp. and Microglena spp. in their vegetative life stage isolated from the Arctic and Antarctic to gradients in temperature (5 - 15°C), nitrate availability (1 - 10 µmol L-1), and light (50 and 500 µmol photons m-2 s-1). When grown under gradients in temperature, measured snow algal strains displayed Fv/Fm values increased by ∼115% and electron transport rates decreased by ∼50% at 5°C compared to 10 and 15°C, demonstrating how low temperatures can mimic high light impacts to photophysiology. When using carrying capacity as opposed to growth rate as a metric for determining the temperature optima, these snow algal strains can be defined as psychrophilic, with carrying capacities ∼90% higher at 5°C than warmer temperatures. All strains approached Redfield C:N stoichiometry when cultured under nutrient replete conditions regardless of temperature (5.7 ± 0.4 across all strains), whereas significant increases in C:N were apparent when strains were cultured under nitrate concentrations that reflected in situ conditions (17.8 ± 5.9). Intra-specific responses in photophysiology were apparent under high light with Chloromonas spp. more capable of acclimating to higher light intensities. These findings suggest that in situ conditions are not optimal for the studied snow algal strains, but they are able to dynamically adjust both their photochemistry and stoichiometry to acclimate to these conditions.
Collapse
Affiliation(s)
- Emily L M Broadwell
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Rachel E Pickford
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Rupert G Perkins
- School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Fotis Sgouridis
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Christopher J Williamson
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| |
Collapse
|
6
|
Touchette D, Maggiori C, Altshuler I, Tettenborn A, Bourdages LJ, Magnuson E, Blenner-Hassett O, Raymond-Bouchard I, Ellery A, Whyte LG. Microbial Characterization of Arctic Glacial Ice Cores with a Semiautomated Life Detection System. ASTROBIOLOGY 2023; 23:756-768. [PMID: 37126945 DOI: 10.1089/ast.2022.0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The search for extant microbial life will be a major focus of future astrobiology missions; however, no direct extant life detection instrumentation is included in current missions to Mars. In this study, we developed the semiautomated MicroLife detection platform that collects and processes environmental samples, detects biosignatures, and characterizes microbial activity. This platform is composed of a drill for sample collection, a redox dye colorimetric system for microbial metabolic activity detection and assessment (μMAMA [microfluidics Microbial Activity MicroAssay]), and a MinION sequencer for biosignature detection and characterization of microbial communities. The MicroLife platform was field-tested on White Glacier on Axel Heiberg Island in the Canadian high Arctic, with two extracted ice cores. The μMAMA successfully detected microbial metabolism from the ice cores within 1 day of incubation. The MinION sequencing of the ice cores and the positive μMAMA card identified a microbial community consistent with cold and oligotrophic environments. Furthermore, isolation and identification of microbial isolates from the μMAMA card corroborated the MinION sequencing. Together, these analyses support the MicroLife platform's efficacy in identifying microbes natively present in cryoenvironments and detecting their metabolic activity. Given our MicroLife platform's size and low energy requirements, it could be incorporated into a future landed platform or rovers for life detection.
Collapse
Affiliation(s)
- David Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
- Environmental Engineering Institute, River Ecosystems Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Catherine Maggiori
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- Environmental Engineering Institute, MACE Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alex Tettenborn
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| | - Louis-Jacques Bourdages
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montréal, Canada
| | - Elisse Magnuson
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Olivia Blenner-Hassett
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| | - Alex Ellery
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| |
Collapse
|
7
|
Varliero G, Lebre PH, Frey B, Fountain AG, Anesio AM, Cowan DA. Glacial Water: A Dynamic Microbial Medium. Microorganisms 2023; 11:1153. [PMID: 37317127 DOI: 10.3390/microorganisms11051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
Microbial communities and nutrient dynamics in glaciers and ice sheets continuously change as the hydrological conditions within and on the ice change. Glaciers and ice sheets can be considered bioreactors as microbiomes transform nutrients that enter these icy systems and alter the meltwater chemistry. Global warming is increasing meltwater discharge, affecting nutrient and cell export, and altering proglacial systems. In this review, we integrate the current understanding of glacial hydrology, microbial activity, and nutrient and carbon dynamics to highlight their interdependence and variability on daily and seasonal time scales, as well as their impact on proglacial environments.
Collapse
Affiliation(s)
- Gilda Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Andrew G Fountain
- Departments of Geology and Geography, Portland State University, Portland, OR 97212, USA
| | - Alexandre M Anesio
- Department of Environmental Science, iClimate, Aarhus University, DK-4000 Roskilde, Denmark
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
8
|
Impact of anthropogenic contamination on glacier surface biota. Curr Opin Biotechnol 2023; 80:102900. [PMID: 36764028 DOI: 10.1016/j.copbio.2023.102900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023]
Abstract
Glaciers are ecosystems and they host active biological communities. Despite their remoteness, glaciers act as cold condensers where high precipitation rates and cold temperatures favor the deposition of pollutants. These contaminants include a broad range of substances, including legacy pollutants, but also compounds still largely used. Some of these compounds are monitored in the environment and their effects on the ecosystems are known, in contrast others can be defined as emerging pollutants since their presence and their impact on the environment are still poorly understood (e.g. microplastics, radionuclides). This review aim to provide an overview of the studies that have investigated the effects of pollutants on the supraglacial ecosystem so far. Despite the distribution of the pollutants in glacier environments has been discussed in several studies, no review paper has summarized the current knowledge on the effects of these substances on the ecological communities living in glacier ecosystems.
Collapse
|
9
|
Keuschnig C, Vogel TM, Barbaro E, Spolaor A, Koziol K, Björkman MP, Zdanowicz C, Gallet JC, Luks B, Layton R, Larose C. Selection processes of Arctic seasonal glacier snowpack bacterial communities. MICROBIOME 2023; 11:35. [PMID: 36864462 PMCID: PMC9979512 DOI: 10.1186/s40168-023-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.
Collapse
Affiliation(s)
- Christoph Keuschnig
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
- Currently at Interface Geochemistry, German Research Center for Geosciences, GFZ, Potsdam, Germany
| | - Timothy M Vogel
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Elena Barbaro
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Krystyna Koziol
- Department of Environmental Change and Geochemistry, Faculty of Geographical Sciences, the Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mats P Björkman
- Department of Earth Sciences, University of Gothenburg, Box 460, SE-40530, Gothenburg, Sweden
| | - Christian Zdanowicz
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236, Uppsala, Sweden
| | | | - Bartłomiej Luks
- Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452, Warsaw, Poland
| | - Rose Layton
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Catherine Larose
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France.
| |
Collapse
|
10
|
Lubbers M, van Wezel GP, Claessen D. Reproducible switching between a walled and cell wall-deficient lifestyle of actinomycetes using gradient agar plates. J Microbiol Methods 2023; 204:106660. [PMID: 36563750 DOI: 10.1016/j.mimet.2022.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The cell wall is a shape-defining structure that envelopes almost all bacteria, protecting them from biotic and abiotic stresses. Paradoxically, some filamentous actinomycetes have a natural ability to shed their cell wall under influence of hyperosmotic stress. These wall-deficient cells can revert to their walled state when transferred to a medium without osmoprotection but often lyse due to their fragile nature. Here, we designed plates with an osmolyte gradient to reduce cell lysis and thereby facilitating the transition between a walled and wall-deficient state. These gradient plates allow determining of the osmolyte concentration where switching takes place, thereby enabling careful and reproducible comparison between mutants affected by switching. Exploring these transitions could give valuable insights into the ecology of actinomycetes and their biotechnological applications.
Collapse
Affiliation(s)
- Maarten Lubbers
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Gilles P van Wezel
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Dennis Claessen
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
11
|
Coelho LF, Couceiro JF, Keller-Costa T, Valente SM, Ramalho TP, Carneiro J, Comte J, Blais MA, Vincent WF, Martins Z, Canário J, Costa R. Structural shifts in sea ice prokaryotic communities across a salinity gradient in the subarctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154286. [PMID: 35247410 DOI: 10.1016/j.scitotenv.2022.154286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Current knowledge of the processes that shape prokaryotic community assembly in sea ice across polar ecosystems is scarce. Here, we coupled culture-dependent (bacterial isolation on R2A medium) and culture-independent (high-throughput 16S rRNA gene sequencing) approaches to provide the first comprehensive assessment of prokaryotic communities in the late winter ice and its underlying water along a natural salinity gradient in coastal Hudson Bay, an iconic cryo-environment that marks the ecological transition between Canadian Subarctic and Arctic biomes. We found that prokaryotic community assembly processes in the ice were less selective at low salinity since typical freshwater taxa such as Frankiales, Burkholderiales, and Chitinophagales dominated both the ice and its underlying water. In contrast, there were sharp shifts in community structure between the ice and underlying water samples at sites with higher salinity, with the orders Alteromonadales and Flavobacteriales dominating the ice, while the abovementioned freshwater taxa dominated the underlying water communities. Moreover, primary producers including Cyanobium (Cyanobacteria, Synechococcales) may play a role in shaping the ice communities and were accompanied by known Planctomycetes and Verrucomicrobiae taxa. Culture-dependent analyses showed that the ice contained pigment-producing psychrotolerant or psychrophilic bacteria from the phyla Proteobacteria, Actinobacteriota, and Bacteroidota, likely favored by the combination of low temperatures and the seasonal increase in sunlight. Our findings suggest that salinity, photosynthesis and dissolved organic matter are the main drivers of prokaryotic community structure in the late winter ice of coastal Hudson Bay, the ecosystem with the fastest sea ice loss rate in the Canadian North.
Collapse
Affiliation(s)
- Lígia Fonseca Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Joana Fernandes Couceiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sara Martinez Valente
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tiago Pereirinha Ramalho
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Joana Carneiro
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Jérôme Comte
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, G1K 9A9 Quebec City, QC, Canada; Centre for Northern Studies (CEN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Amélie Blais
- Centre for Northern Studies (CEN), Université Laval, Quebec City, QC G1V 0A6, Canada; Département de biologie & Takuvik Joint International Laboratory, Université Laval, Quebec City, Québec G1V 0A6, Canada
| | - Warwick F Vincent
- Centre for Northern Studies (CEN), Université Laval, Quebec City, QC G1V 0A6, Canada; Département de biologie & Takuvik Joint International Laboratory, Université Laval, Quebec City, Québec G1V 0A6, Canada
| | - Zita Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - João Canário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; Department of Energy - Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Malard LA, Pearce DA. Bacterial Colonisation: From Airborne Dispersal to Integration Within the Soil Community. Front Microbiol 2022; 13:782789. [PMID: 35615521 PMCID: PMC9125085 DOI: 10.3389/fmicb.2022.782789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/04/2022] [Indexed: 01/04/2023] Open
Abstract
The deposition of airborne microorganisms into new ecosystems is the first stage of colonisation. However, how and under what circumstances deposited microorganisms might successfully colonise a new environment is still unclear. Using the Arctic snowpack as a model system, we investigated the colonisation potential of snow-derived bacteria deposited onto Arctic soils during and after snowmelt using laboratory-based microcosm experiments to mimic realistic environmental conditions. We tested different melting rate scenarios to evaluate the influence of increased precipitation as well as the influence of soil pH on the composition of bacterial communities and on the colonisation potential. We observed several candidate colonisations in all experiments; with a higher number of potentially successful colonisations in acidoneutral soils, at the average snowmelt rate measured in the Arctic. While the higher melt rate increased the total number of potentially invading bacteria, it did not promote colonisation (snow ASVs identified in the soil across multiple sampling days and still present on the last day). Instead, most potential colonists were not identified by the end of the experiments. On the other hand, soil pH appeared as a determinant factor impacting invasion and subsequent colonisation. In acidic and alkaline soils, bacterial persistence with time was lower than in acidoneutral soils, as was the number of potentially successful colonisations. This study demonstrated the occurrence of potentially successful colonisations of soil by invading bacteria. It suggests that local soil properties might have a greater influence on the colonisation outcome than increased precipitation or ecosystem disturbance.
Collapse
Affiliation(s)
- Lucie A. Malard
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Lucie A. Malard,
| | - David A. Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
- David A. Pearce,
| |
Collapse
|
13
|
Virus-Host Interactions and Genetic Diversity of Antarctic Sea Ice Bacteriophages. mBio 2022; 13:e0065122. [PMID: 35532161 PMCID: PMC9239159 DOI: 10.1128/mbio.00651-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although we know the generally appreciated significant roles of microbes in sea ice and polar waters, detailed studies of virus-host systems from such environments have been so far limited by only a few available isolates. Here, we investigated infectivity under various conditions, infection cycles, and genetic diversity of the following Antarctic sea ice bacteriophages: Paraglaciecola Antarctic GD virus 1 (PANV1), Paraglaciecola Antarctic JLT virus 2 (PANV2), Octadecabacter Antarctic BD virus 1 (OANV1), and Octadecabacter Antarctic DB virus 2 (OANV2). The phages infect common sea ice bacteria belonging to the genera Paraglaciecola or Octadecabacter. Although the phages are marine and cold-active, replicating at 0°C to 5°C, they all survived temporal incubations at ≥30°C and remained infectious without any salts or supplemented only with magnesium, suggesting a robust virion assembly maintaining integrity under a wide range of conditions. Host recognition in the cold proved to be effective, and the release of progeny viruses occurred as a result of cell lysis. The analysis of viral genome sequences showed that nearly one-half of the gene products of each virus are unique, highlighting that sea ice harbors unexplored virus diversity. Based on predicted genes typical for tailed double-stranded DNA phages, we suggest placing the four studied viruses in the class Caudoviricetes. Searching against viral sequences from metagenomic assemblies, we revealed that related viruses are not restricted to Antarctica but are also found in distant marine environments.
Collapse
|
14
|
Rosa LH, de Menezes GCA, Pinto OHB, Convey P, Carvalho-Silva M, Simões JC, Rosa CA, Câmara PEAS. Fungal diversity in seasonal snow of Martel Inlet, King George Island, South Shetland Islands, assessed using DNA metabarcoding. Polar Biol 2022. [DOI: 10.1007/s00300-022-03014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
16
|
Fillinger L, Hürkamp K, Stumpp C, Weber N, Forster D, Hausmann B, Schultz L, Griebler C. Spatial and Annual Variation in Microbial Abundance, Community Composition, and Diversity Associated With Alpine Surface Snow. Front Microbiol 2021; 12:781904. [PMID: 34912321 PMCID: PMC8667604 DOI: 10.3389/fmicb.2021.781904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Understanding microbial community dynamics in the alpine cryosphere is an important step toward assessing climate change impacts on these fragile ecosystems and meltwater-fed environments downstream. In this study, we analyzed microbial community composition, variation in community alpha and beta diversity, and the number of prokaryotic cells and virus-like particles (VLP) in seasonal snowpack from two consecutive years at three high altitude mountain summits along a longitudinal transect across the European Alps. Numbers of prokaryotic cells and VLP both ranged around 104 and 105 per mL of snow meltwater on average, with variation generally within one order of magnitude between sites and years. VLP-to-prokaryotic cell ratios spanned two orders of magnitude, with median values close to 1, and little variation between sites and years in the majority of cases. Estimates of microbial community alpha diversity inferred from Hill numbers revealed low contributions of common and abundant microbial taxa to the total taxon richness, and thus low community evenness. Similar to prokaryotic cell and VLP numbers, differences in alpha diversity between years and sites were generally relatively modest. In contrast, community composition displayed strong variation between sites and especially between years. Analyses of taxonomic and phylogenetic community composition showed that differences between sites within years were mainly characterized by changes in abundances of microbial taxa from similar phylogenetic clades, whereas shifts between years were due to significant phylogenetic turnover. Our findings on the spatiotemporal dynamics and magnitude of variation of microbial abundances, community diversity, and composition in surface snow may help define baseline levels to assess future impacts of climate change on the alpine cryosphere.
Collapse
Affiliation(s)
- Lucas Fillinger
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Kerstin Hürkamp
- Institute of Radiation Medicine, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christine Stumpp
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nina Weber
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Forster
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Lotta Schultz
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
17
|
Maggiori C, Raymond-Bouchard I, Brennan L, Touchette D, Whyte L. MinION sequencing from sea ice cryoconites leads to de novo genome reconstruction from metagenomes. Sci Rep 2021; 11:21041. [PMID: 34702846 PMCID: PMC8548342 DOI: 10.1038/s41598-021-00026-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Genome reconstruction from metagenomes enables detailed study of individual community members, their metabolisms, and their survival strategies. Obtaining high quality metagenome-assembled genomes (MAGs) is particularly valuable in extreme environments like sea ice cryoconites, where the native consortia are recalcitrant to culture and strong astrobiology analogues. We evaluated three separate approaches for MAG generation from Allen Bay, Nunavut sea ice cryoconites-HiSeq-only, MinION-only, and hybrid (HiSeq + MinION)-where field MinION sequencing yielded a reliable metagenome. The hybrid assembly produced longer contigs, more coding sequences, and more total MAGs, revealing a microbial community dominated by Bacteroidetes. The hybrid MAGs also had the highest completeness, lowest contamination, and highest N50. A putatively novel species of Octadecabacter is among the hybrid MAGs produced, containing the genus's only known instances of genomic potential for nitrate reduction, denitrification, sulfate reduction, and fermentation. This study shows that the inclusion of MinION reads in traditional short read datasets leads to higher quality metagenomes and MAGs for more accurate descriptions of novel microorganisms in this extreme, transient habitat and has produced the first hybrid MAGs from an extreme environment.
Collapse
Affiliation(s)
- Catherine Maggiori
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Laura Brennan
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - David Touchette
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
18
|
Identification of Biomolecules Involved in the Adaptation to the Environment of Cold-Loving Microorganisms and Metabolic Pathways for Their Production. Biomolecules 2021; 11:biom11081155. [PMID: 34439820 PMCID: PMC8393263 DOI: 10.3390/biom11081155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/22/2022] Open
Abstract
Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.
Collapse
|
19
|
Centurion VB, Lacerda-Júnior GV, Duarte AWF, Silva TR, Silva LJ, Rosa LH, Oliveira VM. Dynamics of microbial stress responses driven by abiotic changes along a temporal gradient in Deception Island, Maritime Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143671. [PMID: 33248775 DOI: 10.1016/j.scitotenv.2020.143671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Whalers Bay (WB), Deception Island, is an environment that can drastically change its temperature within a few meters. The main forms of life inhabiting this environment are microorganisms, which, due to the high diversity and their adaptive potential, can survive and thrive under harsh stress conditions. However, the genetic potential and mechanisms to cope with fluctuating adverse conditions as well as what extent environmental variations shape the microbial community over the years it is still unknown in Antarctic environments. In this work, sediments collected in a transect in Whalers Bay, Deception Island, during the Austral Summers of 2014, 2015 and 2017 were analyzed using shotgun metagenomics. Sequence data were further processed with the SqueezeMeta tool for assembly, gene prediction, mapping, taxonomic and functional annotations. Results showed that stress-related functions had the influence of temperatures and solar radiation observed in the years of 2015 and 2017. The most differentiated functions were the ones related to oxidative stress, comparing 2014 vs 2015 and 2014 vs 2017. The genes coding for HSP20 and oxidoreductases (nrdH, grxA, korC and korD), as well as the genes clpE, cspL, and operons mtrAB and vicKR, were differentially enriched between the years, most of them found in gram-positive bacteria. The selective pressures of temperature and radiation may have favored the growth of gram-positive bacteria in 2017, with emphasis on Arthrobacter genus. Data gathered in this work showed that temperature and solar radiation could potentially be the primary driving forces shaping the repertoire of stress-response genes for the maintenance of microbial diversity in WB Antarctic sediments.
Collapse
Affiliation(s)
- V B Centurion
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Biology Institute, State University of Campinas - UNICAMP, Campinas, SP CEP: 13083-862, Brazil.
| | - G V Lacerda-Júnior
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Brazilian Agricultural Research Corporation - EMBRAPA, Jaguariúna, SP CEP 13820-000, Brazil
| | - A W F Duarte
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Federal University of Alagoas, Campus Arapiraca - UFAL, Arapiraca, AL CEP 57309-005, Brazil
| | - T R Silva
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil
| | - L J Silva
- Brazilian Agricultural Research Corporation - EMBRAPA, Jaguariúna, SP CEP 13820-000, Brazil
| | - L H Rosa
- Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil.
| |
Collapse
|
20
|
Smirnova M, Miamin U, Kohler A, Valentovich L, Akhremchuk A, Sidarenka A, Dolgikh A, Shapaval V. Isolation and characterization of fast-growing green snow bacteria from coastal East Antarctica. Microbiologyopen 2021; 10:e1152. [PMID: 33377317 PMCID: PMC7887010 DOI: 10.1002/mbo3.1152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
Snow microorganisms play a significant role in climate change and affecting the snow melting rate in the Arctic and Antarctic regions. While research on algae inhabiting green and red snow has been performed extensively, bacteria dwelling in this biotope have been studied to a much lesser extent. In this study, we performed 16S rRNA gene amplicon sequencing of two green snow samples collected from the coastal area of the eastern part of Antarctica and conducted genotypic and phenotypic profiling of 45 fast-growing bacteria isolated from these samples. 16S rRNA gene amplicon sequencing of two green snow samples showed that bacteria inhabiting these samples are mostly represented by families Burkholderiaceae (46.31%), Flavobacteriaceae (22.98%), and Pseudomonadaceae (17.66%). Identification of 45 fast-growing bacteria isolated from green snow was performed using 16S rRNA gene sequencing. We demonstrated that they belong to the phyla Actinobacteria and Proteobacteria, and are represented by the genera Arthrobacter, Cryobacterium, Leifsonia, Salinibacterium, Paeniglutamicibacter, Rhodococcus, Polaromonas, Pseudomonas, and Psychrobacter. Nearly all bacterial isolates exhibited various growth temperatures from 4°C to 25°C, and some isolates were characterized by a high level of enzymatic activity. Phenotyping using Fourier transform infrared (FTIR) spectroscopy revealed a possible accumulation of intracellular polymer polyhydroxyalkanoates (PHA) or lipids in some isolates. The bacteria showed different lipids/PHA and protein profiles. It was shown that lipid/PHA and protein spectral regions are the most discriminative for differentiating the isolates.
Collapse
Affiliation(s)
- Margarita Smirnova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | | | - Achim Kohler
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Leonid Valentovich
- Faculty of BiologyBelarusian State UniversityMinskBelarus
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Artur Akhremchuk
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Anastasiya Sidarenka
- Faculty of BiologyBelarusian State UniversityMinskBelarus
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Andrey Dolgikh
- Institute of GeographyRussian Academy of SciencesMoscowRussia
| | - Volha Shapaval
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
21
|
Monaco P, Divino F, Naclerio G, Bucci A. Microbial community analysis with a specific statistical approach after a record breaking snowfall in Southern Italy. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01604-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Purpose
Snow and ice ecosystems present unexpectedly high microbial abundance and diversity. Although arctic and alpine snow environments have been intensively investigated from a microbiological point of view, few studies have been conducted in the Apennines. Accordingly, the main purpose of this research was to analyze the microbial communities of the snow collected in two different locations of Capracotta municipality (Southern Italy) after a snowfall record occurred on March 2015 (256 cm of snow in less than 24 h).
Methods
Bacterial communities were analyzed by the Next-Generation Sequencing techniques. Furthermore, a specific statistical approach for taxonomic hierarchy data was introduced, both for the assessment of diversity within microbial communities and the comparison between different microbiotas. In general, diversity and similarity indices are more informative when computed at the lowest level of the taxonomic hierarchy, the species level. This is not the case with microbial data, for which the species level is not necessarily the most informative. Indeed, the possibility to detect a large number of unclassified records at every level of the hierarchy (even at the top) is very realistic due to both the partial knowledge about the cultivable fraction of microbial communities and limitations to taxonomic assignment connected to the quality and completeness of the 16S rRNA gene reference databases. Thus, a global approach considering information from the whole taxonomic hierarchy was adopted in order to obtain a more consistent assessment of the biodiversity.
Result
The main phyla retrieved in the investigated snow samples were Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Interestingly, DNA from bacteria adapted to thrive at low temperatures, but also from microorganisms normally associated with other habitats, whose presence in the snow could be justified by wind-transport, was found. Biomolecular investigations and statistical data analysis showed relevant differences in terms of biodiversity, composition, and distribution of bacterial species between the studied snow samples.
Conclusion
The relevance of this research lies in the expansion of knowledge about microorganisms associated with cold environments in contexts poorly investigated such as the Italian Apennines, and in the development of a global statistical approach for the assessment of biological diversity and similarity of microbial communities as an additional tool to be usefully combined with the barcoding methods.
Collapse
|
22
|
Yoshida K, Seger A, Kennedy F, McMinn A, Suzuki K. Freezing, Melting, and Light Stress on the Photophysiology of Ice Algae: Ex Situ Incubation of the Ice Algal diatom Fragilariopsis cylindrus (Bacillariophyceae) Using an Ice Tank. JOURNAL OF PHYCOLOGY 2020; 56:1323-1338. [PMID: 32464687 DOI: 10.1111/jpy.13036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Sea ice algae contribute up to 25% of the primary productivity of polar seas and seed large-scale ice-edge blooms. Fluctuations in temperature, salinity, and light associated with the freeze/thaw cycle can significantly impact the photophysiology of ice-associated taxa. The effects of multiple co-stressors (i.e., freezing temperature and high brine salinity or sudden high light exposure) on the photophysiology of ice algae were investigated in a series of ice tank experiments with the polar diatom Fragilariopsis cylindrus under different light intensities. When algal cells were frozen into the ice, the maximum quantum yield of photosystem II photochemistry (PSII; Fv /Fm ) decreased possibly due to the damage of PSII reaction centers and/or high brine salinity stress suppressing the reduction capacity downstream of PSII. Expression of the rbcL gene was highly up-regulated, suggesting that cells initiated strategies to enhance survival upon freezing in. Algae contained within the ice-matrix displayed similar levels of Fv /Fm regardless of the light treatments. Upon melting out, cells were exposed to high light (800 μmol photons · m-2 · s-1 ), resulting in a rapid decline in Fv /Fm and significant up-regulation of non-photochemical quenching (NPQ). These results suggest that ice algae employed safety valves (i.e., NPQ) to maintain their photosynthetic capability during the sudden environmental changes. Our results infer that sea ice algae are highly adaptable when exposed to multiple co-stressors and that their success can, in part, be explained by the ability to rapidly modify their photosynthetic competence - a key factor contributing to algal bloom formation in the polar seas.
Collapse
Affiliation(s)
- Kazuhiro Yoshida
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-Ku, Sapporo, 060-0810, Japan
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, TAS, 7004, Australia
| | - Andreas Seger
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, TAS, 7004, Australia
- South Australian Research and Development Institute, 2b Hartley Grove, Urrbrae, SA, 5064, Australia
| | - Fraser Kennedy
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, TAS, 7004, Australia
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, TAS, 7004, Australia
| | - Koji Suzuki
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Kita-Ku, Sapporo, 060-0810, Japan
| |
Collapse
|
23
|
Zawierucha K, Porazinska DL, Ficetola GF, Ambrosini R, Baccolo G, Buda J, Ceballos JL, Devetter M, Dial R, Franzetti A, Fuglewicz U, Gielly L, Łokas E, Janko K, Novotna Jaromerska T, Kościński A, Kozłowska A, Ono M, Parnikoza I, Pittino F, Poniecka E, Sommers P, Schmidt SK, Shain D, Sikorska S, Uetake J, Takeuchi N. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J Zool (1987) 2020. [DOI: 10.1111/jzo.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- K. Zawierucha
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - D. L. Porazinska
- Department of Entomology and Nematology University of Florida Gainesville FL USA
| | - G. F. Ficetola
- Department of Environmental Science and Policy University of Milan Milan Italy
- Laboratoire d'Ecologie Alpine University Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - R. Ambrosini
- Department of Environmental Science and Policy University of Milan Milan Italy
| | - G. Baccolo
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | - J. Buda
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - J. L. Ceballos
- Institute of Hydrology, Meteorology and Environmental Studies IDEAM Bogota' Colombia
| | - M. Devetter
- Institute of soil Biology Biology Centre CAS České Budějovice Czech Republic
- Centre for Polar Ecology Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - R. Dial
- Institute of Culture and the Environment Alaska Pacific University Anchorage AK USA
| | - A. Franzetti
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | | | - L. Gielly
- Laboratoire d'Ecologie Alpine University Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - E. Łokas
- Department of Mass Spectroscopy Institute of Nuclear Physics Polish Academy of Sciences Kraków Poland
| | - K. Janko
- Laboratory of Fish Genetics Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
- Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | | | - A. Kozłowska
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - M. Ono
- Graduate School of Science and Engineering Chiba University Chiba Japan
| | - I. Parnikoza
- State Institution National Antarctic Center of Ministry of Education and Science of Ukraine Kyiv Ukraine
- Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine Kyiv Ukraine
| | - F. Pittino
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | - E. Poniecka
- School of Earth and Ocean Sciences Cardiff University Cardiff UK
| | - P. Sommers
- Ecology and Evolutionary Biology Department University of Colorado Boulder CO USA
| | - S. K. Schmidt
- Ecology and Evolutionary Biology Department University of Colorado Boulder CO USA
| | - D. Shain
- Biology Department Rutgers, The State University of New Jersey Camden NJ USA
| | - S. Sikorska
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - J. Uetake
- The Arctic Environment Research Center National Institute of Polar Research Tachikawa Japan
| | - N. Takeuchi
- Department of Earth Sciences Graduate School of Science Chiba University Chiba Japan
| |
Collapse
|
24
|
Martínez-Espinosa RM. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. Int J Mol Sci 2020; 21:ijms21124228. [PMID: 32545812 PMCID: PMC7349289 DOI: 10.3390/ijms21124228] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; ; Tel.: +34-965903400 (ext. 1258)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
25
|
Hoham RW, Remias D. Snow and Glacial Algae: A Review 1. JOURNAL OF PHYCOLOGY 2020; 56:264-282. [PMID: 31825096 PMCID: PMC7232433 DOI: 10.1111/jpy.12952] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 05/03/2023]
Abstract
Snow or glacial algae are found on all continents, and most species are in the Chlamydomonadales (Chlorophyta) and Zygnematales (Streptophyta). Other algal groups include euglenoids, cryptomonads, chrysophytes, dinoflagellates, and cyanobacteria. They may live under extreme conditions of temperatures near 0°C, high irradiance levels in open exposures, low irradiance levels under tree canopies or deep in snow, acidic pH, low conductivity, and desiccation after snow melt. These primary producers may color snow green, golden-brown, red, pink, orange, or purple-grey, and they are part of communities that include other eukaryotes, bacteria, archaea, viruses, and fungi. They are an important component of the global biosphere and carbon and water cycles. Life cycles in the Chlamydomonas-Chloromonas-Chlainomonas complex include migration of flagellates in liquid water and formation of resistant cysts, many of which were identified previously as other algae. Species differentiation has been updated through the use of metagenomics, lipidomics, high-throughput sequencing (HTS), multi-gene analysis, and ITS. Secondary metabolites (astaxanthin in snow algae and purpurogallin in glacial algae) protect chloroplasts and nuclei from damaging PAR and UV, and ice binding proteins (IBPs) and polyunsaturated fatty acids (PUFAs) reduce cell damage in subfreezing temperatures. Molecular phylogenies reveal that snow algae in the Chlamydomonas-Chloromonas complex have invaded the snow habitat at least twice, and some species are polyphyletic. Snow and glacial algae reduce albedo, accelerate the melt of snowpacks and glaciers, and are used to monitor climate change. Selected strains of these algae have potential for producing food or fuel products.
Collapse
Affiliation(s)
- Ronald W. Hoham
- Department of BiologyColgate UniversityHamiltonNew York13346USA
| | - Daniel Remias
- School of EngineeringUniversity of Applied Sciences Upper AustriaWels4600Austria
| |
Collapse
|
26
|
Sharma Ghimire P, Tripathee L, Zhang Q, Guo J, Ram K, Huang J, Sharma CM, Kang S. Microbial mercury methylation in the cryosphere: Progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134150. [PMID: 32380618 DOI: 10.1016/j.scitotenv.2019.134150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal.
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Kirpa Ram
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chhatra Mani Sharma
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal; Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China.
| |
Collapse
|
27
|
Taxonomic and functional characterization of a microbial community from a volcanic englacial ecosystem in Deception Island, Antarctica. Sci Rep 2019; 9:12158. [PMID: 31434915 PMCID: PMC6704131 DOI: 10.1038/s41598-019-47994-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Glaciers are populated by a large number of microorganisms including bacteria, archaea and microeukaryotes. Several factors such as solar radiation, nutrient availability and water content greatly determine the diversity and abundance of these microbial populations, the type of metabolism and the biogeochemical cycles. Three ecosystems can be differentiated in glaciers: supraglacial, subglacial and englacial ecosystems. Firstly, the supraglacial ecosystem, sunlit and oxygenated, is predominantly populated by photoautotrophic microorganisms. Secondly, the subglacial ecosystem contains a majority of chemoautotrophs that are fed on the mineral salts of the rocks and basal soil. Lastly, the englacial ecosystem is the least studied and the one that contains the smallest number of microorganisms. However, these unknown englacial microorganisms establish a food web and appear to have an active metabolism. In order to study their metabolic potentials, samples of englacial ice were taken from an Antarctic glacier. Microorganisms were analyzed by a polyphasic approach that combines a set of -omic techniques: 16S rRNA sequencing, culturomics and metaproteomics. This combination provides key information about diversity and functions of microbial populations, especially in rare habitats. Several whole essential proteins and enzymes related to metabolism and energy production, recombination and translation were found that demonstrate the existence of cellular activity at subzero temperatures. In this way it is shown that the englacial microorganisms are not quiescent, but that they maintain an active metabolism and play an important role in the glacial microbial community.
Collapse
|
28
|
Shen L, Liu Y, Wang N, Adhikari NP. Genomic Insights of Dyadobacter tibetensis Y620-1 Isolated from Ice Core Reveal Genomic Features for Succession in Glacier Environment. Microorganisms 2019; 7:E211. [PMID: 31336655 PMCID: PMC6680632 DOI: 10.3390/microorganisms7070211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022] Open
Abstract
Glaciers have been recognized as biomes, dominated by microbial life. Many novel species have been isolated from glacier ecosystems, and their physiological features are well characterized. However, genomic features of bacteria isolated from the deep ice core are poorly understood. In this study, we performed a comparative genomic analysis to uncover the genomic features of strain Dyadobacter tibetensis Y620-1 isolated from a 59 m depth of the ice core drilled from a Tibetan Plateau glacier. Strain D. tibetensis Y620-1 had the smallest genome among the 12 cultured Dyadobacter strains, relatively low GC content, and was placed at the root position of the phylogenomic tree. The gene family based on a nonmetric multidimensional scaling (NMDS) plot revealed a clear separation of strain D. tibetensis Y620-1 from the reference strains. The genome of the deep ice core isolated strain contained the highest percentage of new genes. The definitive difference is that all genes required for the serine-glyoxylate cycle in one-carbon metabolism were only found in strain D. tibetensis Y620-1, but not in any of the reference strains. The placement of strain D. tibetensis Y620-1 in the root of the phylogenomic tree suggests that these new genes and functions are of ancient origin. All of these genomic features may contribute to the survival of D. tibetensis Y620-1 in the glacier.
Collapse
Affiliation(s)
- Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ninglian Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Urban and Environmental Science, Northwest University, Xian 710069, China
| | - Namita Paudel Adhikari
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
29
|
Eshelman EJ, Malaska MJ, Manatt KS, Doloboff IJ, Wanger G, Willis MC, Abbey WJ, Beegle LW, Priscu JC, Bhartia R. WATSON: In Situ Organic Detection in Subsurface Ice Using Deep-UV Fluorescence Spectroscopy. ASTROBIOLOGY 2019; 19:771-784. [PMID: 30822105 DOI: 10.1089/ast.2018.1925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Terrestrial icy environments have been found to preserve organic material and contain habitable niches for microbial life. The cryosphere of other planetary bodies may therefore also serve as an accessible location to search for signs of life. The Wireline Analysis Tool for the Subsurface Observation of Northern ice sheets (WATSON) is a compact deep-UV fluorescence spectrometer for nondestructive ice borehole analysis and spatial mapping of organics and microbes, intended to address the heterogeneity and low bulk densities of organics and microbial cells in ice. WATSON can be either operated standalone or integrated into a wireline drilling system. We present an overview of the WATSON instrument and results from laboratory experiments intended to determine (i) the sensitivity of WATSON to organic material in a water ice matrix and (ii) the ability to detect organic material under various thicknesses of ice. The results of these experiments show that in bubbled ice the instrument has a depth of penetration of 10 mm and a detection limit of fewer than 300 cells. WATSON incorporates a scanning system that can map the distribution of organics and microbes over a 75 by 25 mm area. WATSON demonstrates a sensitive fluorescence mapping technique for organic and microbial detection in icy environments including terrestrial glaciers and ice sheets, and planetary surfaces including Europa, Enceladus, or the martian polar caps.
Collapse
Affiliation(s)
- Evan J Eshelman
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael J Malaska
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Kenneth S Manatt
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Ivria J Doloboff
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Greg Wanger
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
- 2 University of Southern California, Los Angeles, California
| | - Madelyne C Willis
- 3 Montana State University, Department of Land Resources and Environmental Science, Bozeman, Montana
| | - William J Abbey
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Luther W Beegle
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - John C Priscu
- 3 Montana State University, Department of Land Resources and Environmental Science, Bozeman, Montana
| | - Rohit Bhartia
- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
30
|
Terashima M, Ohashi K, Takasuka TE, Kojima H, Fukui M. Antarctic heterotrophic bacterium Hymenobacter nivis P3 T displays light-enhanced growth and expresses putative photoactive proteins. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:227-235. [PMID: 30298689 DOI: 10.1111/1758-2229.12702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Hymenobacter nivis P3T is a heterotrophic bacterium isolated from Antarctic red snow generated by algal blooms. Despite being non-photosynthetic, H. nivis was dominantly found in the red snow environment that is exposed to high light and UV irradiation, suggesting that this species can flourish under such harsh conditions. In order to further understand the adaptive strategies on the snow surface environment of Antarctica, the genome of H. nivis P3T was sequenced and analyzed, which identified genes putatively encoding for light-reactive proteins such as proteorhodopsin, phytochrome, photolyase and several copies of cryptochromes. Culture-based experiments revealed that H. nivis P3T growth was significantly enhanced under light conditions, while dark conditions had increased extracellular polymeric substances. Furthermore, the expression of several putative light-reactive proteins was determined by proteomic analysis. These results indicate that H. nivis P3T is able to potentially utilize light, which may explain its dominance on the red snow surface environment of Antarctica. ORIGINALITY-SIGNIFICANCE STATEMENT: The role of proteorhodopsin in heterotrophic bacteria is not well-characterized, as only a handful of proteorhodopsin-harbouring isolates were shown to have a light-enhanced phenotype through culture-based experiments to date. This is the first study that demonstrates light-stimulated growth and protein expression evidence of photoactive proteins for a non-marine psychrophile and for a member of the genus Hymenobacter. It is also the first study that provides comprehensive proteome information for this genus. This study presents significant results in understanding the adaptive mechanism of a heterotrophic non-photosynthetic bacterium thriving on the snow surface environment of Antarctica as well as demonstrating the role of light-utilization in promoting growth, possibly through proteorhodopsin.
Collapse
Affiliation(s)
- Mia Terashima
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, 060-0819, Japan
| | - Keisuke Ohashi
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, 060-0819, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
31
|
Maccario L, Carpenter SD, Deming JW, Vogel TM, Larose C. Sources and selection of snow-specific microbial communities in a Greenlandic sea ice snow cover. Sci Rep 2019; 9:2290. [PMID: 30783153 PMCID: PMC6381142 DOI: 10.1038/s41598-019-38744-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
Sea ice and its snow cover are critical for global processes including climate regulation and biogeochemical cycles. Despite an increase in studies focused on snow microorganisms, the ecology of snow inhabitants remains unclear. In this study, we investigated sources and selection of a snowpack-specific microbial community by comparing metagenomes from samples collected in a Greenlandic fjord within a vertical profile including atmosphere, snowpack with four distinct layers of snow, sea ice brine and seawater. Microbial communities in all snow layers derived from mixed sources, both marine and terrestrial, and were more similar to atmospheric communities than to sea ice or seawater communities. The surface snow metagenomes were characterized by the occurrence of genes involved in photochemical stress resistance, primary production and metabolism of diverse carbon sources. The basal saline snow layer that was in direct contact with the sea ice surface harbored a higher abundance of cells than the overlying snow layers, with a predominance of Alteromonadales and a higher relative abundance of marine representatives. However, the overall taxonomic structure of the saline layer was more similar to that of other snow layers and the atmosphere than to underlying sea ice and seawater. The expulsion of relatively nutrient-rich sea ice brine into basal snow might have stimulated the growth of copiotrophic psychro- and halotolerant snow members. Our study indicates that the size, composition and function of snowpack microbial communities over sea ice were influenced primarily by atmospheric deposition and inflow of sea ice brine and that they form a snow-specific assemblage reflecting the particular environmental conditions of the snowpack habitat.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France.
- Microbiology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, USA
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| |
Collapse
|
32
|
Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes. Nat Commun 2018; 9:5164. [PMID: 30514921 PMCID: PMC6279842 DOI: 10.1038/s41467-018-07560-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022] Open
Abstract
The cell wall is a shape-defining structure that envelopes almost all bacteria and protects them from environmental stresses. Bacteria can be forced to grow without a cell wall under certain conditions that interfere with cell wall synthesis, but the relevance of these wall-less cells (known as L-forms) is unclear. Here, we show that several species of filamentous actinomycetes have a natural ability to generate wall-deficient cells in response to hyperosmotic stress, which we call S-cells. This wall-deficient state is transient, as S-cells are able to switch to the normal mycelial mode of growth. However, prolonged exposure of S-cells to hyperosmotic stress yields variants that are able to proliferate indefinitely without their cell wall, similarly to L-forms. We propose that formation of wall-deficient cells in actinomycetes may serve as an adaptation to osmotic stress. Bacteria can be forced to grow without cell wall if cell wall synthesis is inhibited. Here Ramijan et al. show that, in filamentous actinomycetes, hyperosmotic stress induces formation of wall-deficient cells that can switch to normal mycelial growth, or mutate and proliferate indefinitely as wall-less forms.
Collapse
|
33
|
Vigneron A, Cruaud P, Mohit V, Martineau MJ, Culley AI, Lovejoy C, Vincent WF. Multiple Strategies for Light-Harvesting, Photoprotection, and Carbon Flow in High Latitude Microbial Mats. Front Microbiol 2018; 9:2881. [PMID: 30564204 PMCID: PMC6288179 DOI: 10.3389/fmicb.2018.02881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022] Open
Abstract
Microbial mats are ubiquitous in polar freshwater ecosystems and sustain high concentrations of biomass despite the extreme seasonal variations in light and temperature. Here we aimed to resolve genomic adaptations for light-harvesting, bright-light protection, and carbon flow in mats that undergo seasonal freeze-up. To bracket a range of communities in shallow water habitats, we sampled cyanobacterial mats in the thawed littoral zone of two lakes situated at the northern and southern limits of the Canadian Arctic permafrost zone. We applied a multiphasic approach using pigment profiles from high performance liquid chromatography, Illumina MiSeq sequencing of the 16S and 18S rRNA genes, and metagenomic analysis. The mats shared a taxonomic and functional core microbiome, dominated by oxygenic cyanobacteria with light-harvesting and photoprotective pigments, bacteria with bacteriochlorophyll, and bacteria with light-driven Type I rhodopsins. Organisms able to use light for energy related processes represented up to 85% of the total microbial community, with 15–30% attributable to cyanobacteria and 55–70% attributable to other bacteria. The proportion of genes involved in anaplerotic CO2 fixation was greater than for genes associated with oxygenic photosynthesis. Diverse heterotrophic bacteria, eukaryotes (including metazoans and fungi) and viruses co-occurred in both communities. The results indicate a broad range of strategies for capturing sunlight and CO2, and for the subsequent flow of energy and carbon in these complex, light-driven microbial ecosystems.
Collapse
Affiliation(s)
- Adrien Vigneron
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
| | - Vani Mohit
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Marie-Josée Martineau
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Département de Biologie, Université Laval, Québec, QC, Canada
| | - Alexander I Culley
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
| | - Connie Lovejoy
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Warwick F Vincent
- Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.,Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| |
Collapse
|
34
|
|
35
|
Zhong ZP, Solonenko NE, Gazitúa MC, Kenny DV, Mosley-Thompson E, Rich VI, Van Etten JL, Thompson LG, Sullivan MB. Clean Low-Biomass Procedures and Their Application to Ancient Ice Core Microorganisms. Front Microbiol 2018; 9:1094. [PMID: 29910780 PMCID: PMC5992382 DOI: 10.3389/fmicb.2018.01094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Microorganisms in glacier ice provide tens to hundreds of thousands of years archive for a changing climate and microbial responses to it. Analyzing ancient ice is impeded by technical issues, including limited ice, low biomass, and contamination. While many approaches have been evaluated and advanced to remove contaminants on ice core surfaces, few studies leverage modern sequencing to establish in silico decontamination protocols for glacier ice. Here we sought to apply such “clean” sampling techniques with in silico decontamination approaches used elsewhere to investigate microorganisms archived in ice at ∼41 (D41, ∼20,000 years) and ∼49 m (D49, ∼30,000 years) depth in an ice core (GS3) from the summit of the Guliya ice cap in the northwestern Tibetan Plateau. Four “background” controls were established – a co-processed sterile water artificial ice core, two air samples collected from the ice processing laboratories, and a blank, sterile water sample – and used to assess contaminant microbial diversity and abundances. Amplicon sequencing revealed 29 microbial genera in these controls, but quantitative PCR showed that the controls contained about 50–100-times less 16S DNA than the glacial ice samples. As in prior work, we interpreted these low-abundance taxa in controls as “contaminants” and proportionally removed them in silico from the GS3 ice amplicon data. Because of the low biomass in the controls, we also compared prokaryotic 16S DNA amplicons from pre-amplified (by re-conditioning PCR) and standard amplicon sequencing, and found the resulting microbial profiles to be repeatable and nearly identical. Ecologically, the contaminant-controlled ice microbial profiles revealed significantly different microorganisms across the two depths in the GS3 ice core, which is consistent with changing climate, as reported for other glacier ice samples. Many GS3 ice core genera, including Methylobacterium, Sphingomonas, Flavobacterium, Janthinobacterium, Polaromonas, and Rhodobacter, were also abundant in previously studied ice cores, which suggests wide distribution across glacier environments. Together these findings help further establish “clean” procedures for studying low-biomass ice microbial communities and contribute to a baseline understanding of microorganisms archived in glacier ice.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Natalie E Solonenko
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Maria C Gazitúa
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Donald V Kenny
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States
| | - Ellen Mosley-Thompson
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States.,Department of Geography, The Ohio State University, Columbus, OH, United States
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, AZ, United States
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Lonnie G Thompson
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States.,School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
36
|
Abstract
It is well known that cold environments are predominant over the Earth and there are a great number of reports analyzing bacterial adaptations to cold. Most of these works are focused on characteristics traditionally involved in cold adaptation, such as the structural adjustment of enzymes, maintenance of membrane fluidity, expression of cold shock proteins and presence of compatible solutes. Recent works based mainly on novel "omic" technologies have presented evidence of the presence of other important features to thrive in cold. In this work, we analyze cold-adapted bacteria, looking for strategies involving novel features, and/or activation of non-classical metabolisms for a cold lifestyle. Metabolic traits related to energy generation, compounds and mechanisms involved in stress resistance and cold adaptation, as well as characteristics of the cell envelope, are analyzed in heterotrophic cold-adapted bacteria. In addition, metagenomic, metatranscriptomic and metaproteomic data are used to detect key functions in bacterial communities inhabiting cold environments.
Collapse
Affiliation(s)
- Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina.
- IQUIBICEN, CONICET, C1428EGA Buenos Aires, Argentina.
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina.
- IQUIBICEN, CONICET, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
37
|
Terashima M, Umezawa K, Mori S, Kojima H, Fukui M. Microbial Community Analysis of Colored Snow from an Alpine Snowfield in Northern Japan Reveals the Prevalence of Betaproteobacteria with Snow Algae. Front Microbiol 2017; 8:1481. [PMID: 28824603 PMCID: PMC5545588 DOI: 10.3389/fmicb.2017.01481] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
Psychrophilic algae blooms can be observed coloring the snow during the melt season in alpine snowfields. These algae are important primary producers on the snow surface environment, supporting the microbial community that coexists with algae, which includes heterotrophic bacteria and fungi. In this study, we analyzed the microbial community of green and red-colored snow containing algae from Mount Asahi, Japan. We found that Chloromonas spp. are the dominant algae in all samples analyzed, and Chlamydomonas is the second-most abundant genus in the red snow. For the bacterial community profile, species belonging to the subphylum Betaproteobacteria were frequently detected in both green and red snow, while members of the phylum Bacteroidetes were also prominent in red snow. Furthermore, multiple independently obtained strains of Chloromonas sp. from inoculates of red snow resulted in the growth of Betaproteobacteria with the alga and the presence of bacteria appears to support growth of the xenic algal cultures under laboratory conditions. The dominance of Betaproteobacteria in algae-containing snow in combination with the detection of Chloromonas sp. with Betaproteobacteria strains suggest that these bacteria can utilize the available carbon source in algae-rich environments and may in turn promote algal growth.
Collapse
Affiliation(s)
- Mia Terashima
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Shoichi Mori
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| |
Collapse
|
38
|
Garcia-Lopez E, Cid C. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds. Front Microbiol 2017; 8:1407. [PMID: 28804477 PMCID: PMC5532398 DOI: 10.3389/fmicb.2017.01407] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i) which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii) what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii) What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv) taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active.
Collapse
Affiliation(s)
| | - Cristina Cid
- Microbial Evolution Laboratory, Centro de Astrobiología (Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| |
Collapse
|
39
|
Comparative genomic analysis reveals the environmental impacts on two Arcticibacter strains including sixteen Sphingobacteriaceae species. Sci Rep 2017; 7:2055. [PMID: 28515455 PMCID: PMC5435697 DOI: 10.1038/s41598-017-02191-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/27/2017] [Indexed: 01/30/2023] Open
Abstract
How the genomic diversity of species is driven by geographical isolation and environmental factors are not well understood for cold environments. Here, the environmental stress responses of two phylogenetically close Arcticibacter strains, A. eurypsychrophilus MJ9-5 and A. svalbardensis MN12-7, isolated from a Tibetan Plateau glacier and Svalbard soil, were analyzed. The comparative genomic analysis was performed with sixteen other related Sphingobacteriaceae species. Analyses of the relationships between growth temperature and genome composition, cold and heat shock genes showed that genomic adaption characteristics were more obvious when the strains were grouped by their upper limit in growth temperature, rather than by their minimal or optimal growth temperatures for Sphingobacteriaceae species. The very divergent genetic distance of genome fractions assigned to the functions of ‘secondary metabolism’, ‘dormancy and sporulation’ and ‘metabolism of aromatic compounds’ indicated the heterogeneous evolution of genes under different environmental pressures of the Sphingobacteriaceae species. The greatest differences between strains MJ9-5 and MN12-7 occurred in the genes devoted to the CRISPRs, osmotic adaption and metabolism of monosaccharides, nitrogen and aromatic compounds. These distinctions corresponded to two different environmental pressures, salinity and nutritional level, in the glacier ice and Svalbard soil environments.
Collapse
|
40
|
Mieczan T, Adamczuk M. Ecology of Ciliates in Microbial Mats in Small Ponds: Relationship to Environmental Parameters (King George Island, Maritime Antarctica). ANN ZOOL FENN 2016. [DOI: 10.5735/086.053.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Bertin PN. Recent advances in microbiology: towards new horizons? Res Microbiol 2015; 166:727-8. [DOI: 10.1016/j.resmic.2015.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 11/15/2022]
|