1
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
2
|
Yang W, Chen T, Zhou Q, Xu J. Resistance to linezolid in Staphylococcus aureus by mutation, modification, and acquisition of genes. J Antibiot (Tokyo) 2024:10.1038/s41429-024-00778-4. [PMID: 39420155 DOI: 10.1038/s41429-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Linezolid binds to the 50S subunit of the bacterial ribosome, inhibiting bacterial protein synthesis by preventing the formation of the initiation complex. Oxazolidinone antimicrobial drugs represent the last line of defense in treating Staphylococcus aureus infections; thus, resistance to linezolid in S. aureus warrants high priority. This article examines the major mechanisms of resistance to linezolid in S. aureus, which include: mutations in the domain V of 23S rRNA (primarily G2576); chromosomal mutations in the rplC, rplD, and rplV genes (encoding the ribosomal uL3, uL4, and uL22 proteins, respectively); the exogenous acquisition of the methylase encoded by the chloramphenicol-florfenicol resistance (cfr) gene; the endogenous methylation or demethylation of 23S rRNA; the acquisition of optrA and poxtA resistance genes; and the existence of the LmrS multidrug efflux pump. In conclusion, these mechanisms mediate resistance through mutations or modifications to the bacterial target, thereby reducing the affinity of linezolid for the peptidyl transferase center (PTC) binding site or by preventing the binding of linezolid to the PTC through a ribosomal protective effect. The existence of additional, unexplained resistance mechanisms requires further investigation and verification.
Collapse
Affiliation(s)
- Wenjing Yang
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Taoran Chen
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Ousalem F, Ngo S, Oïffer T, Omairi-Nasser A, Hamon M, Monlezun L, Boël G. Global regulation via modulation of ribosome pausing by the ABC-F protein EttA. Nat Commun 2024; 15:6314. [PMID: 39060293 PMCID: PMC11282234 DOI: 10.1038/s41467-024-50627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Having multiple rounds of translation of the same mRNA creates dynamic complexities along with opportunities for regulation related to ribosome pausing and stalling at specific sequences. Yet, mechanisms controlling these critical processes and the principles guiding their evolution remain poorly understood. Through genetic, genomic, physiological, and biochemical approaches, we demonstrate that regulating ribosome pausing at specific amino acid sequences can produce ~2-fold changes in protein expression levels which strongly influence cell growth and therefore evolutionary fitness. We demonstrate, both in vivo and in vitro, that the ABC-F protein EttA directly controls the translation of mRNAs coding for a subset of enzymes in the tricarboxylic acid (TCA) cycle and its glyoxylate shunt, which modulates growth in some chemical environments. EttA also modulates expression of specific proteins involved in metabolically related physiological and stress-response pathways. These regulatory activities are mediated by EttA rescuing ribosomes paused at specific patterns of negatively charged residues within the first 30 amino acids of nascent proteins. We thus establish a unique global regulatory paradigm based on sequence-specific modulation of translational pausing.
Collapse
Affiliation(s)
- Farès Ousalem
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
- Biomarqueurs et nouvelles cibles thérapeutiques en oncologie, INSERM U981, Université Paris Saclay, Institut de Cancérologie Gustave Roussy, Villejuif Cedex, France
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Thomas Oïffer
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Amin Omairi-Nasser
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marion Hamon
- CNRS, Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, Paris, France
| | - Laura Monlezun
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
4
|
Risely A, Newbury A, Stalder T, Simmons BI, Top EM, Buckling A, Sanders D. Host- plasmid network structure in wastewater is linked to antimicrobial resistance genes. Nat Commun 2024; 15:555. [PMID: 38228585 PMCID: PMC10791616 DOI: 10.1038/s41467-024-44827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
As mobile genetic elements, plasmids are central for our understanding of antimicrobial resistance spread in microbial communities. Plasmids can have varying fitness effects on their host bacteria, which will markedly impact their role as antimicrobial resistance vectors. Using a plasmid population model, we first show that beneficial plasmids interact with a higher number of hosts than costly plasmids when embedded in a community with multiple hosts and plasmids. We then analyse the network of a natural host-plasmid wastewater community from a Hi-C metagenomics dataset. As predicted by the model, we find that antimicrobial resistance encoding plasmids, which are likely to have positive fitness effects on their hosts in wastewater, interact with more bacterial taxa than non-antimicrobial resistance plasmids and are disproportionally important for connecting the entire network compared to non- antimicrobial resistance plasmids. This highlights the role of antimicrobials in restructuring host-plasmid networks by increasing the benefits of antimicrobial resistance carrying plasmids, which can have consequences for the spread of antimicrobial resistance genes through microbial networks. Furthermore, that antimicrobial resistance encoding plasmids are associated with a broader range of hosts implies that they will be more robust to turnover of bacterial strains.
Collapse
Affiliation(s)
- Alice Risely
- School of Science, Engineering, and Environment, University of Salford, Salford, M5 4WT, UK
| | - Arthur Newbury
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Benno I Simmons
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Angus Buckling
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Dirk Sanders
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| |
Collapse
|
5
|
Fostier CR, Ousalem F, Leroy EC, Ngo S, Soufari H, Innis CA, Hashem Y, Boël G. Regulation of the macrolide resistance ABC-F translation factor MsrD. Nat Commun 2023; 14:3891. [PMID: 37393329 PMCID: PMC10314930 DOI: 10.1038/s41467-023-39553-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/19/2023] [Indexed: 07/03/2023] Open
Abstract
Antibiotic resistance ABC-Fs (ARE ABC-Fs) are translation factors that provide resistance against clinically important ribosome-targeting antibiotics which are proliferating among pathogens. Here, we combine genetic and structural approaches to determine the regulation of streptococcal ARE ABC-F gene msrD in response to macrolide exposure. We show that binding of cladinose-containing macrolides to the ribosome prompts insertion of the leader peptide MsrDL into a crevice of the ribosomal exit tunnel, which is conserved throughout bacteria and eukaryotes. This leads to a local rearrangement of the 23 S rRNA that prevents peptide bond formation and accommodation of release factors. The stalled ribosome obstructs the formation of a Rho-independent terminator structure that prevents msrD transcriptional attenuation. Erythromycin induction of msrD expression via MsrDL, is suppressed by ectopic expression of mrsD, but not by mutants which do not provide antibiotic resistance, showing correlation between MsrD function in antibiotic resistance and its action on this stalled complex.
Collapse
Affiliation(s)
- Corentin R Fostier
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Farès Ousalem
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Elodie C Leroy
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Heddy Soufari
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
- SPT Labtech Ltd., SG8 6HB, Melbourn, United Kingdom
| | - C Axel Innis
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
| | - Yaser Hashem
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France.
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France.
| |
Collapse
|
6
|
Ousalem F, Singh S, Bailey NA, Wong KH, Zhu L, Neky MJ, Sibindi C, Fei J, Gonzalez RL, Boël G, Hunt JF. Comparative genetic, biochemical, and biophysical analyses of the four E. coli ABCF paralogs support distinct functions related to mRNA translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.543863. [PMID: 37398404 PMCID: PMC10312648 DOI: 10.1101/2023.06.11.543863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Multiple paralogous ABCF ATPases are encoded in most genomes, but the physiological functions remain unknown for most of them. We herein compare the four Escherichia coli K12 ABCFs - EttA, Uup, YbiT, and YheS - using assays previously employed to demonstrate EttA gates the first step of polypeptide elongation on the ribosome dependent on ATP/ADP ratio. A Δ uup knockout, like Δ ettA , exhibits strongly reduced fitness when growth is restarted from long-term stationary phase, but neither Δ ybiT nor Δ yheS exhibits this phenotype. All four proteins nonetheless functionally interact with ribosomes based on in vitro translation and single-molecule fluorescence resonance energy transfer experiments employing variants harboring glutamate-to-glutamine active-site mutations (EQ 2 ) that trap them in the ATP-bound conformation. These variants all strongly stabilize the same global conformational state of a ribosomal elongation complex harboring deacylated tRNA Val in the P site. However, EQ 2 -Uup uniquely exchanges on/off the ribosome on a second timescale, while EQ 2 -YheS-bound ribosomes uniquely sample alternative global conformations. At sub-micromolar concentrations, EQ 2 -EttA and EQ 2 -YbiT fully inhibit in vitro translation of an mRNA encoding luciferase, while EQ 2 -Uup and EQ 2 -YheS only partially inhibit it at ~10-fold higher concentrations. Moreover, tripeptide synthesis reactions are not inhibited by EQ 2 -Uup or EQ 2 -YheS, while EQ 2 -YbiT inhibits synthesis of both peptide bonds and EQ 2 -EttA specifically traps ribosomes after synthesis of the first peptide bond. These results support the four E. coli ABCF paralogs all having different activities on translating ribosomes, and they suggest that there remains a substantial amount of functionally uncharacterized "dark matter" involved in mRNA translation.
Collapse
|
7
|
Cai X, Li X, Qin J, Zhang Y, Yan B, Cai J. Gene rppA co-regulated by LRR, SigA, and CcpA mediates antibiotic resistance in Bacillus thuringiensis. Appl Microbiol Biotechnol 2022; 106:5687-5699. [PMID: 35906441 DOI: 10.1007/s00253-022-12090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Antibiotic resistance genes are usually tightly controlled by transcription factors and RNA regulatory elements including sRNAs, riboswitches, and attenuators, and their expression is activated to respond to antibiotic exposure. In previous work, we revealed that the rppA gene is regulated by attenuator LRR and two mistranslation products in Bacillus thuringiensis BMB171. However, its function and promoter regulation is still not precise. In this study, we demonstrated that the encoding product of the rppA gene acts as an ARE1 ABC-F protein and confers resistance to antibiotics virginiamycin M1 and lincomycin when overexpressed. Besides the reported attenuator LRR, the expression of the rppA gene is controlled by the sigma factor SigA and a global transcription factor CcpA. Consequently, its promoter activity is mainly maintained at the stationary phase of cell growth and inhibited in the presence of glucose. Our study revealed the function and regulation of the rppA gene in detail. KEY POINTS: • The RppA protein acts as an ARE1 ABC-F protein • The rppA gene confers resistance to antibiotics virginiamycin M1 and lincomycin when overexpressed • The expression of the rppA gene is regulated by the sigma factor SigA and the pleiotropic regulator CcpA.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiaxin Qin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300071, China.
| |
Collapse
|
8
|
The discovery of multidrug resistant Staphylococcus aureus harboring novel SaRI isolated from retail foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Crowe-McAuliffe C, Murina V, Turnbull KJ, Huch S, Kasari M, Takada H, Nersisyan L, Sundsfjord A, Hegstad K, Atkinson GC, Pelechano V, Wilson DN, Hauryliuk V. Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics. Nat Commun 2022; 13:1860. [PMID: 35387982 PMCID: PMC8987054 DOI: 10.1038/s41467-022-29274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/02/2022] [Indexed: 12/27/2022] Open
Abstract
PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF). They confer resistance to oxazolidinone and phenicol antibiotics, such as linezolid and chloramphenicol, which stall translating ribosomes when certain amino acids are present at a defined position in the nascent polypeptide chain. These proteins are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria, and are thought to confer resistance by binding to the ribosome and dislodging the bound antibiotic. However, the mechanistic basis of this resistance remains unclear. Here we refine the PoxtA spectrum of action, demonstrate alleviation of linezolid-induced context-dependent translational stalling, and present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome. PoxtA perturbs the CCA-end of the P-site tRNA, causing it to shift by ∼4 Å out of the ribosome, corresponding to a register shift of approximately one amino acid for an attached nascent polypeptide chain. We postulate that the perturbation of the P-site tRNA by PoxtA thereby alters the conformation of the attached nascent chain to disrupt the drug binding site.
Collapse
Affiliation(s)
- Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Victoriia Murina
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Kathryn Jane Turnbull
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Department of Clinical Microbiology, Rigshospitalet, 2200, Copenhagen, Denmark
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Marje Kasari
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia
| | - Hiraku Takada
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Arnfinn Sundsfjord
- Department of Microbiology and Infection Control, Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Kristin Hegstad
- Department of Microbiology and Infection Control, Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Gemma C Atkinson
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| | - Vasili Hauryliuk
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden.
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia.
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden.
| |
Collapse
|
10
|
Cui Z, Li X, Shin J, Gamper H, Hou YM, Sacchettini JC, Zhang J. Interplay between an ATP-binding cassette F protein and the ribosome from Mycobacterium tuberculosis. Nat Commun 2022; 13:432. [PMID: 35064151 PMCID: PMC8782954 DOI: 10.1038/s41467-022-28078-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
EttA, energy-dependent translational throttle A, is a ribosomal factor that gates ribosome entry into the translation elongation cycle. A detailed understanding of its mechanism of action is limited due to the lack of high-resolution structures along its ATPase cycle. Here we present the cryo-electron microscopy (cryo-EM) structures of EttA from Mycobacterium tuberculosis (Mtb), referred to as MtbEttA, in complex with the Mtb 70S ribosome initiation complex (70SIC) at the pre-hydrolysis (ADPNP) and transition (ADP-VO4) states, and the crystal structure of MtbEttA alone in the post-hydrolysis (ADP) state. We observe that MtbEttA binds the E-site of the Mtb 70SIC, remodeling the P-site tRNA and the ribosomal intersubunit bridge B7a during the ribosomal ratcheting. In return, the rotation of the 30S causes conformational changes in MtbEttA, forcing the two nucleotide-binding sites (NBSs) to alternate to engage each ADPNP in the pre-hydrolysis states, followed by complete engagements of both ADP-VO4 molecules in the ATP-hydrolysis transition states. In the post-hydrolysis state, the conserved ATP-hydrolysis motifs of MtbEttA dissociate from both ADP molecules, leaving two nucleotide-binding domains (NBDs) in an open conformation. These structures reveal a dynamic interplay between MtbEttA and the Mtb ribosome, providing insights into the mechanism of translational regulation by EttA-like proteins.
Collapse
Affiliation(s)
- Zhicheng Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaojun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Joonyoung Shin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
11
|
Koberska M, Vesela L, Vimberg V, Lenart J, Vesela J, Kamenik Z, Janata J, Balikova Novotna G. Beyond Self-Resistance: ABCF ATPase LmrC Is a Signal-Transducing Component of an Antibiotic-Driven Signaling Cascade Accelerating the Onset of Lincomycin Biosynthesis. mBio 2021; 12:e0173121. [PMID: 34488446 PMCID: PMC8546547 DOI: 10.1128/mbio.01731-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
In natural environments, antibiotics are important means of interspecies competition. At subinhibitory concentrations, they act as cues or signals inducing antibiotic production; however, our knowledge of well-documented antibiotic-based sensing systems is limited. Here, for the soil actinobacterium Streptomyces lincolnensis, we describe a fundamentally new ribosome-mediated signaling cascade that accelerates the onset of lincomycin production in response to an external ribosome-targeting antibiotic to synchronize antibiotic production within the population. The entire cascade is encoded in the lincomycin biosynthetic gene cluster (BGC) and consists of three lincomycin resistance proteins in addition to the transcriptional regulator LmbU: a lincomycin transporter (LmrA), a 23S rRNA methyltransferase (LmrB), both of which confer high resistance, and an ATP-binding cassette family F (ABCF) ATPase, LmrC, which confers only moderate resistance but is essential for antibiotic-induced signal transduction. Specifically, antibiotic sensing occurs via ribosome-mediated attenuation, which activates LmrC production in response to lincosamide, streptogramin A, or pleuromutilin antibiotics. Then, ATPase activity of the ribosome-associated LmrC triggers the transcription of lmbU and consequently the expression of lincomycin BGC. Finally, the production of LmrC is downregulated by LmrA and LmrB, which reduces the amount of ribosome-bound antibiotic and thus fine-tunes the cascade. We propose that analogous ABCF-mediated signaling systems are relatively common because many ribosome-targeting antibiotic BGCs encode an ABCF protein accompanied by additional resistance protein(s) and transcriptional regulators. Moreover, we revealed that three of the eight coproduced ABCF proteins of S. lincolnensis are clindamycin responsive, suggesting that the ABCF-mediated antibiotic signaling may be a widely utilized tool for chemical communication. IMPORTANCE Resistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotics or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics. In particular, we show the dual character of the ABCF ATPase LmrC, which confers antibiotic resistance and simultaneously transduces a signal from ribosome-bound antibiotics to gene expression, where the 5' untranslated sequence upstream of its encoding gene functions as a primary antibiotic sensor. ABCF-mediated antibiotic signaling can in principle function not only in the induction of antibiotic biosynthesis but also in selective gene expression in response to any small molecules targeting the 50S ribosomal subunit, including clinically important antibiotics, to mediate intercellular antibiotic signaling and stress response induction. Moreover, the resistance-regulatory function of LmrC presented here for the first time unifies functionally inconsistent ABCF family members involving antibiotic resistance proteins and translational regulators.
Collapse
Affiliation(s)
- Marketa Koberska
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Ludmila Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Charles University in Prague, Faculty of Science, Department of Genetics and Microbiology, Prague, Czech Republic
| | - Vladimir Vimberg
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jakub Lenart
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
12
|
Fassler JS, Skuodas S, Weeks DL, Phillips BT. Protein Aggregation and Disaggregation in Cells and Development. J Mol Biol 2021; 433:167215. [PMID: 34450138 PMCID: PMC8530975 DOI: 10.1016/j.jmb.2021.167215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| | - Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@sskuodas
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@bt4phillips
| |
Collapse
|
13
|
Crowe-McAuliffe C, Murina V, Turnbull KJ, Kasari M, Mohamad M, Polte C, Takada H, Vaitkevicius K, Johansson J, Ignatova Z, Atkinson GC, O'Neill AJ, Hauryliuk V, Wilson DN. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nat Commun 2021; 12:3577. [PMID: 34117249 PMCID: PMC8196190 DOI: 10.1038/s41467-021-23753-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Target protection proteins confer resistance to the host organism by directly binding to the antibiotic target. One class of such proteins are the antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F-subtype (ARE-ABCFs), which are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition from antibiotics that target the large ribosomal subunit. Here, we present single-particle cryo-EM structures of ARE-ABCF-ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a general model for antibiotic resistance mediated by these ARE-ABCFs to be proposed. In this model, ABCF binding to the antibiotic-stalled ribosome mediates antibiotic release via mechanistically diverse long-range conformational relays that converge on a few conserved ribosomal RNA nucleotides located at the peptidyltransferase center. These insights are important for the future development of antibiotics that overcome such target protection resistance mechanisms.
Collapse
Affiliation(s)
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Kathryn Jane Turnbull
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Marje Kasari
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Merianne Mohamad
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Christine Polte
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karolis Vaitkevicius
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Alex J O'Neill
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
- University of Tartu, Institute of Technology, Tartu, Estonia.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
14
|
Ero R, Yan XF, Gao YG. Ribosome Protection Proteins-"New" Players in the Global Arms Race with Antibiotic-Resistant Pathogens. Int J Mol Sci 2021; 22:5356. [PMID: 34069640 PMCID: PMC8161019 DOI: 10.3390/ijms22105356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/07/2023] Open
Abstract
Bacteria have evolved an array of mechanisms enabling them to resist the inhibitory effect of antibiotics, a significant proportion of which target the ribosome. Indeed, resistance mechanisms have been identified for nearly every antibiotic that is currently used in clinical practice. With the ever-increasing list of multi-drug-resistant pathogens and very few novel antibiotics in the pharmaceutical pipeline, treatable infections are likely to become life-threatening once again. Most of the prevalent resistance mechanisms are well understood and their clinical significance is recognized. In contrast, ribosome protection protein-mediated resistance has flown under the radar for a long time and has been considered a minor factor in the clinical setting. Not until the recent discovery of the ATP-binding cassette family F protein-mediated resistance in an extensive list of human pathogens has the significance of ribosome protection proteins been truly appreciated. Understanding the underlying resistance mechanism has the potential to guide the development of novel therapeutic approaches to evade or overcome the resistance. In this review, we discuss the latest developments regarding ribosome protection proteins focusing on the current antimicrobial arsenal and pharmaceutical pipeline as well as potential implications for the future of fighting bacterial infections in the time of "superbugs."
Collapse
Affiliation(s)
- Rya Ero
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
15
|
Zhang L, He J, Bai L, Ruan S, Yang T, Luo Y. Ribosome-targeting antibacterial agents: Advances, challenges, and opportunities. Med Res Rev 2021; 41:1855-1889. [PMID: 33501747 DOI: 10.1002/med.21780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Ribosomes, which synthesize proteins, are critical organelles for the survival and growth of bacteria. About 60% of approved antibiotics discovered so far combat pathogenic bacteria by targeting ribosomes. However, several issues, such as drug resistance and toxicity, have impeded the clinical use of ribosome-targeting antibiotics. Moreover, the complexity of the bacteria ribosome structure has retarded the discovery of new ribosome-targeting agents that are considered as the key to the drug-resistance and toxicity. To deal with these challenges, efforts such as medicinal chemistry optimization, combination treatment, and new drug delivery system have been developed. But not enough, the development of structural biology and new screening methods bring powerful tools, such as cryo-electron microscopy technology, advanced computer-aided drug design, and cell-free in vitro transcription/translation systems, for the discovery of novel ribosome-targeting antibiotics. Thus, in this paper, we overview the research on different aspects of bacterial ribosomes, especially focus on discussing the challenges in the discovery of ribosome-targeting antibacterial drugs and advances made to address issues such as drug-resistance and selectivity, which, we believe, provide perspectives for the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lang Bai
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shihua Ruan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Human Diseases and Immunotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Fostier CR, Monlezun L, Ousalem F, Singh S, Hunt JF, Boël G. ABC-F translation factors: from antibiotic resistance to immune response. FEBS Lett 2020; 595:675-706. [PMID: 33135152 DOI: 10.1002/1873-3468.13984] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Energy-dependent translational throttle A (EttA) from Escherichia coli is a paradigmatic ABC-F protein that controls the first step in polypeptide elongation on the ribosome according to the cellular energy status. Biochemical and structural studies have established that ABC-F proteins generally function as translation factors that modulate the conformation of the peptidyl transferase center upon binding to the ribosomal tRNA exit site. These factors, present in both prokaryotes and eukaryotes but not in archaea, use related molecular mechanisms to modulate protein synthesis for heterogenous purposes, ranging from antibiotic resistance and rescue of stalled ribosomes to modulation of the mammalian immune response. Here, we review the canonical studies characterizing the phylogeny, regulation, ribosome interactions, and mechanisms of action of the bacterial ABC-F proteins, and discuss the implications of these studies for the molecular function of eukaryotic ABC-F proteins, including the three human family members.
Collapse
Affiliation(s)
- Corentin R Fostier
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Laura Monlezun
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Farès Ousalem
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Shikha Singh
- Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA
| | - John F Hunt
- Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA
| | - Grégory Boël
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
17
|
Detection of the Phenicol-Oxazolidinone Resistance Gene poxtA in Enterococcus faecium and Enterococcus faecalis from Food-Producing Animals during 2008-2018 in Korea. Microorganisms 2020; 8:microorganisms8111839. [PMID: 33238406 PMCID: PMC7700613 DOI: 10.3390/microorganisms8111839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/21/2022] Open
Abstract
We aimed to investigate the presence of the phenicol–oxazolidinone resistance gene poxtA in linezolid-resistant enterococci from food-producing animals and analyze its molecular characteristics. We collected 3941 Enterococcus faecium and 5088 E. faecalis isolates from all provinces of South Korea from 2008 to 2018. We found linezolid resistance in 0.79% (94/3941) of E. faecium and 1.22% (62/5088) of E. faecalis isolates. Overall, 23.1% (36/156) of the linezolid-resistant isolates had the poxtA gene, including 31 E. faecium and five E. faecalis isolates. The poxtA-positive enterococci were mainly isolated from chicken (86.1%; 26/36). Fifteen poxtA-harboring isolates co-carried another linezolid-resistance gene, optrA. Eight E. faecium isolates had an N130K mutation in the ribosomal protein L4, while no mutations were observed in E. faecalis isolates. The poxtA gene was transferred into 10 enterococci by conjugation. Multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) analysis indicated that poxtA-carrying isolates were heterogeneous. Three E. faecium isolates belonged to CC17 (ST32, ST121, and ST491). To our knowledge, this is the first report on the poxtA gene in Korea. Prudent use of antimicrobials and active surveillance on antimicrobial resistance are urgently needed to reduce the risk of dissemination of the linezolid-resistant isolates in humans and animals.
Collapse
|
18
|
Srikant S. Evolutionary history of ATP-binding cassette proteins. FEBS Lett 2020; 594:3882-3897. [PMID: 33145769 DOI: 10.1002/1873-3468.13985] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) proteins are found in every sequenced genome and evolved deep in the phylogenetic tree of life. ABC proteins form one of the largest homologous protein families, with most being involved in substrate transport across biological membranes, and a few cytoplasmic members regulating in essential processes like translation. The predominant ABC protein classification scheme is derived from human members, but the increasing number of fully sequenced genomes permits to reevaluate this paradigm in the light of the evolutionary history the ABC-protein superfamily. As we study the diversity of substrates, mechanisms, and physiological roles of ABC proteins, knowledge of the evolutionary relationships highlights similarities and differences that can be attributed to specific branches in protein divergence. While alignments and trees built on natural sequence variation account for the evolutionary divergence of ABC proteins, high-throughput experiments and next-generation sequencing creating experimental sequence variation are instrumental in identifying functional constraints. The combination of natural and experimentally produced sequence variation allows a broader and more rational study of the function and physiological roles of ABC proteins.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology
| |
Collapse
|
19
|
Ribosome-Mediated Attenuation of vga(A) Expression Is Shaped by the Antibiotic Resistance Specificity of Vga(A) Protein Variants. Antimicrob Agents Chemother 2020; 64:AAC.00666-20. [PMID: 32816732 DOI: 10.1128/aac.00666-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/10/2020] [Indexed: 01/29/2023] Open
Abstract
Vga(A) protein variants confer different levels of resistance to lincosamides, streptogramin A, and pleuromutilins (LSAP) by displacing antibiotics from the ribosome. Here, we show that expression of vga(A) variants from Staphylococcus haemolyticus is regulated by cis-regulatory RNA in response to the LSAP antibiotics by the mechanism of ribosome-mediated attenuation. The specificity of induction depends on Vga(A)-mediated resistance rather than on the sequence of the riboregulator. Fine tuning between Vga(A) activity and its expression in response to the antibiotics may contribute to the selection of more potent Vga(A) variants because newly acquired mutation can be immediately phenotypically manifested.
Collapse
|
20
|
Boël G, Orelle C, Jault JM, Dassa E. ABC systems: structural and functional variations on a common theme. Res Microbiol 2019; 170:301-303. [PMID: 31669368 DOI: 10.1016/j.resmic.2019.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Grégory Boël
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| | - Cédric Orelle
- University of Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 7 Passage du Vercors, F-69367, Lyon, France.
| | - Jean-Michel Jault
- University of Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 7 Passage du Vercors, F-69367, Lyon, France.
| | - Elie Dassa
- Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|