1
|
Cuevas M, Francisco I, Díaz-González F, Diaz M, Quatrini R, Beamud G, Pedrozo F, Temporetti P. Nutrient structure dynamics and microbial communities at the water-sediment interface in an extremely acidic lake in northern Patagonia. Front Microbiol 2024; 15:1335978. [PMID: 38410393 PMCID: PMC10895001 DOI: 10.3389/fmicb.2024.1335978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Lake Caviahue (37° 50 'S and 71° 06' W; Patagonia, Argentina) is an extreme case of a glacial, naturally acidic, aquatic environment (pH ~ 3). Knowledge of the bacterial communities in the water column of this lake, is incipient, with a basal quantification of the bacterioplankton abundance distribution in the North and South Basins of Lake Caviahue, and the described the presence of sulfur and iron oxidizing bacteria in the lake sediments. The role that bacterioplankton plays in nutrient utilization and recycling in this environment, especially in the phosphorus cycle, has not been studied. In this work, we explore this aspect in further depth by assessing the diversity of pelagic, littoral and sediment bacteria, using state of the art molecular methods and identifying the differences and commonalties in the composition of the cognate communities. Also, we investigate the interactions between the sediments of Lake Caviahue and the microbial communities present in both sediments, pore water and the water column, to comprehend the ecological relationships driving nutrient structure and fluxes, with a special focus on carbon, nitrogen, and phosphorus. Two major environmental patterns were observed: (a) one distinguishing the surface water samples due to temperature, Fe2+, and electrical conductivity, and (b) another distinguishing winter and summer samples due to the high pH and increasing concentrations of N-NH4+, DOC and SO42-, from autumn and spring samples with high soluble reactive phosphorus (SRP) and iron concentrations. The largest bacterial abundance was found in autumn, alongside higher levels of dissolved phosphorus, iron forms, and increased conductivity. The highest values of bacterial biomass were found in the bottom strata of the lake, which is also where the greatest diversity in microbial communities was found. The experiments using continuous flow column microcosms showed that microbial growth over time, in both the test and control columns, was accompanied by a decrease in the concentration of dissolved nutrients (SRP and N-NH4+), providing proof that sediment microorganisms are active and contribute significantly to nutrient utilization/mobilization.
Collapse
Affiliation(s)
- Mayra Cuevas
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Issotta Francisco
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Department of Molecular Genetics and Microbiology, School of Biological Sciences, P. Universidad Católica de Chile, Santiago, Chile
| | - Fernando Díaz-González
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mónica Diaz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guadalupe Beamud
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Fernando Pedrozo
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Pedro Temporetti
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| |
Collapse
|
2
|
Zhao X, Sang L, Song H, Liang W, Gong K, Peng C, Zhang W. Stabilization of Ni by rhamnolipid modified nano zero-valent iron in soil: Effect of simulated acid rain and microbial response. CHEMOSPHERE 2023; 341:140008. [PMID: 37660786 DOI: 10.1016/j.chemosphere.2023.140008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Nickel (Ni), as one of the essential micronutrients, exists widely in nature, but high concentration of Ni in soil can pose certain biological toxicity. Nano zero-valent iron (nZVI) and rhamnolipid modified nZVI (RL@nZVI) can effectively stabilize Ni in soil. In this study, the stabilization effect of nZVI and RL@nZVI on the Ni-polluted soil under simulated acid rain and the microbial community response during the soil remediation under different Ni levels (200, 600, and 1800 mg/kg) were investigated. The results show that the addition of nZVI and RL@nZVI increased the pH of leachate to neutral and decreased the amount of Ni in leachate (23.33%-47.06% by nZVI and 50.01%-70.47% by RL@nZVI), indicating that nZVI and RL@nZVI could reduce the potential radial migration risk of Ni in soil under simulated acid rain. The addition of RL@nZVI was beneficial to recover the soil bacterial community diversity, which was inhibited by Ni pollution, and rhamnolipid coating could reduce the toxicity of nZVI. The dominant bacteria in RL@nZVI-treated soil with low, medium, and high Ni pollution were Firmicutes, Proteobacteria and Actinobacteria, respectively. Soil potential, total organic carbon, and pH were the main driving factors affecting the bacterial community structure, while Ni stress only caused changes in the relative abundance of some tolerant bacteria.
Collapse
Affiliation(s)
- Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Li Sang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Ningbo Yonghuanyuan Environmental Engineering and Technology Co., Ltd, China
| | - Huihui Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Demir EK, Yaman BN, Çelik PA, Puhakka JA, Sahinkaya E. Simulated acid mine drainage treatment in iron oxidizing ceramic membrane bioreactor with subsequent co-precipitation of iron and arsenic. WATER RESEARCH 2021; 201:117297. [PMID: 34118649 DOI: 10.1016/j.watres.2021.117297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Acid mine drainage (AMD), generated in the active and abandoned mine sites, is characterized by low pH and high metal concentrations. One AMD treatment possibility is biologically oxidizing Fe2+ followed by precipitation through pH control. As compared to autotrophic iron oxidizing microbial community, a microbial community enriched in the presence of organic nutrients was hypothesized to yield higher biomass during commissioning the bioreactor. In this study, the treatment of Fe, Cu, Co, Mn, Zn, Ni, and As containing simulated AMD was studied using an iron-oxidizing ceramic membrane bioreactor (CMBR) at varying hydraulic retention times (HRTs) (6-24 h) and two different feed Fe2+ concentrations (250 and 750 mg/L). The impact of tryptone soya broth (TSB) on the CMBR performance was also investigated. Almost complete Fe2+ oxidation and sustainable flux at around 5.0 L/(m2.h) were obtained in the CMBR with the Alicyclobacillus tolerans and Acidiphilium cryptum dominated enrichment culture. The Fe2+ oxidation rate, as assessed in batch operation cycles of CMBR, increased significantly with increasing Fe2+ loading to the bioreactor. The iron oxidation rate decreased by the elimination of organic matter from the feed. The increase of the CMBR permeate pH to 3.5-4.0 resulted in selective co-precipitation of As and Fe (over 99%) with the generation of biogenic schwertmannite.
Collapse
Affiliation(s)
- Emir Kasım Demir
- Environmental and Energy Systems Engineering Program, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Belma Nural Yaman
- Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Pınar Aytar Çelik
- Environmental Protection and Control Program, Eskisehir Osmangazi University, Eskisehir, 26110, Turkey
| | - Jaakko A Puhakka
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland
| | - Erkan Sahinkaya
- Environmental and Energy Systems Engineering Program, Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey.
| |
Collapse
|