1
|
Huber C, Callegari E, Paez D, Li X, Wang H. Impaired 26S proteasome causes learning and memory deficiency and induces neuroinflammation mediated by NF-κB in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579699. [PMID: 38405714 PMCID: PMC10888903 DOI: 10.1101/2024.02.09.579699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A reduction in proteasome activity, loss of synapses and increased neuroinflammation in the brain are hallmarks of aging and many neurodegenerative disorders, including Alzheimer disease (AD); however, whether proteasome dysfunction is causative to neuroinflammation remains less understood. In this study, we investigated the impact of 26S proteasome deficiency on neuroinflammation in the Psmc1 knockout (KO) mice deficient in a 19S proteasome subunit limited to the forebrain region. Our results revealed that impaired 26S proteasome led to reduced learning and memory capability and overt neuroinflammation in the synapses of the Psmc1 KO brain at eight weeks of age. Moreover, pronounced neuroinflammation was also found in the whole brain cortex, which was confirmed by increased levels of several key immune response-related proteins, including Stat1, Trem2 and NF-κB, and by activation of astrocytes and microglia in the KO brain. To validate NF-κB mediating neuroinflammation, we administered a selective NF-κB inhibitor to the KO animals at 5 weeks of age for three weeks, and then, animal behaviors and neuroinflammation were assessed when they reached eight weeks of age. Following the treatment, the KO mice exhibited improved behaviors and reduced neuroinflammation compared to the control animals. These data indicate that impaired 26S proteasome causes AD-like cognitive deficiency and induces neuroinflammation mediated largely by NF-κB. These results may aid development of effective therapeutics and better understanding of the pathogenesis of AD and many other neurodegenerative disorders where impaired proteasome is consistently coupled with neuroinflammation.
Collapse
|
2
|
Bonilla JO, Jofré RV, Callegari EA, Paez MD, Kurina-Sanz M, Magallanes-Noguera C. Unraveling the molecular response of Brassica napus hairy roots in the active Naphthol blue-black removal: Insights from proteomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135425. [PMID: 39137543 DOI: 10.1016/j.jhazmat.2024.135425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
In vitro plant cultures are able to remove and metabolise xenobiotics, making them promising tools for decontamination strategies. In this work, we evaluated Brassica napus hairy roots (HRs) to tolerate and remove high concentrations of the azo dye Naphthol Blue-Black (NBB). Experiments were performed using both growing and resting culture systems at different pHs. Reuse of HRs biomass was evaluated in successive decolourisation cycles. Proteomics was applied to understand the molecular responses likely to be involved in the tolerance and removal of NBB. The HRs tolerated up to 480 µg mL-1 NBB, and 100 % removal was achieved at 180 µg mL-1 NBB after 10 days using both culture systems. Interestingly, the HRs are robust enough to be reused, showing 55-60 % removal even after three reuse cycles. The highest dye removal rates were achieved during the first 2 days of incubation, as initial removal is mainly driven by passive processes. Active mechanisms are triggered later by regulating the expression of proteins with different biological functions, mainly those related to xenobiotic metabolism, such as hydrolytic and redox enzymes. These results suggest that B. napus HRs are a robust tool that could make a significant contribution to textile wastewater treatment.
Collapse
Affiliation(s)
- José Oscar Bonilla
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, San Luis D5700HGD, Argentina
| | - Rosario Valentina Jofré
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, San Luis D5700HGD, Argentina
| | - Eduardo Alberto Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - María Daniela Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Marcela Kurina-Sanz
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, San Luis D5700HGD, Argentina
| | - Cynthia Magallanes-Noguera
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, San Luis D5700HGD, Argentina.
| |
Collapse
|
3
|
Peng L, Yun H, Ji J, Zhang W, Xu T, Li S, Wang Z, Xie L, Li X. Biotransformation activities of fungal strain apiotrichum sp. IB-1 to ibuprofen and naproxen. Arch Microbiol 2024; 206:232. [PMID: 38658486 DOI: 10.1007/s00203-024-03963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Ibuprofen (IBU) and naproxen (NPX), as widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs), are largely produced and consumed globally, leading to frequent and ubiquitous detection in various aqueous environments. Previously, the microbial transformation of them has been given a little attention, especially with the isolated fungus. A yeast-like Apiotrichum sp. IB-1 has been isolated and identified, which could simultaneously transform IBU (5 mg/L) and NPX (2.5 mg/L) with maximum efficiencies of 95.77% and 88.31%, respectively. For mono-substrate, the transformation efficiency of IB-1 was comparable to that of co-removal conditions, higher than most of isolates so far. IBU was oxidized mainly through hydroxylation (m/z of 221, 253) and NPX was detoxified mainly via demethylation (m/z of 215) as shown by UPLC-MS/MS results. Based on transcriptome analysis, the addition of IBU stimulated the basic metabolism like TCA cycle. The transporters and respiration related genes were also up-regulated accompanied with higher expression of several dehydrogenase, carboxylesterase, dioxygenase and oxidoreductase encoding genes, which may be involved in the transformation of IBU. The main functional genes responsible for IBU and NPX transformation for IB-1 should be similar in view of previous studies, which needs further confirmation. This fungus would be useful for potential bioremediation of NSAIDs pollution and accelerate the discovery of functional oxidative genes and enzymes different from those of bacteria.
Collapse
Affiliation(s)
- Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
- Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Wenjie Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Ting Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Si Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Zhenfei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Li Xie
- Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
| |
Collapse
|