1
|
Fahlman A. Cardiorespiratory adaptations in small cetaceans and marine mammals. Exp Physiol 2024; 109:324-334. [PMID: 37968859 PMCID: PMC10988691 DOI: 10.1113/ep091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
The dive response, or the 'master switch of life', is probably the most studied physiological trait in marine mammals and is thought to conserve the available O2 for the heart and brain. Although generally thought to be an autonomic reflex, several studies indicate that the cardiovascular changes during diving are anticipatory and can be conditioned. The respiratory adaptations, where the aquatic breathing pattern resembles intermittent breathing in land mammals, with expiratory flow exceeding 160 litres s-1 has been measured in cetaceans, and where exposure to extreme pressures results in alveolar collapse (atelectasis) and recruitment upon ascent. Cardiorespiratory coupling, where breathing results in changes in heart rate, has been proposed to improve gas exchange. Cardiorespiratory coupling has also been reported in marine mammals, and in the bottlenose dolphin, where it alters both heart rate and stroke volume. When accounting for this respiratory dependence on cardiac function, several studies have reported an absence of a diving-related bradycardia except during dives that exceed the duration that is fuelled by aerobic metabolism. This review summarizes what is known about the respiratory physiology in marine mammals, with a special focus on cetaceans. The cardiorespiratory coupling is reviewed, and the selective gas exchange hypothesis is summarized, which provides a testable mechanism for how breath-hold diving vertebrates may actively prevent uptake of N2 during routine dives, and how stress results in failure of this mechanism, which results in diving-related gas emboli.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research SLValenciaSpain
- Fundación Oceanogràfic de la Comunidad ValencianaValenciaSpain
- Kolmården Wildlife ParkKolmårdenSweden
- IFMLinköping UniversityLinköpingSweden
| |
Collapse
|
2
|
Allen KN, Vázquez-Medina JP. Natural Tolerance to Ischemia and Hypoxemia in Diving Mammals: A Review. Front Physiol 2019; 10:1199. [PMID: 31620019 PMCID: PMC6763568 DOI: 10.3389/fphys.2019.01199] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Reperfusion injury follows ischemia/reperfusion events occurring during myocardial infarction, stroke, embolism, and other peripheral vascular diseases. Decreased blood flow and reduced oxygen tension during ischemic episodes activate cellular pathways that upregulate pro-inflammatory signaling and promote oxidant generation. Reperfusion after ischemia recruits inflammatory cells to the vascular wall, further exacerbating oxidant production and ultimately resulting in cell death, tissue injury, and organ dysfunction. Diving mammals tolerate repetitive episodes of peripheral ischemia/reperfusion as part of the cardiovascular adjustments supporting long duration dives. These adjustments allow marine mammals to optimize the use of their body oxygen stores while diving but can result in selectively reduced perfusion to peripheral tissues. Remarkably, diving mammals show no apparent detrimental effects associated with these ischemia/reperfusion events. Here, we review the current knowledge regarding the strategies marine mammals use to suppress inflammation and cope with oxidant generation potentially derived from diving-induced ischemia/reperfusion.
Collapse
|
3
|
Ponganis PJ. State of the art review: from the seaside to the bedside: insights from comparative diving physiology into respiratory, sleep and critical care. Thorax 2019; 74:512-518. [PMID: 30826734 DOI: 10.1136/thoraxjnl-2018-212136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 11/04/2022]
Abstract
Anatomical and physiological adaptations of animals to extreme environments provide insight into basic physiological principles and potential therapies for human disease. In that regard, the diving physiology of marine mammals and seabirds is especially relevant to pulmonary and cardiovascular function, and to the pathology and potential treatment of patients with hypoxaemia and/or ischaemia. This review highlights past and recent progress in the field of comparative diving physiology with emphasis on its potential relevance to human medicine.
Collapse
Affiliation(s)
- Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Bagchi A, Batten AJ, Levin M, Allen KN, Fitzgerald ML, Hückstädt LA, Costa DP, Buys ES, Hindle AG. Intrinsic anti-inflammatory properties in the serum of two species of deep-diving seal. ACTA ACUST UNITED AC 2018; 221:jeb.178491. [PMID: 29748216 DOI: 10.1242/jeb.178491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 12/29/2022]
Abstract
Weddell and elephant seals are deep-diving mammals, which rely on lung collapse to limit nitrogen absorption and prevent decompression injury. Repeated collapse and re-expansion exposes the lungs to multiple stressors, including ischemia-reperfusion, alveolar shear stress and inflammation. There is no evidence, however, that diving damages pulmonary function in these species. To investigate potential protective strategies in deep-diving seals, we examined the inflammatory response of seal whole blood exposed to lipopolysaccharide (LPS), a potent endotoxin. Interleukin-6 (IL6) cytokine production elicited by LPS exposure was 50 to 500 times lower in blood of healthy northern elephant seals and Weddell seals compared with that of healthy human blood. In contrast to the ∼6× increased production of IL6 protein from LPS-exposed Weddell seal whole blood, isolated Weddell seal peripheral blood mononuclear cells, under standard cell culture conditions using medium supplemented with fetal bovine serum (FBS), produced a robust LPS response (∼300×). Induction of Il6 mRNA expression as well as production of IL6, IL8, IL10, KC-like and TNFα were reduced by substituting FBS with an equivalent amount of autologous seal serum. Weddell seal serum also attenuated the inflammatory response of RAW 267.4 mouse macrophage cells exposed to LPS. Cortisol level and the addition of serum lipids did not impact the cytokine response in cultured cells. These data suggest that seal serum possesses anti-inflammatory properties, which may protect deep divers from naturally occurring inflammatory challenges such as dive-induced hypoxia-reoxygenation and lung collapse.
Collapse
Affiliation(s)
- Aranya Bagchi
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Annabelle J Batten
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA
| | - Kaitlin N Allen
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.,Department of Integrative Biology, University of California Berkeley, Valley Life Sciences Building 5043, Berkeley, CA 94720, USA
| | - Michael L Fitzgerald
- Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Luis A Hückstädt
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Allyson G Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
5
|
Fahlman A, Moore MJ, Garcia-Parraga D. Respiratory function and mechanics in pinnipeds and cetaceans. J Exp Biol 2017; 220:1761-1773. [DOI: 10.1242/jeb.126870] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In this Review, we focus on the functional properties of the respiratory system of pinnipeds and cetaceans, and briefly summarize the underlying anatomy; in doing so, we provide an overview of what is currently known about their respiratory physiology and mechanics. While exposure to high pressure is a common challenge among breath-hold divers, there is a large variation in respiratory anatomy, function and capacity between species – how are these traits adapted to allow the animals to withstand the physiological challenges faced during dives? The ultra-deep diving feats of some marine mammals defy our current understanding of respiratory physiology and lung mechanics. These animals cope daily with lung compression, alveolar collapse, transient hyperoxia and extreme hypoxia. By improving our understanding of respiratory physiology under these conditions, we will be better able to define the physiological constraints imposed on these animals, and how these limitations may affect the survival of marine mammals in a changing environment. Many of the respiratory traits to survive exposure to an extreme environment may inspire novel treatments for a variety of respiratory problems in humans.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanográfic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, Valencia 46005, Spain
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Michael J. Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Daniel Garcia-Parraga
- Fundación Oceanográfic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, Valencia 46005, Spain
- Oceanográfic-Avanqua, Ciudad de las Artes y las Ciencias, Valencia 46013, Spain
| |
Collapse
|
6
|
Orgeig S, Morrison JL, Daniels CB. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr Physiol 2015; 6:363-422. [PMID: 26756637 DOI: 10.1002/cphy.c150003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.
Collapse
Affiliation(s)
- Sandra Orgeig
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christopher B Daniels
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
7
|
Gutierrez DB, Fahlman A, Gardner M, Kleinhenz D, Piscitelli M, Raverty S, Haulena M, Zimba PV. Phosphatidylcholine composition of pulmonary surfactant from terrestrial and marine diving mammals. Respir Physiol Neurobiol 2015; 211:29-36. [PMID: 25812797 DOI: 10.1016/j.resp.2015.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Marine mammals are repeatedly exposed to elevated extra-thoracic pressure and alveolar collapse during diving and readily experience alveolar expansion upon inhalation - a unique capability as compared to terrestrial mammals. How marine mammal lungs overcome the challenges of frequent alveolar collapse and recruitment remains unknown. Recent studies indicate that pinniped lung surfactant has more anti-adhesive components compared to terrestrial mammals, which would aid in alveolar opening. However, pulmonary surfactant composition has not yet been investigated in odontocetes, whose physiology and diving behavior differ from pinnipeds. The aim of this study was to investigate the phosphatidylcholine (PC) composition of lung surfactants from various marine mammals and compare these to a terrestrial mammal. We found an increase in anti-adhesive PC species in harp seal (Pagophilus groenlandicus) and California sea lion (Zalophus californianus) compared to dog (Canus lupus familiaris), as well as an increase in the fluidizing PCs 16:0/14:0 and 16:0/16:1 in pinnipeds compared to odontocetes. The harbor porpoise (a representative of the odontocetes) did not have higher levels of fluidizing PCs compared to dog. Our preliminary results support previous findings that pinnipeds may have adapted unique surfactant compositions that allow them to dive at high pressures for extended periods without adverse effects. Future studies will need to investigate the differences in other surfactant components to fully assess the surfactant composition in odontocetes.
Collapse
Affiliation(s)
- Danielle B Gutierrez
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Andreas Fahlman
- Comparative Physiology Laboratory, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Manuela Gardner
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Danielle Kleinhenz
- Comparative Physiology Laboratory, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Marina Piscitelli
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| | - Stephen Raverty
- Ministry of Agriculture and Lands, Animal Health Center, 1767 Angus Campbell Road, Abbotsford, BC V3G 2M3, Canada; Fisheries Centre, The University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Martin Haulena
- Vancouver Aquarium, 845 Avison Way, Vancouver, BC V6G 3E2, Canada.
| | - Paul V Zimba
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| |
Collapse
|
8
|
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2014; 185:153-75. [PMID: 25260665 DOI: 10.1016/j.chemphyslip.2014.09.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.
Collapse
|
9
|
Castellini M. Life under water: physiological adaptations to diving and living at sea. Compr Physiol 2013; 2:1889-919. [PMID: 23723028 DOI: 10.1002/cphy.c110013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review covers the field of diving physiology by following a chronological approach and focusing heavily on marine mammals. Because the study of modern diving physiology can be traced almost entirely to the work of Laurence Irving in the 1930s, this particular field of physiology is different than most in that it did not derive from multiple laboratories working at many locations or on different aspects of a similar problem. Because most of the physiology principles still used today were first formulated by Irving, it is important to the study of this field that the sequence of thought is examined as a progression of theory. The review covers the field in roughly decadal blocks and traces ideas as they were first suggested, tested, modified and in some cases, abandoned. Because diving physiology has also been extremely dependent on new technologies used in the development of diving recorders, a chronological approach fits well with advances in electronics and mechanical innovation. There are many species that dive underwater as part of their natural behavior, but it is mainly the marine mammals (seals, sea lions, and whales) that demonstrate both long duration and dives to great depth. There have been many studies on other diving species including birds, snakes, small aquatic mammals, and humans. This work examines these other diving species as appropriate and a listing of reviews and relevant literature on these groups is included at the end.
Collapse
Affiliation(s)
- Michael Castellini
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska.
| |
Collapse
|
10
|
Butterworth A, Brakes P, Vail CS, Reiss D. A veterinary and behavioral analysis of dolphin killing methods currently used in the "drive hunt" in Taiji, Japan. J APPL ANIM WELF SCI 2013; 16:184-204. [PMID: 23544757 DOI: 10.1080/10888705.2013.768925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Annually in Japanese waters, small cetaceans are killed in "drive hunts" with quotas set by the government of Japan. The Taiji Fishing Cooperative in Japan has published the details of a new killing method that involves cutting (transecting) the spinal cord and purports to reduce time to death. The method involves the repeated insertion of a metal rod followed by the plugging of the wound to prevent blood loss into the water. To date, a paucity of data exists regarding these methods utilized in the drive hunts. Our veterinary and behavioral analysis of video documentation of this method indicates that it does not immediately lead to death and that the time to death data provided in the description of the method, based on termination of breathing and movement, is not supported by the available video data. The method employed causes damage to the vertebral blood vessels and the vascular rete from insertion of the rod that will lead to significant hemorrhage, but this alone would not produce a rapid death in a large mammal of this type. The method induces paraplegia (paralysis of the body) and death through trauma and gradual blood loss. This killing method does not conform to the recognized requirement for "immediate insensibility" and would not be tolerated or permitted in any regulated slaughterhouse process in the developed world.
Collapse
Affiliation(s)
- Andrew Butterworth
- Clinical Veterinary School, University of Bristol Veterinary School, Langford, United Kingdom
| | | | | | | |
Collapse
|
11
|
|
12
|
Maina JN, West JB, Orgeig S, Foot NJ, Daniels CB, Kiama SG, Gehr P, Mühlfeld C, Blank F, Müller L, Lehmann A, Brandenberger C, Rothen-Rutishauser B. Recent advances into understanding some aspects of the structure and function of mammalian and avian lungs. Physiol Biochem Zool 2010; 83:792-807. [PMID: 20687843 DOI: 10.1086/652244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."
Collapse
Affiliation(s)
- J N Maina
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Torday JS, Powell FL, Farmer CG, Orgeig S, Nielsen HC, Hall AJ. Leptin integrates vertebrate evolution: from oxygen to the blood-gas barrier. Respir Physiol Neurobiol 2010; 173 Suppl:S37-42. [PMID: 20096383 DOI: 10.1016/j.resp.2010.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 11/30/2022]
Abstract
The following are the proceedings of a symposium held at the Second International Congress for Respiratory Science in Bad Honnef, Germany. The goals of the symposium were to delineate the blood-gas barrier phenotype across vertebrate species; to delineate the interrelationship between the evolution of the blood-gas barrier, locomotion and metabolism; to introduce the selection pressures for the evolution of the surfactant system as a key to understanding the physiology of the blood-gas barrier; to introduce the lung lipofibroblast and its product, leptin, which coordinately regulates pulmonary surfactant, type IV collagen in the basement membrane and host defense, as the cell-molecular site of selection pressure for the blood-gas barrier; to drill down to the gene regulatory network(s) involved in leptin signaling and the blood-gas barrier phenotype; to extend the relationship between leptin and the blood-gas barrier to diving mammals.
Collapse
Affiliation(s)
- J S Torday
- Department of Pediatrics, University of California-Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Johnson WR, Torralba M, Fair PA, Bossart GD, Nelson KE, Morris PJ. Novel diversity of bacterial communities associated with bottlenose dolphin upper respiratory tracts. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:555-562. [PMID: 23765934 DOI: 10.1111/j.1758-2229.2009.00080.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Respiratory illness is thought to be most the common cause of death in both wild and captive populations of bottlenose dolphins (Tursiops truncatus). The suspected pathogens that have been isolated from diseased animals have also been isolated from healthy individuals, suggesting they may be part of the normal flora. Our current understanding of the bacteria associated with the upper respiratory tract (URT) of bottlenose dolphins is based exclusively upon culture-based isolation and identification. Because < 1% of naturally occurring bacteria are culturable, a substantial fraction of the bacterial community associated with the dolphin URT remains to be described. The dolphin URT microbiota revealed by sequencing of bacterial 16S rDNA exhibits almost no overlap with the taxa indicated in culture-based studies. The most abundant sequences in our libraries were similar among all of our study animals and shared the greatest homology to sequences of bacteria belonging to the genera Cardiobacterium, Suttonella, Psychrobacter, Tenacibaculum, Fluviicola and Flavobacterium; however, they were sufficiently different from database sequences from both cultured and uncultured organisms to suggest they represent novel genera and species. Our findings also demonstrate the dominance of three of the four bacterial phyla that dominate other mammalian microbiomes, including those of humans, and show tremendous diversity at the species/strain level, suggesting tight coevolution of the dolphin host and its URT bacterial community.
Collapse
Affiliation(s)
- Wesley R Johnson
- Department of Biology, College of Charleston, Charleston, SC 29401, USA. Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC 29412, USA. J. Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA. Center for Coastal Environmental Health and Biomolecular Research, NOAA National Ocean Service, 219 Fort Johnson Rd. Charleston, SC 29412, USA. Georgia Aquarium, 225 Baker St., NW, Atlanta, GA 30313, USA
| | | | | | | | | | | |
Collapse
|
15
|
Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1947-77. [PMID: 18433715 DOI: 10.1016/j.bbamem.2008.03.021] [Citation(s) in RCA: 372] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 02/06/2023]
Abstract
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Foot NJ, Orgeig S, Donnellan S, Bertozzi T, Daniels CB. Positive selection in the N-terminal extramembrane domain of lung surfactant protein C (SP-C) in marine mammals. J Mol Evol 2007; 65:12-22. [PMID: 17568982 DOI: 10.1007/s00239-006-0083-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Maximum-likelihood models of codon and amino acid substitution were used to analyze the lung-specific surfactant protein C (SP-C) from terrestrial, semi-aquatic, and diving mammals to identify lineages and amino acid sites under positive selection. Site models used the nonsynonymous/synonymous rate ratio (omega) as an indicator of selection pressure. Mechanistic models used physicochemical distances between amino acid substitutions to specify nonsynonymous substitution rates. Site models strongly identified positive selection at different sites in the polar N-terminal extramembrane domain of SP-C in the three diving lineages: site 2 in the cetaceans (whales and dolphins), sites 7, 9, and 10 in the pinnipeds (seals and sea lions), and sites 2, 9, and 10 in the sirenians (dugongs and manatees). The only semi-aquatic contrast to indicate positive selection at site 10 was that including the polar bear, which had the largest body mass of the semi-aquatic species. Analysis of the biophysical properties that were influential in determining the amino acid substitutions showed that isoelectric point, chemical composition of the side chain, polarity, and hydrophobicity were the crucial determinants. Amino acid substitutions at these sites may lead to stronger binding of the N-terminal domain to the surfactant phospholipid film and to increased adsorption of the protein to the air-liquid interface. Both properties are advantageous for the repeated collapse and reinflation of the lung upon diving and resurfacing and may reflect adaptations to the high hydrostatic pressures experienced during diving.
Collapse
Affiliation(s)
- Natalie J Foot
- Discipline of Environmental Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | |
Collapse
|
17
|
Foot NJ, Orgeig S, Daniels CB. The evolution of a physiological system: the pulmonary surfactant system in diving mammals. Respir Physiol Neurobiol 2006; 154:118-38. [PMID: 16877052 DOI: 10.1016/j.resp.2006.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 04/18/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Pulmonary surfactant lines the alveolar air-water interface, varying surface tension with lung volume to increase compliance and prevent adhesion of respiratory surfaces. We examined whether the surfactant system of diving mammals exhibits adaptations for more efficient lung function during diving, to complement other respiratory adaptations. Here we review adaptations at the molecular, compositional, functional and cellular levels and during development for animals beginning life on land and progressing to an aquatic environment. Molecular adaptations to diving were examined in surfactant protein C (SP-C) from terrestrial, semi-aquatic and diving mammals using phylogenetic analyses. Diving species exhibited sites under positive selection in the polar N-terminal domain. These amino acid substitutions may lead to stronger binding of SP-C to the phospholipid film and increased adsorption to the air-liquid interface. The concentration of shorter chain phospholipid molecular species was greater and SP-B levels were lower in diving than terrestrial mammals. This may lead to a greater fluidity and explain the relatively poor surface activity of diving mammal surfactant. There were no consistent differences in cholesterol between diving and terrestrial mammals. Surfactant from newborn California sea lions was similar to that of terrestrial mammals. Secretory activity of alveolar type II epithelial cells of sea lions demonstrated an insensitivity to pressure relative to sheep cells. The poor surface activity of diving mammal surfactant is consistent with the hypothesis that it has an anti-adhesive function that develops after the first entry into the water, with a surfactant film that is better suited to repeated collapse and respreading.
Collapse
Affiliation(s)
- Natalie J Foot
- Discipline of Environmental Biology, School of Earth & Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
18
|
Miller NJ, Postle AD, Orgeig S, Koster G, Daniels CB. The composition of pulmonary surfactant from diving mammals. Respir Physiol Neurobiol 2005; 152:152-68. [PMID: 16140043 DOI: 10.1016/j.resp.2005.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Maintaining a functional pulmonary surfactant system at depth is critical for diving mammals to ensure that inspiration is possible upon re-emergence. The lipid and protein composition of lavage extracts from three pinniped species (California sea lion, Northern elephant seal and Ringed seal) were compared to several terrestrial species. Lavage samples were purified using a NaBr discontinuous gradient. Concentrations of phospholipid classes and molecular species were measured using electrospray ionisation mass spectrometry, cholesterol was measured using high-performance liquid chromatography, surfactant protein A (SP-A) and SP-B were measured using enzyme-linked immunosorbent assays. There were small differences in phospholipid classes, with a lower level of anionic surfactant phospholipids, PG and PI, between diving and terrestrial mammals. There were no differences in PL saturation or SP-A levels between species. PC16:0/14:0, PC16:0/16:1, PC16:0/16:0, long chain PI species and the total concentrations of alkyl-acyl species of PC and PG as a ratio of diacyl species were increased in diving mammals, whereas concentrations of PC16:0/18:1, PG16:0/16:0 and PG16:0/18:1 were decreased. Cholesterol levels were very variable between species and SP-B was very low in diving mammals. These differences may explain the very poor surface activity of pinniped surfactant that we have previously described [Miller, N.J., Daniels, C.B., Schürch, S., Schoel, W.M., Orgeig, S., 2005. The surface activity of pulmonary surfactant from diving mammals. Respir. Physiol. Neurobiol. 150 (2006) 220-232], supporting the hypothesis that pinniped surfactant has primarily an anti-adhesive function to meet the challenges of regularly collapsing lungs.
Collapse
Affiliation(s)
- Natalie J Miller
- Environmental Biology, School of Earth and Environmental Sciences, Darling Building, University of Adelaide, North Tce, Australia
| | | | | | | | | |
Collapse
|
19
|
Miller NJ, Postle AD, Schürch S, Michael Schoel W, Daniels CB, Orgeig S. The development of the pulmonary surfactant system in California sea lions. Comp Biochem Physiol A Mol Integr Physiol 2005; 141:191-9. [PMID: 15964230 DOI: 10.1016/j.cbpb.2005.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 05/09/2005] [Accepted: 05/09/2005] [Indexed: 11/27/2022]
Abstract
Pulmonary surfactant has previously been shown to change during development, both in composition and function. Adult pinnipeds, unlike adult terrestrial mammals, have an altered lung physiology to cope with the high pressures associated with deep diving. Here, we investigated how surfactant composition and function develop in California sea lions (Zalophus californianus). Phosphatidylinositol was the major anionic phospholipid in the newborn, whereas phosphatidylglycerol was increased in the adult. This increase in phosphatidylglycerol occurred at the expense of phosphatidylinositol and phosphatidylserine. There was a shift from long chain and polyunsaturated phospholipid molecular species in the newborn to shorter chain and mono- and disaturated molecular species in the adult. Cholesterol and SP-B concentrations were also higher in the adult. Adult surfactant could reach a lower equilibrium surface tension, but newborn surfactant could reach a lower minimum surface tension. The composition and function of surfactant from newborn California sea lions suggest that this age group is similar to terrestrial newborn mammals, whereas the adult has a "diving mammal" surfactant that can aid the lung during deep dives. The onset of diving is probably a trigger for surfactant development in these animals.
Collapse
Affiliation(s)
- Natalie J Miller
- Environmental Biology, School of Earth and Environmental Sciences, Darling Building, University of Adelaide, North Tce, Australia
| | | | | | | | | | | |
Collapse
|