1
|
He W, Gao Y, Wen Y, Ke X, Ou Z, Li Y, He H, Chen Q. Detection of Virus-Related Sequences Associated With Potential Etiologies of Hepatitis in Liver Tissue Samples From Rats, Mice, Shrews, and Bats. Front Microbiol 2021; 12:653873. [PMID: 34177835 PMCID: PMC8221242 DOI: 10.3389/fmicb.2021.653873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatitis is a major global health concern. However, the etiology of 10-20% hepatitis cases remains unclear. Some hepatitis-associated viruses, like the hepatitis E virus, are zoonotic pathogens. Rats, shrews, and bats are reservoirs for many zoonotic pathogens. Therefore, understanding the virome in the liver of these animals is important for the investigation of the etiologies of hepatitis and monitoring the emerging zoonotic viruses. In this study, viral metagenomics and PCR methods were used to investigate viral communities in rats, mice, house shrews, and bats livers. Viral metagenomic analysis showed a diverse set of sequences in liver samples, comprising: sequences related to herpesviruses, orthomyxoviruses, anelloviruses, hepeviruses, hepadnaviruses, flaviviruses, parvoviruses, and picornaviruses. Using PCR methods, we first detected hepatovirus sequences in Hipposideros larvatus (3.85%). We also reported the first detection of Zika virus-related sequences in rats and house shrews. Sequences related to influenza A virus and herpesviruses were detected in liver. Higher detection rates of pegivirus sequences were found in liver tissue and serum samples from rats (7.85% and 15.79%, respectively) than from house shrews. Torque teno virus sequences had higher detection rates in the serum samples of rats and house shrews (52.72% and 5.26%, respectively) than in the liver. Near-full length genomes of pegivirus and torque teno virus were amplified. This study is the first to compare the viral communities in the liver of bats, rats, mice, and house shrews. Its findings expand our understanding of the virome in the liver of these animals and provide an insight into hepatitis-related viruses.
Collapse
Affiliation(s)
- Wenqiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yuhan Gao
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yuqi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Xuemei Ke
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Zejin Ou
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yongzhi Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Peripheral Dopamine 2-Receptor Antagonist Reverses Hypertension in a Chronic Intermittent Hypoxia Rat Model. Int J Mol Sci 2020; 21:ijms21144893. [PMID: 32664461 PMCID: PMC7402302 DOI: 10.3390/ijms21144893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The sleep apnea-hypopnea syndrome (SAHS) involves periods of intermittent hypoxia, experimentally reproduced by exposing animal models to oscillatory PO2 patterns. In both situations, chronic intermittent hypoxia (CIH) exposure produces carotid body (CB) hyperactivation generating an increased input to the brainstem which originates sympathetic hyperactivity, followed by hypertension that is abolished by CB denervation. CB has dopamine (DA) receptors in chemoreceptor cells acting as DA-2 autoreceptors. The aim was to check if blocking DA-2 receptors could decrease the CB hypersensitivity produced by CIH, minimizing CIH-related effects. Domperidone (DOM), a selective peripheral DA-2 receptor antagonist that does not cross the blood-brain barrier, was used to examine its effect on CIH (30 days) exposed rats. Arterial pressure, CB secretory activity and whole-body plethysmography were measured. DOM, acute or chronically administered during the last 15 days of CIH, reversed the hypertension produced by CIH, an analogous effect to that obtained with CB denervation. DOM marginally decreased blood pressure in control animals and did not affect hypoxic ventilatory response in control or CIH animals. No adverse effects were observed. DOM, used as gastrokinetic and antiemetic drug, could be a therapeutic opportunity for hypertension in SAHS patients’ resistant to standard treatments.
Collapse
|
3
|
Dylag AM, Raffay TM. Rodent models of respiratory control and respiratory system development-Clinical significance. Respir Physiol Neurobiol 2019; 268:103249. [PMID: 31315068 DOI: 10.1016/j.resp.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 06/29/2019] [Indexed: 01/13/2023]
Abstract
The newborn infant's respiratory system must rapidly adapt to extra-uterine life. Neonatal rat and mouse models have been used to investigate early development of respiratory control and reactivity in both health and disease. This review highlights several rodent models of control of breathing and respiratory system development (including pulmonary function), discusses their translational strengths and limitations, and underscores the importance of creating clinically relevant models applicable to the human infant.
Collapse
Affiliation(s)
- Andrew M Dylag
- Division of Neonatology, Golisano Children's Hospital, Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies & Children's Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
4
|
Hickman DL. Home Cage Compared with Induction Chamber for Euthanasia of Laboratory Rats. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2018; 57:729-733. [PMID: 30305198 PMCID: PMC6241385 DOI: 10.30802/aalas-jaalas-17-000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/12/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022]
Abstract
This study compared behavioral and physiologic changes in Sprague-Dawley and Brown Norway rats that were euthanized by using a 30% volume displacement rate of CO₂ in either their home cage or an induction chamber; rats euthanized in the home cage were hypothesized to demonstrate a higher level of animal wellbeing. No significant differences were detected in the physiologic responses to home cage versus induction chamber euthanasia groups. A few strain-related behavioral differences occurred. The number of digs per second was higher in Brown Norway compared with Sprague-Dawley rats when in the home cage, where a digging substrate was present. Rearing frequency was higher in both Brown Norway and Sprague-Dawley rats in the induction chamber compared with the home cage. This study demonstrated that although strainspecific differences were associated with the process of euthanasia, there were no significant differences between the treatment groups of home cage compared with induction chamber. This finding suggests that-from the perspective of a rat-either the home cage or an induction chamber can be used for euthanasia, with likely extension of this conclusion to use of either method to the induction of anesthesia.
Collapse
Affiliation(s)
- Debra L Hickman
- Laboratory Animal Resource Center, School of Medicine, Indiana University, Indianapolis, Indiana, USA.
| |
Collapse
|
5
|
Gold nanoparticles decorated poly-melamine modified glassy carbon sensor for the voltammetric estimation of domperidone in pharmaceuticals and biological fluids. Talanta 2015; 141:53-9. [DOI: 10.1016/j.talanta.2015.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/23/2022]
|
6
|
Huang J, Li W, Li Y, Luo C, Zeng Y, Xu Y, Zhou J. Generation of uniform polymer eccentric and core-centered hollow microcapsules for ultrasound-regulated drug release. J Mater Chem B 2014; 2:6848-6854. [DOI: 10.1039/c4tb01050g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uniform polydimethylsiloxane microcapsules with eccentric and core-centered internal hollow structures show controlled-release behaviour for site-specific drug delivery under ultrasound regulation.
Collapse
Affiliation(s)
- Jingxian Huang
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Wanbo Li
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Yan Li
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Chongdai Luo
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Yecheng Zeng
- School of Pharmaceutical Science
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Science
- Sun Yat-sen University
- Guangzhou 510006, China
| | - Jianhua Zhou
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006, China
| |
Collapse
|
7
|
Mayer CA, Ao J, Di Fiore JM, Martin RJ, MacFarlane PM. Impaired hypoxic ventilatory response following neonatal sustained and subsequent chronic intermittent hypoxia in rats. Respir Physiol Neurobiol 2013; 187:167-75. [PMID: 23562917 DOI: 10.1016/j.resp.2013.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/15/2022]
Abstract
Neonatal chronic intermittent hypoxia (CIH) enhances the ventilatory sensitivity to acute hypoxia (acute hypoxic ventilatory response, HVR), whereas sustained hypoxia (SH) can have the opposite effect. Therefore, we investigated whether neonatal rats pre-treated with SH prior to CIH exhibit a modified HVR. Rat pups were exposed to CIH (5% O2/5min, 8h/day) between 6 and 15 days of postnatal age (P6-15) after pre-treatment with either normoxia or SH (11% O2; P1-5). Using whole-body plethysmography, the acute (5min, 10% O2) HVR at P16 (1 day post-CIH) was unchanged following CIH (67.9±6.7% above baseline) and also SH (58.8±10.5%) compared to age-matched normoxic rats (54.7±6.3%). In contrast, the HVR was attenuated (16.5±6.0%) in CIH exposed rats pre-treated with SH. These data suggest that while neonatal SH and CIH alone have little effect on the magnitude of the acute HVR, their combined effects impose a synergistic disturbance to postnatal development of the HVR. These data could provide important insight into the consequences of not maintaining adequate levels of oxygen saturation during the early neonatal period, especially in vulnerable preterm infants susceptible to frequent bouts of hypoxemic events (CIH) that are commonly associated with apnea of prematurity.
Collapse
Affiliation(s)
- C A Mayer
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
8
|
Donovan LM, Chai S, Gillombardo CB, Emancipator SN, Strohl KP. Ventilatory behavior and carotid body morphology of Brown Norway and Sprague Dawley rats. Respir Physiol Neurobiol 2011; 178:250-5. [PMID: 21729771 DOI: 10.1016/j.resp.2011.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/19/2011] [Accepted: 06/21/2011] [Indexed: 11/29/2022]
Abstract
Differences in acute ventilatory behavior are associated with carotid body (CB) structural and immunohistologic profiles in some, but not all, reports. Brown Norway (BN) rats exhibit lower acute ventilatory responses to hypoxia and hypercapnia compared to Sprague Dawley (SD) rats. We hypothesized that BN rats possess CB with fewer glomus cells. Ventilation was recorded in 6-month-old BN and SD rats exposed to hypoxia-reoxygenation and hypercapnia. Extracted CBs were examined using H&E staining, and immunohistochemistry with antibodies specific for tyrosine hydroxylase (TH), neural nitric oxide synthase (nNOS), and pyruvate dehydrogenase (PD). Sections were analyzed for cell and immunostaining density. SD displayed greater hypoxic and hypercapnic responses, and post-hypoxic short term potentiation, whereas BN exhibited post-hypoxic frequency decline. Contrary to our hypothesis, BN demonstrated a denser arrangement of glomus cells with a larger TH stained area (31.7% BN, 22.6% SD; p<0.0001), and nNOS stained area (37.3% BN, 32.1%; SD; p=0.01). Hence, respiratory phenotype does not correlate intuitively with these anatomic features.
Collapse
Affiliation(s)
- Lucas M Donovan
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
9
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Increased peripheral chemosensitivity via dopaminergic manipulation promotes respiratory instability in lambs. Respir Physiol Neurobiol 2008; 164:419-28. [DOI: 10.1016/j.resp.2008.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 12/20/2022]
|
11
|
Schlenker EH. In hamsters the D1 receptor antagonist SCH23390 depresses ventilation during hypoxia. Brain Res 2007; 1187:146-53. [PMID: 18036574 DOI: 10.1016/j.brainres.2007.10.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 10/16/2007] [Accepted: 10/19/2007] [Indexed: 11/16/2022]
Abstract
During exposure of animals to hypoxia, brain and blood dopamine levels increase stimulating dopaminergic receptors which influence the integrated ventilatory response to low oxygen. The purpose of the present study is to test the hypothesis that in conscious hamsters, systemic antagonism of D(1) receptors would depress their breathing in air and in response to hypoxic and hypercapnic challenges. Nine male hamsters were treated with saline or 0.25 mg/kg SCH-23390 (SCH), a D(1) receptor antagonist that crosses the blood-brain barrier. Ventilation was determined using the barometric method, and oxygen consumption and CO(2) production were evaluated utilizing the flow-through method. During exposure to air, SCH decreased frequency of breathing. During exposure to hypoxia (10% oxygen in nitrogen), relative to saline, SCH-treated hamsters decreased minute ventilation by decreasing tidal volume and oxygen consumption but not CO(2) production. During exposure to hypercapnia (5% CO(2) in 95% O(2)), frequency of breathing was decreased with SCH, but there was no significant effect on minute ventilation. Relative to saline treatment body temperature was lower in SCH-treated hamsters by 0.6 degrees C. These results demonstrate that in hamsters D(1) receptors can modulate control of ventilation in air and during hypoxia and hypercapnic exposures. Whether D(1) receptors located centrally or on carotid bodies modulate these effects is not clear from this study.
Collapse
Affiliation(s)
- Evelyn H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St. Vermillion, SD 57069, USA.
| |
Collapse
|
12
|
Schlenker EH. In hamsters dopamine D2 receptors affect ventilation during and following intermittent hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:674-80. [PMID: 17884646 PMCID: PMC2083261 DOI: 10.1016/j.cbpa.2007.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/17/2007] [Accepted: 08/22/2007] [Indexed: 11/23/2022]
Abstract
We tested the hypothesis that in golden Syrian hamsters (Mesocricetus auratus) carotid body dopaminergic D2 receptors modulate ventilation in air, during exposure to intermittent hypoxia (IH) and reoxygenation. Ventilation was evaluated using the barometric method and CO2 production was determined using the flow through method. Hamsters (n=8) received either subcutaneous injections of vehicle, haloperidol (0.5 mg/kg) or domperidone (0.5 mg/kg). Ventilatory and metabolic variables were determined 30 min following injections, after each of 5 bouts of 5 min of 10% oxygen interspersed by normoxia (IH), and 15, 30, 45 and 60 min following IH when hamsters were exposed to air. Haloperidol, but not domperidone decreased body temperature in hamsters. Neither treatment affected CO2 production. Vehicle-treated hamsters exhibited ventilatory long-term facilitation (VLTF) following IH. Haloperidol or domperidone decreased ventilation in air, during IH and eliminated VLTF due to changes in tidal volume and not frequency of breathing. Thus, in hamsters D2 receptors are involved in control of body temperature and ventilation during and following IH.
Collapse
Affiliation(s)
- Evelyn H Schlenker
- Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA.
| |
Collapse
|
13
|
Ward NL, Moore E, Noon K, Spassil N, Keenan E, Ivanco TL, LaManna JC. Cerebral angiogenic factors, angiogenesis, and physiological response to chronic hypoxia differ among four commonly used mouse strains. J Appl Physiol (1985) 2007; 102:1927-35. [PMID: 17234796 DOI: 10.1152/japplphysiol.00909.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiogenesis is a critical element for adaptation to low levels of oxygen and occurs following long-term exposure to mild hypoxia in rats. To test whether a similar response in mice occurs, CD1, 129/Sv, C57Bl/6, and Balb/c mice were exposed to 10% oxygen for up to 3 wk. All mice showed significant increases in the percentage of packed red blood cells, and CD1 and 129/Sv mice showed increased respiration frequency and minute volume, common physiological measures of hypoxia. Significant angiogenesis was observed in all strains except Balb/c following 3-wk exposure to chronic hypoxia. CD1 hypoxic mice had the largest increase (88%), followed by C57Bl/6 (48%), 129/Sv (41%), and Balb/c (12%), suggesting that some mice undergo more remodeling than others in response to hypoxia. Protein expression analysis of vascular endothelial growth factor (VEGF), angiopoietin (Ang)-1 and Ang2, and Tie2 were examined to determine whether regulation of different angiogenic proteins could account for the differences observed in hypoxia-induced angiogenesis. CD1 mice showed the strongest upregulation of VEGF, Ang2, Ang1, and Tie2, whereas Balb/c had only subtle increases in VEGF and no change in the other proteins. C57Bl/6 mice showed a regulatory response that fell between the CD1 and Balb/c mice, consistent with the intermediate increase in angiogenesis. Our results suggest that genetic heterogeneity plays a role in angiogenesis and regulation of angiogenic proteins and needs to be accounted for when designing and interpreting experiments using transgenic mice and when studying in vivo models of angiogenesis.
Collapse
Affiliation(s)
- Nicole L Ward
- Dept. of Dermatology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|