1
|
da Silva MP, Magalhães KS, de Souza DP, Moraes DJA. Chronic intermittent hypoxia increases excitability and synaptic excitation of protrudor and retractor hypoglossal motoneurones. J Physiol 2021; 599:1917-1932. [PMID: 33507557 DOI: 10.1113/jp280788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Dysfunctions in the hypoglossal control of tongue extrinsic muscles are implicated in obstructive sleep apnoea (OSA) syndrome. Chronic intermittent hypoxia (CIH), an important feature of OSA syndrome, produces deleterious effects on the motor control of oropharyngeal resistance, but whether the hypoglossal motoneurones innervating the tongue extrinsic muscles are affected by CIH is unknown. We show that CIH enhanced the respiratory-related activity of rat hypoglossal nerve innervating the protrudor and retractor tongue extrinsic muscles. Intracellular recordings revealed increases in respiratory-related firing frequency and synaptic excitation of inspiratory protrudor and retractor hypoglossal motoneurones after CIH. CIH also increased their intrinsic excitability, depolarised resting membrane potential and reduced K+ -dominated leak conductance. CIH affected the breathing-related synaptic control and intrinsic electrophysiological properties of protrudor and retractor hypoglossal motoneurones to optimise the neural control of oropharyngeal function. ABSTRACT Inspiratory-related tongue movements and oropharyngeal motor actions are controlled mainly by the protrudor and retractor extrinsic tongue muscles, which are innervated by the hypoglossal motoneurones. Chronic intermittent hypoxia (CIH), an important feature of obstructive sleep apnoea syndrome, produces detrimental effects on the contractile function of the tongue extrinsic muscles and the medullary inspiratory network of rodents. However, the impact of the CIH on the electrophysiological properties of protrudor and retractor hypoglossal motoneurones has not been described before. Using nerves and intracellular recordings in in situ preparation of rats (5 weeks old), we tested the hypothesis that CIH (FiO2 of 0.06, SaO2 74%, during 30-40 s, every 9 min, 8 h/day for 10 days) increases the intrinsic excitability of protrudor and retractor motoneurones from the hypoglossal motor nucleus of rats. Recordings of hypoglossal nerve, before its bifurcation to innervate the tongue protrudor and retractor muscles, revealed that CIH enhances its pre-inspiratory, simultaneously with the presence of active expiration, and inspiratory activities. These changes were mediated by increases in the respiratory-related firing frequency and synaptic excitation of inspiratory protrudor and retractor hypoglossal motoneurones. Besides, CIH increases their intrinsic excitability and depolarises resting membrane potential by reducing a K+ -dominated leak conductance. In conclusion, CIH enhances the respiratory-related neural control of oropharyngeal function of rats by increasing the synaptic excitation, intrinsic excitability, and reducing leak conductance in both protrudor and retractor hypoglossal motoneurones. We propose that these network and cellular changes are important to optimise the oropharyngeal resistance in conditions related to intermittent hypoxia.
Collapse
Affiliation(s)
- Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karolyne S Magalhães
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniel P de Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Barkmeier-Kraemer JM. Isolated Voice Tremor: A Clinical Variant of Essential Tremor or a Distinct Clinical Phenotype? Tremor Other Hyperkinet Mov (N Y) 2020; 10:tre-10-738. [PMID: 32015933 PMCID: PMC6988183 DOI: 10.7916/tohm.v0.738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/26/2019] [Indexed: 12/01/2022] Open
Abstract
Background The consensus statement by the Task Force on Tremor of the International Parkinson and Movement Disorder Society excludes individuals with "isolated voice tremor" as a clinical variant of essential tremor (ET). This clinical viewpoint presents a rationale for reconsideration of "isolated voice tremor" as a clinical variant of ET. Methods Evidence from the literature was extracted to characterize the clinical phenotype of "isolated voice tremor," or essential vocal tremor (EVT). Clinical features were extracted from relevant literature available at pubmed.gov using the terms "EVT," "essential voice tremor," "primary voice tremor," and "organic voice tremor." Results The average age of onset in those with EVT was older than 60 years (range 19-84 years), with 75-93% being female. The typical duration of vocal tremor ranged from 1 to 13 years (average 6 years). The distribution of structures exhibiting tremor included the larynx, soft palate, pharynx, and base of tongue in the majority of patients, with some exhibiting tremor of the head and respiratory musculature. The condition of tremor occurred during speech and quiet respiration in 74% of individuals. Rate of tremor ranged from 4 to 10 Hz. Nearly 70% reported onset of vocal tremor prior to upper limb involvement. Family history of tremor was reported in 38-42% of individuals. Discussion Those previously classified with EVT demonstrate a similar familial history, rate, tremor classification, and body distribution of ET. EVT is proposed as a clinical variant of ET in the pattern of onset and progression of body distribution from the midline cranial to spinal neural pathways.
Collapse
|
3
|
The physiological significance of postinspiration in respiratory control. PROGRESS IN BRAIN RESEARCH 2014; 212:113-30. [DOI: 10.1016/b978-0-444-63488-7.00007-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Horner RL. Neural control of the upper airway: integrative physiological mechanisms and relevance for sleep disordered breathing. Compr Physiol 2013; 2:479-535. [PMID: 23728986 DOI: 10.1002/cphy.c110023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The various neural mechanisms affecting the control of the upper airway muscles are discussed in this review, with particular emphasis on structure-function relationships and integrative physiological motor-control processes. Particular foci of attention include the respiratory function of the upper airway muscles, and the various reflex mechanisms underlying their control, specifically the reflex responses to changes in airway pressure, reflexes from pulmonary receptors, chemoreceptor and baroreceptor reflexes, and postural effects on upper airway motor control. This article also addresses the determinants of upper airway collapsibility and the influence of neural drive to the upper airway muscles, and the influence of common drugs such as ethanol, sedative hypnotics, and opioids on upper airway motor control. In addition to an examination of these basic physiological mechanisms, consideration is given throughout this review as to how these mechanisms relate to integrative function in the intact normal upper airway in wakefulness and sleep, and how they may be involved in the pathogenesis of clinical problems such obstructive sleep apnea hypopnea.
Collapse
|
5
|
Hadj-Ahmed MA, Samson N, Bussières M, Beck J, Praud JP. Absence of inspiratory laryngeal constrictor muscle activity during nasal neurally adjusted ventilatory assist in newborn lambs. J Appl Physiol (1985) 2012; 113:63-70. [PMID: 22518828 DOI: 10.1152/japplphysiol.01496.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In nonsedated newborn lambs, nasal pressure support ventilation (nPSV) can lead to an active glottal closure in early inspiration, which can limit lung ventilation and divert air into the digestive system, with potentially deleterious consequences. During volume control ventilation (nVC), glottal closure is delayed to the end of inspiration, suggesting that it is reflexly linked to the maximum value of inspiratory pressure. Accordingly, the aim of the present study was to test whether inspiratory glottal closure develops at the end of inspiration during nasal neurally adjusted ventilatory assist (nNAVA), an increasingly used ventilatory mode where maximal pressure is also reached at the end of inspiration. Polysomnographic recordings were performed in eight nonsedated, chronically instrumented lambs, which were ventilated with progressively increasing levels of nPSV and nNAVA in random order. States of alertness, diaphragm, and glottal muscle electrical activity, tracheal pressure, Spo(2), tracheal Pet(CO(2)), and respiratory inductive plethysmography were continuously recorded. Although phasic inspiratory glottal constrictor electrical activity appeared during nPSV in 5 of 8 lambs, it was never observed at any nNAVA level in any lamb, even at maximal achievable nNAVA levels. In addition, a decrease in Pco(2) was neither necessary nor sufficient for the development of inspiratory glottal constrictor activity. In conclusion, nNAVA does not induce active inspiratory glottal closure, in contrast to nPSV and nVC. We hypothesize that this absence of inspiratory activity is related to the more physiological airway pressurization during nNAVA, which tightly follows diaphragm electrical activity throughout inspiration.
Collapse
Affiliation(s)
- Mohamed Amine Hadj-Ahmed
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Physiology, Université de Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
6
|
Samson N, Dumont S, Specq ML, Praud JP. Radio telemetry devices to monitor breathing in non-sedated animals. Respir Physiol Neurobiol 2011; 179:111-8. [PMID: 21964163 DOI: 10.1016/j.resp.2011.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/13/2011] [Accepted: 09/16/2011] [Indexed: 11/27/2022]
Abstract
Radio telemetry equipment has significantly improved over the last 10-15 years and is increasingly being used in research for monitoring a variety of physiological parameters in non-sedated animals. The aim of this review is to provide an update on the current state of development of radio telemetry for recording respiration. Our literature review found only rare reports of respiratory studies via radio telemetry. Much of this article will hence report our experience with our custom-built radio telemetry devices designed for recording respiratory signals, together with numerous other physiological signals in lambs. Our current radio telemetry system allows to record 24 simultaneous signals 24h/day for several days. To our knowledge, this is the highest number of physiological signals, which can be recorded wirelessly. Our devices have been invaluable for studying respiration in our ovine models of preterm birth, reflux laryngitis, postnatal exposure to cigarette smoke, respiratory syncytial virus infection and nasal ventilation, all of which are relevant to neonatal respiratory problems.
Collapse
Affiliation(s)
- Nathalie Samson
- Neonatal Respiratory Research Unit, Department of Pediatrics and Physiology, Université de Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
7
|
Roy B, Samson N, Moreau-Bussière F, Ouimet A, Dorion D, Mayer S, Praud JP. Mechanisms of active laryngeal closure during noninvasive intermittent positive pressure ventilation in nonsedated lambs. J Appl Physiol (1985) 2008; 105:1406-12. [PMID: 18703758 DOI: 10.1152/japplphysiol.90727.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study stems from our recent demonstration (Moreau-Bussiere F, Samson N, St-Hilaire M, Reix P, Lafond JR, Nsegbe E, Praud JP. J Appl Physiol 102: 2149-2157, 2007) that a progressive increase in nasal intermittent positive pressure ventilation (nIPPV) leads to active glottal closure in nonsedated, newborn lambs. The aim of the study was to determine whether the mechanisms involved in this glottal narrowing during nIPPV originate from upper airway receptors and/or from bronchopulmonary receptors. Two groups of newborn lambs were chronically instrumented for polysomnographic recording: the first group of five lambs underwent a two-step bilateral thoracic vagotomy using video-assisted thoracoscopic surgery (bilateral vagotomy group), while the second group, composed of six lambs, underwent chronic laryngotracheal separation (isolated upper airway group). A few days later, polysomnographic recordings were performed to assess glottal muscle electromyography during step increases in nIPPV (volume control mode). Results show that active glottal narrowing does not develop when nIPPV is applied on the upper airways only, and that this narrowing is prevented by bilateral vagotomy when nIPPV is applied on intact airways. In conclusion, active glottal narrowing in response to increasing nIPPV originates from bronchopulmonary receptors.
Collapse
Affiliation(s)
- Bianca Roy
- Neonatal Respiratory Research Unit, Department of Pediatrics and Physiology, Université de Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
8
|
Stettner GM, Zanella S, Huppke P, Gärtner J, Hilaire G, Dutschmann M. Spontaneous central apneas occur in the C57BL/6J mouse strain. Respir Physiol Neurobiol 2007; 160:21-7. [PMID: 17869191 DOI: 10.1016/j.resp.2007.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/27/2007] [Accepted: 07/30/2007] [Indexed: 10/23/2022]
Abstract
Despite the clinical significance of central apneas in a wide range of disorders little is known about their pathogenesis. Research in this field has been hindered by the lack of appropriate animal models. Our goal was to determine whether the C57BL/6J mouse strain, which has an inherited predisposition for dysrhythmic breathing, exhibits spontaneous apneas. In vivo plethysmography of unanesthetized, unrestrained adult C57BL/6J mice revealed a regular occurrence of spontaneous apneas. In situ recordings from respiratory outputs (phrenic, vagal, hypoglossal nerves) in the working heart-brainstem preparation (WHBP) also showed spontaneous central apneas accompanied by laryngeal closure as indicated by tonic vagal postinspiratory activity and increase in subglottal pressure. The apneas were further characterized by a hypoglossal discharge with delayed onset compared to the tonic vagal postinspiratory activity. We conclude that spontaneous central apneas with active laryngeal closure occur in C57BL/6J mice. This mouse strain is a useful animal model to study neuronal mechanisms that underlie the generation of spontaneous central apneas.
Collapse
Affiliation(s)
- Georg M Stettner
- Department of Pediatrics and Pediatric Neurology, University Medicine Göttingen, Georg August University, Robert-Koch-Str. 40, D-37075 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Moreau-Bussière F, Samson N, St-Hilaire M, Reix P, Lafond JR, Nsegbe E, Praud JP. Laryngeal response to nasal ventilation in nonsedated newborn lambs. J Appl Physiol (1985) 2007; 102:2149-57. [PMID: 17332270 DOI: 10.1152/japplphysiol.00891.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although endoscopic studies in adult humans have suggested that laryngeal closure can limit alveolar ventilation during nasal intermittent positive pressure ventilation (nIPPV), there are no available data regarding glottal muscle activity during nIPPV. In addition, laryngeal behavior during nIPPV has not been investigated in neonates. The aim of the present study was to assess laryngeal muscle response to nIPPV in nonsedated newborn lambs. Nine newborn lambs were instrumented for recording states of alertness, electrical activity [electromyograph (EMG)] of glottal constrictor (thyroarytenoid, TA) and dilator (cricothyroid, CT) muscles, EMG of the diaphragm (Dia), and mask and tracheal pressures. nIPPV in pressure support (PS) and volume control (VC) modes was delivered to the lambs via a nasal mask. Results show that increasing nIPPV during wakefulness and quiet sleep led to a progressive disappearance of Dia and CT EMG and to the appearance and subsequent increase in TA EMG during inspiration, together with an increase in trans-upper airway pressure (TUAP). On rare occasions, transmission of nIPPV through the glottis was prevented by complete, active glottal closure, a phenomenon more frequent during active sleep epochs, when irregular bursts of TA EMG were observed. In conclusion, results of the present study suggest that active glottal closure develops with nIPPV in nonsedated lambs, especially in the VC mode. Our observations further suggest that such closure can limit lung ventilation when raising nIPPV in neonates.
Collapse
Affiliation(s)
- François Moreau-Bussière
- Neonatal Respiratory Research Unit, Department of Pediatrics, Université de Sherbrooke, J1H 5N4 Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|