1
|
Myers JH, Denman K, Dupont C, Foy BD, Rich MM. Reduced K + build-up in t-tubules contributes to resistance of the diaphragm to myotonia. J Physiol 2024. [PMID: 39392724 DOI: 10.1113/jp286636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024] Open
Abstract
Patients with myotonia congenita suffer from slowed muscle relaxation caused by hyperexcitability. The diaphragm is only mildly affected in myotonia congenita; discovery of the mechanism underlying its resistance to myotonia could identify novel therapeutic targets. Intracellular recordings from two mouse models of myotonia congenita revealed the diaphragm had less myotonia than either the extensor digitorum longus (EDL) or the soleus muscles. A mechanism contributing to resistance of the diaphragm to myotonia was reduced depolarization of the interspike membrane potential during repetitive firing of action potentials, a process driven by build-up of K+ in small invaginations of muscle membrane known as t-tubules. We explored differences between diaphragm and EDL that might underlie reduction of K+ build-up in diaphragm t-tubules. Smaller size of diaphragm fibres, which promotes diffusion of K+ out of t-tubules, was identified as a contributor. Intracellular recording revealed slower repolarization of action potentials in diaphragm suggesting reduced Kv conductance. Higher resting membrane conductance was identified suggesting increased Kir conductance. Computer simulation found that a reduction of Kv conductance had little effect on K+ build-up whereas increased Kir conductance lessened build-up, although the effect was modest. Our data and computer simulation suggest opening of K+ channels during action potentials has little effect on K+ build-up whereas opening of K+ channels during the interspike interval slightly lessens K+ build-up. We conclude that activation of K+ channels may lessen myotonia by opposing depolarization to action potential threshold without worsening K+ build-up in t-tubules. KEY POINTS: In mouse models of the muscle disease myotonia congenita, the diaphragm has much less myotonia (muscle stiffness) than the extensor digitorum longus or soleus muscles. Identifying why the diaphragm is resistant to myotonia may help in developing novel therapy. We found the reason the diaphragm has less myotonia is that it is less prone to depolarization caused by K+ build-up in t-tubules during repetitive firing of action potentials. Smaller fibre size contributes to resistance to K+ build-up with differences in K+ currents playing little role. Our data suggest drugs that open K+ channels may be effective in treating myotonia as they may lessen excitability without worsening K+ build-up in t-tubules.
Collapse
Affiliation(s)
- Jessica H Myers
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Kirsten Denman
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Brent D Foy
- Department of Physics, Wright State University, Dayton, Ohio, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
2
|
Hoppe K, Chaiklieng S, Lehmann-Horn F, Jurkat-Rott K, Wearing S, Klingler W. Preclinical pharmacological in vitro investigations on low chloride conductance myotonia: effects of potassium regulation. Pflugers Arch 2020; 472:1481-1494. [PMID: 32748018 DOI: 10.1007/s00424-020-02410-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
Abstract
In myotonia, reduced Cl- conductance of the mutated ClC-1 channels causes hindered muscle relaxation after forceful voluntary contraction due to muscle membrane hyperexcitability. Repetitive contraction temporarily decreases myotonia, a phenomena called "warm up." The underlying mechanism for the reduction of hyperexcitability in warm-up is currently unknown. Since potassium displacement is known to reduce excitability in, for example, muscle fatigue, we characterized the role of potassium in native myotonia congenita (MC) muscle. Muscle specimens of ADR mice (an animal model for low gCl- conductance myotonia) were exposed to increasing K+ concentrations. To characterize functional effects of potassium ion current, the muscle of ADR mice was exposed to agonists and antagonists of the big conductance Ca2+-activated K+ channel (BK) and the voltage-gated Kv7 channel. Effects were monitored by functional force and membrane potential measurements. By increasing [K+]0 to 5 mM, the warm-up phenomena started earlier and at [K+]0 7 mM only weak myotonia was detected. The increase of [K+]0 caused a sustained membrane depolarization accompanied with a reduction of myotonic bursts in ADR mice. Retigabine, a Kv7.2-Kv7.5 activator, dose-dependently reduced relaxation deficit of ADR myotonic muscle contraction and promoted the warm-up phenomena. In vitro results of this study suggest that increasing potassium conductivity via activation of voltage-gated potassium channels enhanced the warm-up phenomena, thereby offering a potential therapeutic treatment option for myotonia congenita.
Collapse
Affiliation(s)
- Kerstin Hoppe
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Wuerzburg, Oberduerrbacher Str. 6, 97080, Wuerzburg, Germany.
| | - Sunisa Chaiklieng
- Division of Neurophysiology in the Center of Rare Diseases, Ulm University, Albert Einstein Allee 23, 89081, Ulm, Germany
- Faculty of Public Health, Khon Kaen University, Muang Khon Kaen, Thailand
| | - Frank Lehmann-Horn
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Wuerzburg, Oberduerrbacher Str. 6, 97080, Wuerzburg, Germany
| | - Karin Jurkat-Rott
- Universtiy Medical Center Ulm, Division of Experimental Anesthesiology, Albert-Einstein-Allee 23, 89081, Ullm, Germany
| | - Scott Wearing
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, 4059, Australia
- Department of Conservative and Rehabilitation Orthopedics, Faculty of Sport and Health Science, Technical University of Munich, Gerog-Brauchle-Ring 60/62, Munich, Germany
| | - Werner Klingler
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, 4059, Australia
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, SRH Clinincs, Hohenzollernstraße 40, 72488, Sigmaringen, Germany
- Department of Conservative and Rehabilitation Orthopedics, Faculty of Sport and Health Science, Technical University of Munich, Gerog-Brauchle-Ring 60/62, Munich, Germany
| |
Collapse
|
3
|
Nicolau S, Kao JC, Liewluck T. Trouble at the junction: When myopathy and myasthenia overlap. Muscle Nerve 2019; 60:648-657. [PMID: 31449669 DOI: 10.1002/mus.26676] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Although myopathies and neuromuscular junction disorders are typically distinct, their coexistence has been reported in several inherited and acquired conditions. Affected individuals have variable clinical phenotypes but typically display both a decrement on repetitive nerve stimulation and myopathic findings on muscle biopsy. Inherited causes include myopathies related to mutations in BIN1, DES, DNM2, GMPPB, MTM1, or PLEC and congenital myasthenic syndromes due to mutations in ALG2, ALG14, COL13A1, DOK7, DPAGT1, or GFPT1. Additionally, a decrement due to muscle fiber inexcitability is observed in certain myotonic disorders. The identification of a defect of neuromuscular transmission in an inherited myopathy may assist in establishing a molecular diagnosis and in selecting patients who would benefit from pharmacological correction of this defect. Acquired cases meanwhile stem from the co-occurrence of myasthenia gravis or Lambert-Eaton myasthenic syndrome with an immune-mediated myopathy, which may be due to paraneoplastic disorders or exposure to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Justin C Kao
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | | |
Collapse
|
4
|
van Lunteren E, Moyer M, Cooperrider J, Pollarine J. Impaired Wheel Running Exercise in CLC-1 Chloride Channel-Deficient Myotonic Mice. Front Physiol 2011; 2:47. [PMID: 21886624 PMCID: PMC3152724 DOI: 10.3389/fphys.2011.00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/25/2011] [Indexed: 11/13/2022] Open
Abstract
Background: Genetic deficiency of the muscle CLC-1 chloride channel leads to myotonia, which is manifested most prominently by slowing of muscle relaxation. Humans experience this as muscle stiffness upon initiation of contraction, although this can be overcome with repeated efforts (the “warm-up” phenomenon). The extent to which CLC-1 deficiency impairs exercise activity is controversial. We hypothesized that skeletal muscle CLC-1 chloride channel deficiency leads to severe reductions in spontaneous exercise. Methodology/Principal Findings: To examine this quantitatively, myotonic CLC-1 deficient mice were provided access to running wheels, and their spontaneous running activity was quantified subsequently. Differences between myotonic and normal mice in running were not present soon after introduction to the running wheels, but were fully established during week 2. During the eighth week, myotonic mice were running significantly less than normal mice (322 ± 177 vs 5058 ± 1253 m/day, P = 0.025). Furthermore, there were considerable reductions in consecutive running times (18.8 ± 1.5 vs 59.0 ± 3.7 min, P < 0.001) and in the distance per consecutive running period (58 ± 38 vs 601 ± 174 m, P = 0.048) in myotonic compared with normal animals. Conclusion/Significance: These findings indicate that CLC-1 chloride deficient myotonia in mice markedly impairs spontaneous exercise activity, with reductions in both total distance and consecutive running times.
Collapse
Affiliation(s)
- Erik van Lunteren
- Cleveland Department of Veterans Affairs Medical Center Cleveland, OH, USA
| | | | | | | |
Collapse
|
5
|
Moyer M, Berger DS, Ladd AN, Van Lunteren E. Differential susceptibility of muscles to myotonia and force impairment in a mouse model of myotonic dystrophy. Muscle Nerve 2011; 43:818-27. [PMID: 21404300 DOI: 10.1002/mus.21988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Myotonic dystrophy, or dystrophia myotonica (DM), is characterized by prominent muscle wasting and weakness as well as delayed muscle relaxation resulting from persistent electrical discharges. METHODS We hypothesized heterogeneity among muscles in degree of weakness and myotonia in an expanded [(CUG)(250)] repeats transgenic (HSA(LR)) mouse DM model. Muscle contraction was compared among diaphragm, extensor digitorum longus (EDL), and soleus muscles. RESULTS Myotonia was found only in EDL, as manifested by longer late-relaxation time and elevated myotonic index. EDL, but not the other two muscles, had impaired force over a wide range of stimulation frequencies. During fatigue-inducing stimulation, DM EDL muscle force per cross-sectional area was significantly impaired during 25-Hz stimulation, whereas there were no differences in fatigue response for DM diaphragm or soleus. CONCLUSION In an expanded repeats model of DM the EDL is more susceptible to myotonia and force impairment than muscles with lower proportions of fast-twitch fibers.
Collapse
Affiliation(s)
- Michelle Moyer
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, Cleveland VA Medical Center, K201, 10701 East Boulevard, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
6
|
van Lunteren E, Spiegler SE, Moyer M. Fatigue-inducing stimulation resolves myotonia in a drug-induced model. BMC PHYSIOLOGY 2011; 11:5. [PMID: 21356096 PMCID: PMC3052176 DOI: 10.1186/1472-6793-11-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 02/28/2011] [Indexed: 11/29/2022]
Abstract
Background Slowed muscle relaxation is the contractile hallmark of myotonia congenita, a disease caused by genetic CLC-1 chloride channel deficiency, which improves with antecedent brief contractions ("warm-up phenomenon"). It is unclear to what extent the myotonia continues to dissipate during continued repetitive contractions and how this relates temporally to muscle fatigue. Diaphragm, EDL, and soleus muscles were examined in vitro during repetitive 20 Hz and 50 Hz train stimulation in a drug-induced (9-AC) rat myotonia model. Results At the onset of stimulation, 9-AC treated diaphragm and EDL muscle had markedly prolonged half relaxation and late relaxation times (range 147 to 884 ms, 894 to 1324 ms). Half relaxation and late relaxation times reached near-normal values over the 5-10 and 10-40 subsequent contractions, respectively. In both muscles myotonia declined faster during repetitive 50 Hz than 20 Hz stimulation, and much faster than the rate of force loss during fatigue at both frequencies. Soleus muscle was resistant to the myotonic effects of 9-AC. Conclusions In a drug-induced model of mechanical myotonia, fatigue-inducing stimulation resolves the myotonia, which furthermore appears to be independent from the development of muscle fatigue.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary and Critical Care Medicine, Case Western Reserve University and Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
7
|
van Lunteren E, Pollarine J, Moyer M. Isotonic contractile impairment due to genetic CLC-1 chloride channel deficiency in myotonic mouse diaphragm muscle. Exp Physiol 2007; 92:717-29. [PMID: 17483199 DOI: 10.1113/expphysiol.2007.038190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hallmark of genetic CLC-1 chloride channel deficiency in myotonic humans, goats and mice is delayed muscle relaxation resulting from persistent electrical discharges. In addition to the ion channel defect, muscles from myotonic humans and mice also have major changes in fibre type and myosin isoform composition, but the extent to which this affects isometric contractions remains controversial. Many muscles, including the diaphragm, shorten considerably during normal activities, but shortening contractions have never been assessed in myotonic muscle. The present study tested the hypothesis that CLC-1 deficiency leads to an impairment of muscle isotonic contractile performance. This was tested in vitro on diaphragm muscle from SWR/J-Clcn1(adr-mto)/J myotonic mice. The CLC-1-deficient muscle demonstrated delayed relaxation, as expected. During the contractile phase, there were significant reductions in power and work across a number of stimulation frequencies and loads in CLC-1-deficient compared with normal muscle, the magnitude of which in many instances exceeded 50%. Reductions in shortening and velocity of shortening occurred, and were more pronounced when calculated as a function of absolute than relative load. However, the maximal unloaded shortening velocity calculated from Hill's equation was not altered significantly. The impaired isotonic contractile performance of CLC-1-deficient muscle persisted during fatigue-inducing stimulation. These data indicate that genetic CLC-1 chloride channel deficiency in mice not only produces myotonia but also substantially worsens the isotonic contractile performance of diaphragm muscle.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary and Critical Care Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | | | | |
Collapse
|