1
|
Welch JF, Mitchell GS. Inaugural Review Prize 2023: The exercise hyperpnoea dilemma: A 21st-century perspective. Exp Physiol 2024; 109:1217-1237. [PMID: 38551996 PMCID: PMC11291877 DOI: 10.1113/ep091506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/12/2024] [Indexed: 08/02/2024]
Abstract
During mild or moderate exercise, alveolar ventilation increases in direct proportion to metabolic rate, regulating arterial CO2 pressure near resting levels. Mechanisms giving rise to the hyperpnoea of exercise are unsettled despite over a century of investigation. In the past three decades, neuroscience has advanced tremendously, raising optimism that the 'exercise hyperpnoea dilemma' can finally be solved. In this review, new perspectives are offered in the hope of stimulating original ideas based on modern neuroscience methods and current understanding. We first describe the ventilatory control system and the challenge exercise places upon blood-gas regulation. We highlight relevant system properties, including feedforward, feedback and adaptive (i.e., plasticity) control of breathing. We then elaborate a seldom explored hypothesis that the exercise ventilatory response continuously adapts (learns and relearns) throughout life and ponder if the memory 'engram' encoding the feedforward exercise ventilatory stimulus could reside within the cerebellum. Our hypotheses are based on accumulating evidence supporting the cerebellum's role in motor learning and the numerous direct and indirect projections from deep cerebellar nuclei to brainstem respiratory neurons. We propose that cerebellar learning may be obligatory for the accurate and adjustable exercise hyperpnoea capable of tracking changes in life conditions/experiences, and that learning arises from specific cerebellar microcircuits that can be interrogated using powerful techniques such as optogenetics and chemogenetics. Although this review is speculative, we consider it essential to reframe our perspective if we are to solve the till-now intractable exercise hyperpnoea dilemma.
Collapse
Affiliation(s)
- Joseph F. Welch
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Dempsey JA, Welch JF. Control of Breathing. Semin Respir Crit Care Med 2023; 44:627-649. [PMID: 37494141 DOI: 10.1055/s-0043-1770342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Substantial advances have been made recently into the discovery of fundamental mechanisms underlying the neural control of breathing and even some inroads into translating these findings to treating breathing disorders. Here, we review several of these advances, starting with an appreciation of the importance of V̇A:V̇CO2:PaCO2 relationships, then summarizing our current understanding of the mechanisms and neural pathways for central rhythm generation, chemoreception, exercise hyperpnea, plasticity, and sleep-state effects on ventilatory control. We apply these fundamental principles to consider the pathophysiology of ventilatory control attending hypersensitized chemoreception in select cardiorespiratory diseases, the pathogenesis of sleep-disordered breathing, and the exertional hyperventilation and dyspnea associated with aging and chronic diseases. These examples underscore the critical importance that many ventilatory control issues play in disease pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin
| | - Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
3
|
Dempsey JA, Neder JA, Phillips DB, O'Donnell DE. The physiology and pathophysiology of exercise hyperpnea. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:201-232. [PMID: 35965027 DOI: 10.1016/b978-0-323-91534-2.00001-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In health, the near-eucapnic, highly efficient hyperpnea during mild-to-moderate intensity exercise is driven by three obligatory contributions, namely, feedforward central command from supra-medullary locomotor centers, feedback from limb muscle afferents, and respiratory CO2 exchange (V̇CO2). Inhibiting each of these stimuli during exercise elicits a reduction in hyperpnea even in the continuing presence of the other major stimuli. However, the relative contribution of each stimulus to the hyperpnea remains unknown as does the means by which V̇CO2 is sensed. Mediation of the hyperventilatory response to exercise in health is attributed to the multiple feedback and feedforward stimuli resulting from muscle fatigue. In patients with COPD, diaphragm EMG amplitude and its relation to ventilatory output are used to decipher mechanisms underlying the patients' abnormal ventilatory responses, dynamic lung hyperinflation and dyspnea during exercise. Key contributions to these exercise-limiting responses across the spectrum of COPD severity include high dead space ventilation, an excessive neural drive to breathe and highly fatigable limb muscles, together with mechanical constraints on ventilation. Major controversies concerning control of exercise hyperpnea are discussed along with the need for innovative research to uncover the link of metabolism to breathing in health and disease.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, United States.
| | - J Alberto Neder
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, ON, Canada
| | - Devin B Phillips
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, ON, Canada
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, ON, Canada
| |
Collapse
|
4
|
Dempsey JA, La Gerche A, Hull JH. Is the healthy respiratory system built just right, overbuilt, or underbuilt to meet the demands imposed by exercise? J Appl Physiol (1985) 2020; 129:1235-1256. [PMID: 32790594 DOI: 10.1152/japplphysiol.00444.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the healthy, untrained young adult, a case is made for a respiratory system (airways, pulmonary vasculature, lung parenchyma, respiratory muscles, and neural ventilatory control system) that is near ideally designed to ensure a highly efficient, homeostatic response to exercise of varying intensities and durations. Our aim was then to consider circumstances in which the intra/extrathoracic airways, pulmonary vasculature, respiratory muscles, and/or blood-gas distribution are underbuilt or inadequately regulated relative to the demands imposed by the cardiovascular system. In these instances, the respiratory system presents a significant limitation to O2 transport and contributes to the occurrence of locomotor muscle fatigue, inhibition of central locomotor output, and exercise performance. Most prominent in these examples of an "underbuilt" respiratory system are highly trained endurance athletes, with additional influences of sex, aging, hypoxic environments, and the highly inbred equine. We summarize by evaluating the relative influences of these respiratory system limitations on exercise performance and their impact on pathophysiology and provide recommendations for future investigation.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Robert Sutton Professor of Population Health Sciences, John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia.,National Center for Sports Cardiology, St. Vincent's Hospital, Melbourne, Fitzroy, Australia
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom.,Institute of Sport, Exercise and Health (ISEH), University College London, United Kingdom
| |
Collapse
|
5
|
|
6
|
Van Diest I. Interoception, conditioning, and fear: The panic threesome. Psychophysiology 2019; 56:e13421. [DOI: 10.1111/psyp.13421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ilse Van Diest
- Health, Behavior & Psychopathology, Faculty of Psychology & Educational Sciences; University of Leuven; Leuven Belgium
| |
Collapse
|
7
|
Parkes MJ. Reappraisal of systemic venous chemoreceptors: might they explain the matching of breathing to metabolic rate in humans? Exp Physiol 2017; 102:1567-1583. [DOI: 10.1113/ep086561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
Affiliation(s)
- M. J. Parkes
- School of Sport, Exercise and Rehabilitation Sciences; University of Birmingham; Edgbaston Birmingham B15 2TT UK
- National Institute for Health Research/Wellcome Trust Birmingham Clinical Research Facility; University Hospitals Birmingham National Health Service Foundation Trust; Birmingham B15 2TH UK
| |
Collapse
|
8
|
Doutreleau S, Enache I, Pistea C, Favret F, Lonsdorfer E, Dufour S, Charloux A. Cardio-respiratory responses to hypoxia combined with CO 2 inhalation during maximal exercise. Respir Physiol Neurobiol 2017; 235:52-61. [DOI: 10.1016/j.resp.2016.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/13/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022]
|
9
|
Bernhardt V, Mitchell GS, Lee WY, Babb TG. Short-term modulation of the ventilatory response to exercise is preserved in obstructive sleep apnea. Respir Physiol Neurobiol 2016; 236:42-50. [PMID: 27840272 DOI: 10.1016/j.resp.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The ventilatory response to exercise can be transiently adjusted in response to environmentally (e.g., breathing apparatus) or physiologically altered conditions (e.g., respiratory disease), maintaining constant relative arterial PCO2 regulation from rest to exercise (Mitchell and Babb, 2006); this augmentation is called short-term modulation (STM) of the exercise ventilatory response. Obesity and/or obstructive sleep apnea could affect the exercise ventilatory response and the capacity for STM due to chronically increased mechanical and/or ventilatory loads on the respiratory system, and/or recurrent (chronic) intermittent hypoxia experienced during sleep. We hypothesized that: (1) the exercise ventilatory response is augmented in obese OSA patients compared with obese non-OSA adults, and (2) the capacity for STM with added dead space is diminished in obese OSA patients. METHODS Nine obese adults with OSA (age: 39±6 yr, BMI: 40±5kg/m2, AHI: 25±24 events/h [range 6-73], mean±SD) and 8 obese adults without OSA (age: 38±10 yr, BMI: 37±6kg/m2, AHI: 1±2) completed three, 20-min bouts of constant-load submaximal cycling exercise (8min rest, 6min at 10 and 30W) with or without added external dead space (200 or 400mL; 20min rest between bouts). Steady-state measurements were made of ventilation (V˙E), oxygen consumption V˙O2), carbon dioxide production (V˙CO2), and end-tidal PCO2 (PETCO2). The exercise ventilatory response was defined as the slope of the V˙E-V˙CO2 relationship (ΔV˙E/ΔV˙CO2). RESULTS In control (i.e. no added dead space), the exercise ventilatory response was not significantly different between non-OSA and OSA groups (ΔV˙E/ΔV˙CO2 slope: 30.5±4.2 vs 30.5±3.8, p>0.05); PETCO2 regulation from rest to exercise did not differ between groups (p>0.05). In trials with added external dead space, ΔV˙E/ΔV˙CO2 increased with increased dead space (p < 0.05) and the PETCO2 change from rest to exercise remained small (<2mmHg) in both groups, demonstrating STM. There were no significant differences between groups. CONCLUSIONS Contrary to our hypotheses: (1) the exercise ventilatory response is not increased in obese OSA patients compared with obese non-OSA adults, and (2) the capacity for STM with added dead space is preserved in obese OSA and non-OSA adults.
Collapse
Affiliation(s)
- Vipa Bernhardt
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and UT Southwestern Medical Center, Dallas, TX, USA; Texas A&M University-Commerce, Department of Health and Human Performance, Commerce, TX, USA.
| | - Gordon S Mitchell
- University of Florida, Department of Physical Therapy, Gainesville, FL, USA.
| | - Won Y Lee
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
|
11
|
Poon CS, Song G. Type III-IV muscle afferents are not required for steady-state exercise hyperpnea in healthy subjects and patients with COPD or heart failure. Respir Physiol Neurobiol 2015; 216:78-85. [PMID: 25911558 PMCID: PMC4575501 DOI: 10.1016/j.resp.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/16/2022]
Abstract
Blockade of group III-IV muscle afferents by intrathecal injection of the μ-opioid agonist fentanyl (IF) in humans has been variously reported to depress exercise hyperpnea in some studies but not others. A key unanswered question is whether such an effect is transient or persists in the steady state. Here we show that in healthy subjects undergoing constant-load cycling exercise IF significantly slows the transient exercise ventilatory kinetics but has no discernible effect on the ventilatory response when exercise is sufficiently prolonged. Thus, the ventilatory response to group III-IV muscle afferents input in healthy subjects is not a simple reflex but acts like a high-pass filter with maximum sensitivity during early-phase exercise and is reset in the late phase. In patients with chronic heart failure (CHF) IF causes sustained CO2 retention not only during exercise but also in the resting state, where muscle afferents feedback is minimal. In patients with chronic obstructive pulmonary disease (COPD), IF also elicits sustained decreases in the exercise ventilatory response but with little or no resultant CO2 retention due to concomitant decreases in physiological VD/VT (dead space-to-ventilation ratio). These results support the proposition that optimal long-term regulation of exercise hyperpnea in health and in disease is determined centrally by the respiratory controller through the continuing adaptation of an internal model which dynamically tracks the metabolic CO2 load and the ventilatory inefficiency 1/1-VD/VT that must be overcome for the maintenance of arterial PCO2 homeostasis, rather than being reflexively driven by group III-IV muscle afferents feedback per se.
Collapse
Affiliation(s)
- Chi-Sang Poon
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA, United States.
| | - Gang Song
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA, United States
| |
Collapse
|
12
|
Poon CS, Tin C, Song G. Submissive hypercapnia: Why COPD patients are more prone to CO2 retention than heart failure patients. Respir Physiol Neurobiol 2015; 216:86-93. [PMID: 25891787 DOI: 10.1016/j.resp.2015.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 01/08/2023]
Abstract
Patients with late-stage chronic obstructive pulmonary disease (COPD) are prone to CO2 retention, a condition which has been often attributed to increased ventilation-perfusion mismatch particularly during oxygen therapy. However, patients with mild-to-moderate COPD or chronic heart failure (CHF) also suffer similar ventilatory inefficiency but they remain near-normocapnic at rest and during exercise with an augmented respiratory effort to compensate for the wasted dead space ventilation. In severe COPD, the augmented exercise ventilation progressively reverses as the disease advances, resulting in hypercapnia at peak exercise as ventilatory limitation due to increasing expiratory flow limitation and dynamic lung hyperinflation sets in. Submissive hypercapnia is an emerging paradigm for understanding optimal ventilatory control and cost/benefit decision-making under prohibitive respiratory chemical-mechanical constraints, where the need to maintain normocapnia gives way to the mounting need to conserve the work of breathing. In severe/very severe COPD, submissive hypercapnia epitomizes the respiratory controller's 'can't breathe, so won't breathe' say-uncle policy when faced with insurmountable ventilatory limitation. Even in health, submissive hypercapnia ensues during CO2 breathing/rebreathing when the inhaled CO2 renders normocapnia difficult to restore even with maximal respiratory effort, hence the respiratory controller's 'ain't fresh, so won't breathe' modus operandi. This 'wisdom of the body' with a principled decision to tolerate hypercapnia when faced with prohibitive ventilatory or gas exchange limitations rather than striving for untenable normocapnia at all costs is analogous to the notion of permissive hypercapnia in critical care, a clinical strategy to minimize the risks of ventilator-induced lung injury in patients receiving mechanical ventilation.
Collapse
Affiliation(s)
- Chi-Sang Poon
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Chung Tin
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Gang Song
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
13
|
Poon CS. Reply to Dr. S.A. Ward: Whipp's law, Comroe's law and generality of the optimization model of ventilatory control. Respir Physiol Neurobiol 2015; 216:94-6. [PMID: 25864800 DOI: 10.1016/j.resp.2015.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Chi-Sang Poon
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA, United States.
| |
Collapse
|
14
|
Larraza S, Dey N, Karbing DS, Jensen JB, Nygaard M, Winding R, Rees SE. A mathematical model approach quantifying patients' response to changes in mechanical ventilation: evaluation in volume support. Med Eng Phys 2015; 37:341-9. [PMID: 25686673 DOI: 10.1016/j.medengphy.2014.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/14/2014] [Accepted: 12/28/2014] [Indexed: 11/17/2022]
Abstract
This paper presents a mathematical model-approach to describe and quantify patient-response to changes in ventilator support. The approach accounts for changes in metabolism (V̇O2, V̇CO2) and serial dead space (VD), and integrates six physiological models of: pulmonary gas-exchange; acid-base chemistry of blood, and cerebrospinal fluid; chemoreflex respiratory-drive; ventilation; and degree of patients' respiratory muscle-response. The approach was evaluated with data from 12 patients on volume support ventilation mode. The models were tuned to baseline measurements of respiratory gases, ventilation, arterial acid-base status, and metabolism. Clinical measurements and model simulated values were compared at five ventilator support levels. The models were shown to adequately describe data in all patients (χ(2), p > 0.2) accounting for changes in V̇CO2, VD and inadequate respiratory muscle-response. F-ratio tests showed that this approach provides a significantly better (p < 0.001) description of measured data than: (a) a similar model omitting the degree of respiratory muscle-response; and (b) a model of constant alveolar ventilation. The approach may help predict patients' response to changes in ventilator support at the bedside.
Collapse
Affiliation(s)
- S Larraza
- Respiratory and Critical Care Group (RCARE), Center for Model-based Medical Decision Support, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, E4-213, DK-9220 Aalborg, Denmark.
| | - N Dey
- Department of Anaesthesia and Intensive Care, Regions Hospital Herning, Herning, Denmark
| | - D S Karbing
- Respiratory and Critical Care Group (RCARE), Center for Model-based Medical Decision Support, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, E4-213, DK-9220 Aalborg, Denmark
| | | | - M Nygaard
- Department of Anaesthesia and Intensive Care, Regions Hospital Herning, Herning, Denmark
| | - R Winding
- Department of Anaesthesia and Intensive Care, Regions Hospital Herning, Herning, Denmark
| | - S E Rees
- Respiratory and Critical Care Group (RCARE), Center for Model-based Medical Decision Support, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, E4-213, DK-9220 Aalborg, Denmark
| |
Collapse
|
15
|
Wasserman K, Cox TA, Sietsema KE. Ventilatory regulation of arterial H+ (pH) during exercise. Respir Physiol Neurobiol 2014; 190:142-8. [DOI: 10.1016/j.resp.2013.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
16
|
Abstract
This paper describes the interactions between ventilation and acid-base balance under a variety of conditions including rest, exercise, altitude, pregnancy, and various muscle, respiratory, cardiac, and renal pathologies. We introduce the physicochemical approach to assessing acid-base status and demonstrate how this approach can be used to quantify the origins of acid-base disorders using examples from the literature. The relationships between chemoreceptor and metaboreceptor control of ventilation and acid-base balance summarized here for adults, youth, and in various pathological conditions. There is a dynamic interplay between disturbances in acid-base balance, that is, exercise, that affect ventilation as well as imposed or pathological disturbances of ventilation that affect acid-base balance. Interactions between ventilation and acid-base balance are highlighted for moderate- to high-intensity exercise, altitude, induced acidosis and alkalosis, pregnancy, obesity, and some pathological conditions. In many situations, complete acid-base data are lacking, indicating a need for further research aimed at elucidating mechanistic bases for relationships between alterations in acid-base state and the ventilatory responses.
Collapse
Affiliation(s)
- Michael I Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
17
|
The effect of adding CO2 to hypoxic inspired gas on cerebral blood flow velocity and breathing during incremental exercise. PLoS One 2013; 8:e81130. [PMID: 24278389 PMCID: PMC3836745 DOI: 10.1371/journal.pone.0081130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P<0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P>0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the ‘normal’ cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.
Collapse
|
18
|
Abstract
During exercise by healthy mammals, alveolar ventilation and alveolar-capillary diffusion increase in proportion to the increase in metabolic rate to prevent PaCO2 from increasing and PaO2 from decreasing. There is no known mechanism capable of directly sensing the rate of gas exchange in the muscles or the lungs; thus, for over a century there has been intense interest in elucidating how respiratory neurons adjust their output to variables which can not be directly monitored. Several hypotheses have been tested and supportive data were obtained, but for each hypothesis, there are contradictory data or reasons to question the validity of each hypothesis. Herein, we report a critique of the major hypotheses which has led to the following conclusions. First, a single stimulus or combination of stimuli that convincingly and entirely explains the hyperpnea has not been identified. Second, the coupling of the hyperpnea to metabolic rate is not causal but is due to of these variables each resulting from a common factor which link the circulatory and ventilatory responses to exercise. Third, stimuli postulated to act at pulmonary or cardiac receptors or carotid and intracranial chemoreceptors are not primary mediators of the hyperpnea. Fourth, stimuli originating in exercising limbs and conveyed to the brain by spinal afferents contribute to the exercise hyperpnea. Fifth, the hyperventilation during heavy exercise is not primarily due to lactacidosis stimulation of carotid chemoreceptors. Finally, since volitional exercise requires activation of the CNS, neural feed-forward (central command) mediation of the exercise hyperpnea seems intuitive and is supported by data from several studies. However, there is no compelling evidence to accept this concept as an indisputable fact.
Collapse
Affiliation(s)
- Hubert V Forster
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
19
|
Quantifying oscillatory ventilation during exercise in patients with heart failure. Respir Physiol Neurobiol 2013; 190:25-32. [PMID: 24121091 DOI: 10.1016/j.resp.2013.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND This study examined the validity of a novel software application to quantify measures of periodic breathing rest (PB) and oscillatory ventilation during exercise (EOV) in heart failure patients (HF). METHODS Eleven male HF patients (age=53±8yrs, ejection fraction=17±4, New York Heart Association Class=III(7)/IV(4)) were recruited. Ventilation and gas exchange were collected breath-by-breath. Amplitude and period of oscillations in ventilation (V˙E), tidal volume (VT), end-tidal carbon dioxide [Formula: see text] , and oxygen consumption [Formula: see text] were measured manually (MAN) and using novel software which included a peak detection algorithm (PK), sine wave fitting algorithm (SINE), and Fourier analysis (FOUR). RESULTS During PB, there were no differences between MAN and PK for amplitude of V˙E, VT, [Formula: see text] , or [Formula: see text] . Similarly, there were no differences between MAN and SINE for amplitude of V˙E or VT although [Formula: see text] and [Formula: see text] were lower with SINE (p<0.05). In contrast, the PK demonstrated significantly shorter periods for V˙E, VT, [Formula: see text] , and [Formula: see text] compared to MAN (p<0.05) whereas there were no differences in periods of oscillations between MAN and SINE or FOUR for all variables. During EOV, there were no differences between MAN and PK for amplitude of V˙E, VT, [Formula: see text] , and [Formula: see text] . SINE demonstrated significantly lower amplitudes for VT, [Formula: see text] , and [Formula: see text] (p<0.05) although V˙E was not different. PK demonstrated shorter periods for all variables (p<0.05) whereas there were no differences between MAN and SINE or FOUR for all variables. CONCLUSION These data suggest PK consistently captures amplitudes while underestimating period. In contrast, SINE and FOUR consistently capture period although SINE underestimates amplitude. Thus, an optimal algorithm for the quantification of PB and/or EOV in patients with HF might combine multiple analysis methods.
Collapse
|
20
|
Dempsey JA, Blain GM, Amann M. Are type III-IV muscle afferents required for a normal steady-state exercise hyperpnoea in humans? J Physiol 2013; 592:463-74. [PMID: 24000177 PMCID: PMC3930433 DOI: 10.1113/jphysiol.2013.261925] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When tested in isolation, stimuli associated with respiratory CO2 exchange, feedforward central command and type III–IV muscle afferent feedback have each been shown to be capable of eliciting exercise-like cardio-ventilatory responses, but their relative contributions in a setting of physiological exercise remains controversial. We reasoned that in order to determine whether any of these regulators are obligatory to the exercise hyperpnoea each needs to be removed or significantly diminished in a setting of physiological steady-state exercise, during which all recognized stimuli (and other potential modulators) are normally operative. In the past few years we and others have used intrathecal fentanyl, a μ-opiate receptor agonist, in humans to reduce the input from type III–IV opiate-sensitive muscle afferents. During various types of intensities and durations of exercise a sustained hypoventilation, as well as reduced systemic pressure and cardioacceleration, were consistently observed with this blockade. These data provide the basis for the hypothesis that type III–IV muscle afferents are obligatory to the hyperpnoea of mild to moderate intensity rhythmic, large muscle, steady-state exercise. We discuss the limitations of these studies, the reasons for their disagreement with previous negative findings, the nature of the muscle afferent feedback stimulus and the need for future investigations.
Collapse
Affiliation(s)
- Jerome A Dempsey
- J. A. Dempsey: University of Wisconsin - Madison, 1300 University Ave, Room 4245 MSC, Madison, WI 53706-1532, USA.
| | | | | |
Collapse
|
21
|
Bates ML, Pillers DAM, Palta M, Farrell ET, Eldridge MW. Ventilatory control in infants, children, and adults with bronchopulmonary dysplasia. Respir Physiol Neurobiol 2013; 189:329-37. [PMID: 23886637 DOI: 10.1016/j.resp.2013.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 12/17/2022]
Abstract
Bronchopulmonary dysplasia (BPD), or chronic lung disease of prematurity, occurs in ~30% of preterm infants (15,000 per year) and is associated with a clinical history of mechanical ventilation and/or high inspired oxygen at birth. Here, we describe changes in ventilatory control that exist in patients with BPD, including alterations in chemoreceptor function, respiratory muscle function, and suprapontine control. Because dysfunction in ventilatory control frequently revealed when O2 supply and CO2 elimination are challenged, we provide this information in the context of four important metabolic stressors: stresses: exercise, sleep, hypoxia, and lung disease, with a primary focus on studies of human infants, children, and adults. As a secondary goal, we also identify three key areas of future research and describe the benefits and challenges of longitudinal human studies using well-defined patient cohorts.
Collapse
Affiliation(s)
- Melissa L Bates
- Department of Pediatrics, Division of Critical Care, University of Wisconsin, Madison, WI, USA; John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | |
Collapse
|
22
|
Plataki M, Sands SA, Malhotra A. Clinical consequences of altered chemoreflex control. Respir Physiol Neurobiol 2013; 189:354-63. [PMID: 23681082 DOI: 10.1016/j.resp.2013.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 01/28/2023]
Abstract
Control of ventilation dictates various breathing patterns. The respiratory control system consists of a central pattern generator and several feedback mechanisms that act to maintain ventilation at optimal levels. The concept of loop gain has been employed to describe its stability and variability. Synthesizing all interactions under a general model that could account for every behavior has been challenging. Recent insight into the importance of these feedback systems may unveil therapeutic strategies for common ventilatory disturbances. In this review we will address the major mechanisms that have been proposed as mediators of some of the breathing patterns in health and disease that have raised controversies and discussion on ventilatory control over the years.
Collapse
Affiliation(s)
- Maria Plataki
- Department of Internal Medicine, Bridgeport Hospital, Yale New Haven Health, Bridgeport, CT, USA
| | | | | |
Collapse
|
23
|
Stickland MK, Lindinger MI, Olfert IM, Heigenhauser GJF, Hopkins SR. Pulmonary gas exchange and acid-base balance during exercise. Compr Physiol 2013; 3:693-739. [PMID: 23720327 PMCID: PMC8315793 DOI: 10.1002/cphy.c110048] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As the first step in the oxygen-transport chain, the lung has a critical task: optimizing the exchange of respiratory gases to maintain delivery of oxygen and the elimination of carbon dioxide. In healthy subjects, gas exchange, as evaluated by the alveolar-to-arterial PO2 difference (A-aDO2), worsens with incremental exercise, and typically reaches an A-aDO2 of approximately 25 mmHg at peak exercise. While there is great individual variability, A-aDO2 is generally largest at peak exercise in subjects with the highest peak oxygen consumption. Inert gas data has shown that the increase in A-aDO2 is explained by decreased ventilation-perfusion matching, and the development of a diffusion limitation for oxygen. Gas exchange data does not indicate the presence of right-to-left intrapulmonary shunt developing with exercise, despite recent data suggesting that large-diameter arteriovenous shunt vessels may be recruited with exercise. At the same time, multisystem mechanisms regulate systemic acid-base balance in integrative processes that involve gas exchange between tissues and the environment and simultaneous net changes in the concentrations of strong and weak ions within, and transfer between, extracellular and intracellular fluids. The physicochemical approach to acid-base balance is used to understand the contributions from independent acid-base variables to measured acid-base disturbances within contracting skeletal muscle, erythrocytes and noncontracting tissues. In muscle, the magnitude of the disturbance is proportional to the concentrations of dissociated weak acids, the rate at which acid equivalents (strong acid) accumulate and the rate at which strong base cations are added to or removed from muscle.
Collapse
Affiliation(s)
- Michael K. Stickland
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Michael I. Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - I. Mark Olfert
- Robert C. Byrd Health Sciences Center, Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | - Susan R. Hopkins
- Departments of Medicine and Radiology, University of California, San Diego, San Diego, California
| |
Collapse
|
24
|
Poon CS, Tin C. Mechanism of augmented exercise hyperpnea in chronic heart failure and dead space loading. Respir Physiol Neurobiol 2012; 186:114-30. [PMID: 23274121 DOI: 10.1016/j.resp.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
Abstract
Patients with chronic heart failure (CHF) suffer increased alveolar VD/VT (dead-space-to-tidal-volume ratio), yet they demonstrate augmented pulmonary ventilation such that arterial [Formula: see text] ( [Formula: see text] ) remains remarkably normal from rest to moderate exercise. This paradoxical effect suggests that the control law governing exercise hyperpnea is not merely determined by metabolic CO2 production ( [Formula: see text] ) per se but is responsive to an apparent (real-feel) metabolic CO2 load ( [Formula: see text] ) that also incorporates the adverse effect of physiological VD/VT on pulmonary CO2 elimination. By contrast, healthy individuals subjected to dead space loading also experience augmented ventilation at rest and during exercise as with increased alveolar VD/VT in CHF, but the resultant response is hypercapnic instead of eucapnic, as with CO2 breathing. The ventilatory effects of dead space loading are therefore similar to those of increased alveolar VD/VT and CO2 breathing combined. These observations are consistent with the hypothesis that the increased series VD/VT in dead space loading adds to [Formula: see text] as with increased alveolar VD/VT in CHF, but this is through rebreathing of CO2 in dead space gas thus creating a virtual (illusory) airway CO2 load within each inspiration, as opposed to a true airway CO2 load during CO2 breathing that clogs the mechanism for CO2 elimination through pulmonary ventilation. Thus, the chemosensing mechanism at the respiratory controller may be responsive to putative drive signals mediated by within-breath [Formula: see text] oscillations independent of breath-to-breath fluctuations of the mean [Formula: see text] level. Skeletal muscle afferents feedback, while important for early-phase exercise cardioventilatory dynamics, appears inconsequential for late-phase exercise hyperpnea.
Collapse
Affiliation(s)
- Chi-Sang Poon
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
25
|
Lindsey BG, Rybak IA, Smith JC. Computational models and emergent properties of respiratory neural networks. Compr Physiol 2012; 2:1619-70. [PMID: 23687564 PMCID: PMC3656479 DOI: 10.1002/cphy.c110016] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components,including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions,enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology and Neuroscience Program, University of South Florida College of Medicine, Tampa, Florida, USA.
| | | | | |
Collapse
|
26
|
Fan JL, Leiggener C, Rey F, Kayser B. Effect of inspired CO2 on the ventilatory response to high intensity exercise. Respir Physiol Neurobiol 2012; 180:283-8. [DOI: 10.1016/j.resp.2011.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
27
|
Arterial H+ regulation during exercise in humans. Respir Physiol Neurobiol 2011; 178:191-5. [DOI: 10.1016/j.resp.2011.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 11/20/2022]
|
28
|
Wood HE, Mitchell GS, Babb TG. Short-term modulation of the exercise ventilatory response in younger and older women. Respir Physiol Neurobiol 2011; 179:235-47. [PMID: 21890003 DOI: 10.1016/j.resp.2011.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 11/29/2022]
Abstract
The exercise ventilatory response (EVR; defined as the slope of the relationship between ventilation and CO(2) production) is reversibly augmented within a single exercise trial with increased respiratory dead space (DS) in both younger (Wood, H.E., Mitchell, G.S., Babb, T.G., 2008. Short-term modulation of the exercise ventilatory response in young men. J. Appl. Physiol. 104, 244-252) and older (Wood, H.E., Mitchell, G.S., Babb, T.G., 2010. Short-term modulation of the exercise ventilatory response in older men. Respir. Physiol. Neurobiol. 173, 37-46) men. The neural mechanism accounting for this augmentation is known as short-term modulation (STM) of the EVR. Since the effects of female sex hormones on STM are unknown, we examined the capacity for STM in healthy adult women of two age groups; nine younger (29±3 yrs, eumenorrheic) and seven older (69±3 yrs, postmenopausal) women were studied at rest and during cycle exercise (10 W, 30 W; not randomized) in control conditions and with added external DS (200 mL, 400 mL; randomized). Within groups, the main effects of DS and work rate on EVR were analyzed with a two-way repeated measures ANOVA; EVR comparisons between groups were made with unpaired t-tests. In both groups, EVR increased progressively with increasing DS volume (e.g. at 10 W 31±4 and 35±6 in control, 40±11 and 40±6 with 200 mL, 48±12 and 49±11 with 400 mL DS in younger and older women, respectively). In younger women, the effects of DS on EVR differed between work rates (significant interaction, p<0.05), although this was not the case for older women. In both groups, [Formula: see text] regulation was similar between DS and control; hence, increased EVR was not due to altered chemoreceptor feedback from rest to exercise. EVR with and without added DS did not differ between age groups. We conclude that the capacity for STM of the EVR with added DS is similar in healthy younger and older women.
Collapse
Affiliation(s)
- Helen E Wood
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX 75231, United States.
| | | | | |
Collapse
|
29
|
Poon CS. Evolving paradigms in H+ control of breathing: from homeostatic regulation to homeostatic competition. Respir Physiol Neurobiol 2011; 179:122-6. [PMID: 21864724 DOI: 10.1016/j.resp.2011.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 11/25/2022]
Affiliation(s)
- Chi-Sang Poon
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Ventilatory response to moderate incremental exercise performed 24 h after resistance exercise with concentric and eccentric contractions. Eur J Appl Physiol 2011; 111:1769-75. [DOI: 10.1007/s00421-010-1801-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 12/21/2010] [Indexed: 11/26/2022]
|
31
|
Castro RRT, Pedrosa S, Nóbrega ACL. Different ventilatory responses to progressive maximal exercise test performed with either the arms or legs. Clinics (Sao Paulo) 2011; 66:1137-42. [PMID: 21876964 PMCID: PMC3148454 DOI: 10.1590/s1807-59322011000700003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/12/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE This study aimed to compare respiratory responses, focusing on the time-domain variability of ventilatory components during progressive cardiopulmonary exercise tests performed on cycle or arm ergometers. METHODS The cardiopulmonary exercise tests were conducted on twelve healthy volunteers on either a cycle ergometer or an arm ergometer following a ramp protocol. The time-domain variabilities (the standard deviations and root mean squares of the successive differences) of the minute ventilation, tidal volume and respiratory rate were calculated and normalized to the number of breaths. RESULTS There were no significant differences in the timing of breathing throughout the exercise when the cycle and arm ergometer measurements were compared. However, the arm exercise time-domain variabilities for the minute ventilation, tidal volume and respiratory rate were significantly greater than the equivalent values obtained during leg exercise. CONCLUSION Although the type of exercise does not influence the timing of breathing when dynamic arm and leg exercises are compared, it does influence time-domain ventilatory variability of young, healthy individuals. The mechanisms that influence ventilatory variability during exercise remain to be studied.
Collapse
Affiliation(s)
- Renata R T Castro
- Exercise Physiology Laboratory, National Institute of Traumatology and Orthopedics, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
32
|
Babb TG, Wood HE, Mitchell GS. Short- and long-term modulation of the exercise ventilatory response. Med Sci Sports Exerc 2010; 42:1681-7. [PMID: 20164813 DOI: 10.1249/mss.0b013e3181d7b212] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of adaptive control strategies (modulation and plasticity) in the control of breathing during exercise has become recognized only in recent years. In this review, we discuss new evidence for modulation of the exercise ventilatory response in humans, specifically, short- and long-term modulation. Short-term modulation is proposed to be an important regulatory mechanism that helps maintain blood gas homeostasis during exercise.
Collapse
Affiliation(s)
- Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave, Dallas, TX 75231, USA.
| | | | | |
Collapse
|
33
|
Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J Appl Physiol (1985) 2010; 109:966-76. [PMID: 20634355 DOI: 10.1152/japplphysiol.00462.2010] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the role of somatosensory feedback on cardioventilatory responses to rhythmic exercise in five men. In a double-blind, placebo-controlled design, subjects performed the same leg cycling exercise (50/100/150/325 ± 19 W, 3 min each) under placebo conditions (interspinous saline, L(3)-L(4)) and with lumbar intrathecal fentanyl impairing central projection of spinal opioid receptor-sensitive muscle afferents. Quadriceps strength was similar before and after fentanyl administration. To evaluate whether a cephalad migration of fentanyl affected cardioventilatory control centers in the brain stem, we compared resting ventilatory responses to hypercapnia (HCVR) and cardioventilatory responses to arm vs. leg cycling exercise after each injection. Similar HCVR and minor effects of fentanyl on cardioventilatory responses to arm exercise excluded direct medullary effects of fentanyl. Central command during leg exercise was estimated via quadriceps electromyogram. No differences between conditions were found in resting heart rate (HR), ventilation [minute ventilation (VE)], or mean arterial pressure (MAP). Quadriceps electromyogram, O(2) consumption (VO(2)), and plasma lactate were similar in both conditions at the four steady-state workloads. Compared with placebo, a substantial hypoventilation during fentanyl exercise was indicated by the 8-17% reduction in VE/CO(2) production (VCO(2)) secondary to a reduced breathing frequency, leading to average increases of 4-7 Torr in end-tidal PCO(2) (P < 0.001) and a reduced hemoglobin saturation (-3 ± 1%; P < 0.05) at the heaviest workload (∼90% maximal VO(2)) with fentanyl. HR was reduced 2-8%, MAP 8-13%, and ratings of perceived exertion by 13% during fentanyl vs. placebo exercise (P < 0.05). These findings demonstrate the essential contribution of muscle afferent feedback to the ventilatory, cardiovascular, and perceptual responses to rhythmic exercise in humans, even in the presence of unaltered contributions from other major inputs to cardioventilatory control.
Collapse
Affiliation(s)
- Markus Amann
- John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin, Madison, Wisconsin, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Paradoxical potentiation of exercise hyperpnea in congestive heart failure contradicts Sherrington chemoreflex model and supports a respiratory optimization model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [PMID: 20217324 DOI: 10.1007/978-1-4419-5692-7_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Congestive heart failure (CHF) patients suffer decreased exercise tolerance, yet they demonstrate an augmented ventilatory response to exercise such that P(aCO2) remains normal (isocapnic) from rest to maximal exercise in the face of increased pulmonary dead space (Fig. 1). On the other hand, the effect of a large external dead space is hypercapnic instead of isocapnic. This discrepancy suggests that external dead space and pulmonary dead space may exert distinct influences on control of breathing. These paradoxical clinical phenomena are at variance with the conventional chemoreflex model (Johnson 2001), but appear to be consistent with the predictions of the optimization model (Poon 2001; Poon, Tin et al. 2007).
Collapse
|
35
|
Homeostatic Competition: Evidence of a Serotonin-Gated Spinoparabrachial Pathway for Respiratory and Thermoregulatory Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [DOI: 10.1007/978-1-4419-5692-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
36
|
Yunoki T, Matsuura R, Arimitsu T, Yamanaka R, Kosugi S, Lian CS, Yano T. Effects of awareness of change in load on ventilatory response during moderate exercise. Respir Physiol Neurobiol 2009; 169:69-73. [PMID: 19703593 DOI: 10.1016/j.resp.2009.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/04/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
|
37
|
Poon CS. Optimal interaction of respiratory and thermal regulation at rest and during exercise: role of a serotonin-gated spinoparabrachial thermoafferent pathway. Respir Physiol Neurobiol 2009; 169:234-42. [PMID: 19770073 DOI: 10.1016/j.resp.2009.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 08/24/2009] [Accepted: 09/14/2009] [Indexed: 11/26/2022]
Abstract
Recent evidence indicates that the lateral parabrachial nucleus (LPBN) in dorsolateral pons is pivotal in mediating the feedback control of inspiratory drive by central chemoreceptor input and feedforward control of body temperature by cutaneous thermoreceptor input. The latter is subject to descending serotonergic inhibition which gates the transmission of ascending thermoafferent information from spinal dorsal horn to the LPBN. Here, a model is proposed which suggests that the LPBN may be important in balancing respiratory and thermal homeostasis, two conflicting goals that are heightened by environmental heat/cold stress or exercise where the effects of respiratory thermolysis become prominent. This optimization model of respiratory-thermoregulatory interaction is supported by a host of recent studies which demonstrate that animals with serotonin (5-HT) dysfunction at the spinal dorsal horn--due to 5-HT antagonism, genetic 5-HT defects or spinal cord injury--all display similar respiratory abnormalities that are consistent with hyperactivity of the spinoparabrachial thermoafferent (and pain) pathway.
Collapse
Affiliation(s)
- Chi-Sang Poon
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Wood HE, Mitchell GS, Babb TG. Breathing mechanics during exercise with added dead space reflect mechanisms of ventilatory control. Respir Physiol Neurobiol 2009; 168:210-7. [DOI: 10.1016/j.resp.2009.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/09/2009] [Accepted: 07/01/2009] [Indexed: 11/30/2022]
|
39
|
Continuous positive airway pressure reduces loop gain and resolves periodic central apneas in the lamb. Respir Physiol Neurobiol 2009; 168:239-49. [PMID: 19616133 DOI: 10.1016/j.resp.2009.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 11/24/2022]
Abstract
Continous positive airway pressure (CPAP) is used to treat infant respiratory distress syndrome and apnea of prematurity, but its mode of action is not fully understood. We hypothesised that CPAP increases lung volume and stabilises respiratory control by decreasing loop gain (LG). Experimentally induced periodic breathing (PB) in the lamb was terminated early by CPAP in a dose-dependent manner, with a control epoch of 45.4+/-5.1s at zero CPAP falling to 32.9+/-5.4, 13.2+/-4.2 and 9.8+/-3.1s at 2.5, 5 and 10 cmH(2)O, respectively (p<0.001); corresponding duty ratios (duration of the ventilatory phase of PB divided by its cycle duration) increased from 0.50+/-0.02 to 0.62+/-0.05, 0.76+/-0.06 and 0.68+/-0.08, respectively (p<0.001). Since epoch duration and duty ratio are surrogate measures of LG, we conclude that CPAP ameliorates the effects of recurrent central apneas, and perhaps mixed and obstructive apneas, by decreasing LG via increases in lung volume.
Collapse
|
40
|
Jensen D, Ofir D, O’Donnell DE. Effects of pregnancy, obesity and aging on the intensity of perceived breathlessness during exercise in healthy humans. Respir Physiol Neurobiol 2009; 167:87-100. [DOI: 10.1016/j.resp.2009.01.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 01/26/2009] [Accepted: 01/30/2009] [Indexed: 11/29/2022]
|
41
|
Passive limb movement augments ventilatory response to CO2 via sciatic inputs in anesthetized rats. Respir Physiol Neurobiol 2009; 167:174-80. [PMID: 19505673 DOI: 10.1016/j.resp.2009.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/23/2009] [Accepted: 04/02/2009] [Indexed: 11/23/2022]
Abstract
Passive limb movement (PLM) in humans induces a phasic hyperpnea, but the underlying physiological mechanisms remain unclear. We asked whether PLM in anesthetized rats would produce a similar phasic hyperpnea associated with an augmented ventilatory (V(E)) response to CO(2) that is dependent on sciatic afferents. The animals underwent 5 min threshold PLM, 3 min hypercapnia (5% CO(2)), and their combination (CO(2) exposure at the end of 2nd min of 5-min PLM) before and after bilateral transection of the sciatic nerves. We found that a threshold PLM evoked a phasic hyperpnea, similar to that denoted in humans, and an augmented V(E) response to CO(2). Both responses were greatly diminished by sciatic nerve transection. Moreover, similar responses were also evoked by electrically stimulating the central end of the transected sciatic nerve. Our findings suggest an ability of the sciatic afferents to augment the V(E) response to CO(2) that likely contributes to the PLM-induced hyperpnea.
Collapse
|
42
|
Pacemakers handshake synchronization mechanism of mammalian respiratory rhythmogenesis. Proc Natl Acad Sci U S A 2008; 105:18000-5. [PMID: 19008356 DOI: 10.1073/pnas.0809377105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inspiratory and expiratory rhythms in mammals are thought to be generated by pacemaker-like neurons in 2 discrete brainstem regions: pre-Bötzinger complex (preBötC) and parafacial respiratory group (pFRG). How these putative pacemakers or pacemaker networks may interact to set the overall respiratory rhythm in synchrony remains unclear. Here, we show that a pacemakers 2-way "handshake" process comprising pFRG excitation of the preBötC, followed by reverse inhibition and postinhibitory rebound (PIR) excitation of the pFRG and postinspiratory feedback inhibition of the preBötC, can provide a phase-locked mechanism that sequentially resets and, hence, synchronizes the inspiratory and expiratory rhythms in neonates. The order of this handshake sequence and its progression vary depending on the relative excitabilities of the preBötC vs. the pFRG and resultant modulations of the PIR in various excited and depressed states, leading to complex inspiratory and expiratory phase-resetting behaviors in neonates and adults. This parsimonious model of pacemakers synchronization and mutual entrainment replicates key experimental data in vitro and in vivo that delineate the developmental changes in respiratory rhythm from neonates to maturity, elucidating their underlying mechanisms and suggesting hypotheses for further experimental testing. Such a pacemakers handshake process with conjugate excitation-inhibition and PIR provides a reinforcing and evolutionarily advantageous fail-safe mechanism for respiratory rhythmogenesis in mammals.
Collapse
|
43
|
Poon CS. The classic potentiation of exercise ventilatory response by increased dead space in humans is more than short-term modulation. J Appl Physiol (1985) 2008; 105:390; author reply 391. [PMID: 18641232 DOI: 10.1152/japplphysiol.90543.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Ogoh S, Hayashi N, Inagaki M, Ainslie PN, Miyamoto T. Interaction between the ventilatory and cerebrovascular responses to hypo- and hypercapnia at rest and during exercise. J Physiol 2008; 586:4327-38. [PMID: 18635644 DOI: 10.1113/jphysiol.2008.157073] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebrovascular reactivity to changes in the partial pressure of arterial carbon dioxide (P(a,CO(2))) via limiting changes in brain [H(+)] modulates ventilatory control. It remains unclear, however, how exercise-induced alterations in respiratory chemoreflex might influence cerebral blood flow (CBF), in particular the cerebrovascular reactivity to CO(2). The respiratory chemoreflex system controlling ventilation consists of two subsystems: the central controller (controlling element), and peripheral plant (controlled element). In order to examine the effect of exercise-induced alterations in ventilatory chemoreflex on cerebrovascular CO(2) reactivity, these two subsystems of the respiratory chemoreflex system and cerebral CO(2) reactivity were evaluated (n = 7) by the administration of CO(2) as well as by voluntary hypo- and hyperventilation at rest and during steady-state exercise. During exercise, in the central controller, the regression line for the P(a,CO(2))-minute ventilation (VE) relation shifted to higher VE and P(a,CO(2)) with no change in gain (P = 0.84). The functional curve of the peripheral plant also reset rightward and upward during exercise. However, from rest to exercise, gain of the peripheral plant decreased, especially during the hypercapnic condition (-4.1 +/- 0.8 to -2.0 +/- 0.2 mmHg l(-1) min(-1), P = 0.01). Therefore, under hypercapnia, total respiratory loop gain was markedly reduced during exercise (-8.0 +/- 2.3 to -3.5 +/- 1.0 U, P = 0.02). In contrast, cerebrovascular CO(2) reactivity at each condition, especially to hypercapnia, was increased during exercise (2.4 +/- 0.2 to 2.8 +/- 0.2% mmHg(-1), P = 0.03). These findings indicate that, despite an attenuated chemoreflex system controlling ventilation, elevations in cerebrovascular reactivity might help maintain CO(2) homeostasis in the brain during exercise.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | | | | | | | | |
Collapse
|
45
|
Forster HV. Commentary on “Homeostasis of exercise hyperpnea and optimal sensorimotor integration: The internal model paradigm” by Poon et al. Respir Physiol Neurobiol 2007. [DOI: 10.1016/j.resp.2007.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Cherniack NS. Commentary on “Homeostasis of exercise hyperpnea and optimal sensorimotor integration: The internal model paradigm” by Poon et al. Respir Physiol Neurobiol 2007. [DOI: 10.1016/j.resp.2007.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|