1
|
Zhong HL, Li PZ, Li D, Guan CX, Zhou Y. The role of vasoactive intestinal peptide in pulmonary diseases. Life Sci 2023; 332:122121. [PMID: 37742737 DOI: 10.1016/j.lfs.2023.122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Vasoactive intestinal peptide (VIP) is an abundant neurotransmitter in the lungs and other organs. Its discovery dates back to 1970. And VIP gains attention again due to the potential application in COVID-19 after a research wave in the 1980s and 1990s. The diverse biological impacts of VIP extend beyond its usage in COVID-19 treatment, encompassing its involvement in various pulmonary and systemic disorders. This review centers on the function of VIP in various lung diseases, such as pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, cystic fibrosis, acute lung injury/acute respiratory distress syndrome, pulmonary fibrosis, and lung tumors. This review also outlines two main limitations of VIP as a potential medication and gathers information on extended-release formulations and VIP analogues.
Collapse
Affiliation(s)
- Hong-Lin Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Pei-Ze Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Di Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
2
|
Ezenwa BN, Gai A, Kujabi E, Garba A, Suso Y, Sallah A, Obidike EO. Bronchodilator-responsive bronchiolar obstruction in term neonates: a case series. J Med Case Rep 2023; 17:326. [PMID: 37518070 PMCID: PMC10388504 DOI: 10.1186/s13256-023-04035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/10/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Bronchiolar obstruction, which causes airway obstruction in hyperresponsive airways, often results from the contraction of the airway's smooth muscles, increased viscid mucous secretions, and mucosal oedema consequent upon a reduced cyclic 3,5-adenosine monophosphate (c-AMP). These processes respond to bronchodilators. The six cases presented to us, in Edward Francis Small Teaching Hospital (EFSTH), Banjul, The Gambia, in the newborn period with clinical features suggesting obstruction with airway reactivity with response to bronchodilator treatment are presented here. Our capacity-limited literature search did not show any such report in neonates. This report highlights the need for this condition to be sought in neonates, medically managed in resource-poor countries without resorting to high-cost equipment use, and for its possible future classification. CASE PRESENTATION We report six cases of Gambian neonates consisting of four males and two females ages 2-27 days who presented to us with histories of fast breathing of a few hours duration and expiratory respiratory distress. All were term babies with rhonchi and demonstrable prolonged expiration with terminal effort. They all had a diagnosis of hyperreactive airway disease with bronchiolar obstruction. Five cases were first-time wheezers, while one was a recurrence. All were eventually treated with bronchodilators and steroids with good results. The median duration for resolution of most symptoms with treatment was two days, with a range of 1-5 days. CONCLUSION Clinically determined bronchiolar obstructions in term neonates can be relieved with bronchodilators and steroids, and this treatment modality, if employed where the pathological process can be established, can reduce the demand on scarce resources in resource-poor countries.
Collapse
Affiliation(s)
- Beatrice N Ezenwa
- Department of Paediatrics, Edward Francis Small Teaching Hospital (EFSTH), Banjul, Gambia.
| | - Abdou Gai
- Department of Paediatrics, Edward Francis Small Teaching Hospital (EFSTH), Banjul, Gambia
| | - Ellen Kujabi
- Department of Paediatrics, Edward Francis Small Teaching Hospital (EFSTH), Banjul, Gambia
| | - Abdoulie Garba
- Department of Paediatrics, Edward Francis Small Teaching Hospital (EFSTH), Banjul, Gambia
| | - Yarreh Suso
- Department of Paediatrics, Edward Francis Small Teaching Hospital (EFSTH), Banjul, Gambia
| | - Abdulwahab Sallah
- Department of Paediatrics, Edward Francis Small Teaching Hospital (EFSTH), Banjul, Gambia
| | - Egbuna O Obidike
- Department of Paediatrics, Edward Francis Small Teaching Hospital (EFSTH), Banjul, Gambia
| |
Collapse
|
3
|
Farag A, Mandour AS, Hamabe L, Yoshida T, Shimada K, Tanaka R. Novel protocol to establish the myocardial infarction model in rats using a combination of medetomidine-midazolam-butorphanol (MMB) and atipamezole. Front Vet Sci 2022; 9:1064836. [PMID: 36544554 PMCID: PMC9760920 DOI: 10.3389/fvets.2022.1064836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Myocardial infarction (MI) is one of the most common cardiac problems causing deaths in humans. Previously validated anesthetic agents used in MI model establishment are currently controversial with severe restrictions because of ethical concerns. The combination between medetomidine, midazolam, and butorphanol (MMB) is commonly used in different animal models. The possibility of MMB combination to establish the MI model in rats did not study yet which is difficult because of severe respiratory depression and delayed recovery post-surgery, resulting in significant deaths. Atipamezole is used to counter the cardiopulmonary suppressive effect of MMB. Objectives The aim of the present study is to establish MI model in rats using a novel anesthetic combination between MMB and Atipamezole. Materials and methods Twenty-five Sprague Dawley (SD) rats were included. Rats were prepared for induction of the Myocardial infarction (MI) model through thoracotomy. Anesthesia was initially induced with a mixture of MMB (0.3/5.0/5.0 mg/kg/SC), respectively. After endotracheal intubation, rats were maintained with isoflurane 1% which gradually reduced after chest closing. MI was induced through the left anterior descending (LAD) artery ligation technique. Atipamezole was administered after finishing all surgical procedures at a dose rate of 1.0 mg/kg/SC. Cardiac function parameters were evaluated using ECG (before and after atipamezole administration) and transthoracic echocardiography (before and 1 month after MI induction) to confirm the successful model. The induction time, operation time, and recovery time were calculated. The success rate of the MI model was also calculated. Results MI was successfully established with the mentioned anesthetic protocol through the LAD ligation technique and confirmed through changes in ECG and echocardiographic parameters after MI. ECG data was improved after atipamezole administration through a significant increase in heart rate (HR), PR Interval, QRS Interval, and QT correction (QTc) and a significant reduction in RR Interval. Atipamezole enables rats to recover voluntary respiratory movement (VRM), wakefulness, movement, and posture within a very short time after administration. Echocardiographic ally, MI rats showed a significant decrease in the left ventricular wall thickness, EF, FS, and increased left ventricular diastolic and systolic internal diameter. In addition, induction time (3.440 ± 1.044), operation time (29.40 ± 3.663), partial recovery time (10.84 ± 3.313), and complete recovery time (12.36 ± 4.847) were relatively short. Moreover, the success rate of the anesthetic protocol was 100%, and all rats were maintained for 1 month after surgery with a survival rate of 88%. Conclusion Our protocol produced a more easy anesthetic effect and time-saving procedures with a highly successful rate in MI rats. Subcutaneous injection of Atipamezole efficiently counters the cardiopulmonary side effect of MMB which is necessary for rapid recovery and subsequently enhancing the survival rate during the creation of the MI model in rats.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan,Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt,*Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan,Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt,Ahmed S. Mandour
| | - Lina Hamabe
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tomohiko Yoshida
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan,Ryou Tanaka
| |
Collapse
|
4
|
Peak KE, Mohr-Allen SR, Gleghorn JP, Varner VD. Focal sources of FGF-10 promote the buckling morphogenesis of the embryonic airway epithelium. Biol Open 2022; 11:bio059436. [PMID: 35979841 PMCID: PMC9536751 DOI: 10.1242/bio.059436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
During airway branching morphogenesis, focal regions of FGF-10 expression in the pulmonary mesenchyme are thought to provide a local guidance cue, which promotes chemotactically the directional outgrowth of the airway epithelium. Here, however, we show that an ectopic source of FGF-10 induces epithelial buckling morphogenesis and the formation of multiple new supernumerary buds. FGF-10-induced budding can be modulated by altered epithelial tension and luminal fluid pressure. Increased tension suppresses the formation of ectopic branches, while a collapse of the embryonic airway promotes more expansive buckling and additional FGF-10-induced supernumerary buds. Our results indicate that a focal source of FGF-10 can promote epithelial buckling and suggest that the overall branching pattern cannot be explained entirely by the templated expression of FGF-10. Both FGF-10-mediated cell behaviors and exogenous mechanical forces must be integrated to properly shape the bronchial tree.
Collapse
Affiliation(s)
- Kara E Peak
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shelby R Mohr-Allen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Park SM, Jung CJ, Lee DG, Choi BR, Ku TH, La IJ, Cho IJ, Ku SK. Adenophora Stricta Root Extract Protects Lung Injury from Exposure to Particulate Matter 2.5 in Mice. Antioxidants (Basel) 2022; 11:antiox11071376. [PMID: 35883867 PMCID: PMC9312037 DOI: 10.3390/antiox11071376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/02/2023] Open
Abstract
Chronic exposure of particulate matter of less than 2.5 μm (PM2.5) has been considered as one of the major etiologies for various respiratory diseases. Adenophora stricta Miq. is a medicinal herb that has been used for treating respiratory diseases in East Asia. The present study investigated the effect of A. stricta root extract (AsE) on PM2.5-induced lung injury in mice. Oral administration of 100-400 mg/kg AsE for 10 days significantly reduced the PM2.5-mediated increase in relative lung weight, but there was no difference in body weight with AsE administration. In addition, AsE dose-dependently decreased congested region of the lung tissue, prevented apoptosis and matrix degradation, and alleviated mucus stasis induced by PM2.5. Moreover, cytological analysis of bronchioalveolar lavage fluid revealed that AsE significantly inhibited the infiltration of immune cells into the lungs. Consistently, AsE also decreased expression of proinflammatory cytokines and chemokines in lung tissue. Furthermore, AsE administration blocked reactive oxygen species production and lipid peroxidation through attenuating the PM2.5-dependent reduction of antioxidant defense system in the lungs. Therefore, A. stricta root would be a promising candidate for protecting lung tissue from air pollution such as PM2.5.
Collapse
Affiliation(s)
- Seok-Man Park
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (S.-M.P.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Korea;
| | - Cheol-Jong Jung
- Central Research Center, Okchundang Inc., Daegu 41059, Korea;
| | - Dae-Geon Lee
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (S.-M.P.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Korea;
| | - Beom-Rak Choi
- Research Institute, Nutracore Co., Ltd., Gwanggyo SK Viewlake A-3206, Beobjo-Ro 25, Suwon 16514, Korea;
| | - Tae-Hun Ku
- Okchungdang Korean Medicine Clinic, Ulsan 44900, Korea;
| | | | - Il-Je Cho
- Central Research Center, Okchundang Inc., Daegu 41059, Korea;
- Correspondence: (I.-J.C.); (S.-K.K.); Tel.: +82-53-950-0011 (I.-J.C.); +82-53-819-1549 (S.-K.K.)
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (S.-M.P.); (D.-G.L.)
- Correspondence: (I.-J.C.); (S.-K.K.); Tel.: +82-53-950-0011 (I.-J.C.); +82-53-819-1549 (S.-K.K.)
| |
Collapse
|
6
|
Pino-Argumedo MI, Fischer AJ, Hilkin BM, Gansemer ND, Allen PD, Hoffman EA, Stoltz DA, Welsh MJ, Abou Alaiwa MH. Elastic mucus strands impair mucociliary clearance in cystic fibrosis pigs. Proc Natl Acad Sci U S A 2022; 119:e2121731119. [PMID: 35324331 PMCID: PMC9060506 DOI: 10.1073/pnas.2121731119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 01/18/2023] Open
Abstract
SignificanceIn many lung diseases, increased amounts of and/or abnormal mucus impair mucociliary clearance, a key defense against inhaled and aspirated material. Submucosal glands lining cartilaginous airways secrete mucus strands that are pulled by cilia until they break free from the duct and sweep upward toward the larynx, carrying particulates. In cystic fibrosis (CF) pigs, progressive clearance of insufflated microdisks was repeatedly interrupted as microdisks abruptly recoiled. Aerosolizing a reducing agent to break disulfide bonds linking mucins ruptured mucus strands, freeing them from submucosal gland ducts and allowing cilia to propel them up the airways. These findings highlight the abnormally increased elasticity of CF mucus and suggest that agents that break disulfide bonds might have value in lung diseases with increased mucus.
Collapse
Affiliation(s)
- Maria I. Pino-Argumedo
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Anthony J. Fischer
- Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Brieanna M. Hilkin
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Patrick D. Allen
- Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Eric A. Hoffman
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - David A. Stoltz
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- HHMI, University of Iowa, Iowa City, IA 52242
| | - Mahmoud H. Abou Alaiwa
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
7
|
Liu L, Yamamoto A, Yamaguchi M, Taniguchi I, Nomura N, Nakakuki M, Kozawa Y, Fukuyasu T, Higuchi M, Niwa E, Tamada T, Ishiguro H. Bicarbonate transport of airway surface epithelia in luminally perfused mice bronchioles. J Physiol Sci 2022; 72:4. [PMID: 35196991 PMCID: PMC10717372 DOI: 10.1186/s12576-022-00828-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/14/2022] [Indexed: 01/06/2023]
Abstract
HCO3- secretion in distal airways is critical for airway mucosal defense. HCO3-/H+ transport across the apical membrane of airway surface epithelial cells was studied by measuring intracellular pH in luminally microperfused freshly dissected mice bronchioles. Functional studies demonstrated that CFTR, ENaC, Cl--HCO3- exchange, Na+-H+ exchange, and Na+-HCO3- cotransport are involved in apical HCO3-/H+ transport. RT-PCR of isolated bronchioles detected fragments from Cftr, α, β, γ subunits of ENaC, Ae2, Ae3, NBCe1, NBCe2, NBCn1, NDCBE, NBCn2, Nhe1, Nhe2, Nhe4, Nhe5, Slc26a4, Slc26a6, and Slc26a9. We assume that continuous decline of intracellular pH following alkaline load demonstrates time course of HCO3- secretion into the lumen which is perfused with a HCO3--free solution. Forskolin-stimulated HCO3- secretion was substantially inhibited by luminal application of CFTRinh-172 (5 μM), H2DIDS (200 μM), and amiloride (1 μM). In bronchioles from a cystic fibrosis mouse model, basal and acetylcholine-stimulated HCO3- secretion was substantially impaired, but forskolin transiently accelerated HCO3- secretion of which the magnitude was comparable to wild-type bronchioles. In conclusion, we have characterized apical HCO3-/H+ transport in native bronchioles. We have demonstrated that cAMP-mediated and Ca2+-mediated pathways are involved in HCO3- secretion and that apical HCO3- secretion is largely mediated by CFTR and H2DIDS-sensitive Cl--HCO3- exchanger, most likely Slc26a9. The impairment of HCO3- secretion in bronchioles from a cystic fibrosis mouse model may be related to the pathogenesis of early lung disease in cystic fibrosis.
Collapse
Affiliation(s)
- Libin Liu
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiko Yamamoto
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Yamaguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itsuka Taniguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nao Nomura
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyuki Nakakuki
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Kozawa
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Fukuyasu
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Higuchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Erina Niwa
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Research Center of Health, Physical Fitness, and Sports, Nagoya University, Furo-cho E5-2 (130), Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
8
|
Cellular and molecular architecture of submucosal glands in wild-type and cystic fibrosis pigs. Proc Natl Acad Sci U S A 2022; 119:2119759119. [PMID: 35046051 PMCID: PMC8794846 DOI: 10.1073/pnas.2119759119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Submucosal glands (SMGs) protect lungs but can also contribute to disease. For example, in cystic fibrosis (CF), SMGs produce abnormal mucus that disrupts mucociliary transport. CF is an ion transport disease, yet knowledge of the ion transporters expressed by SMG acini, which produce mucus, and SMG ducts that carry it to the airway lumen is limited. Therefore, we isolated SMGs from newborn pigs and used single-cell messenger RNA sequencing, immunohistochemistry, and in situ hybridization to identify cell types, gene expression, and spatial distribution. Cell types and transcript levels were the same in non-CF and CF SMGs, suggesting that loss of epithelial anion secretion rather than an intrinsic cell defect causes CF mucus abnormalities. Gene signatures of acinar mucous and acinar serous cells revealed specialized functions in producing mucins and antimicrobials, respectively. However, surprisingly, these two cell types expressed the same ion transporters and neurohumoral receptors, suggesting the importance of balancing mucin and liquid secretion to produce optimal mucus properties. SMG duct cell transcripts suggest that they secrete HCO3- and Cl-, and thus have some similarity to pancreatic ducts that are also defective in CF. These and additional findings suggest the functions of the SMG acinus and duct and provide a baseline for understanding how environmental and genetic challenges impact their contribution to lung disease.
Collapse
|
9
|
Dransfield M, Rowe S, Vogelmeier CF, Wedzicha J, Criner GJ, Han MK, Martinez FJ, Calverley P. Cystic Fibrosis Transmembrane Conductance Regulator: Roles in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:631-640. [DOI: 10.1164/rccm.202109-2064tr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mark Dransfield
- University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven Rowe
- University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Jadwiga Wedzicha
- Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Gerard J. Criner
- Lewis Katz School of Medicine at Temple University, 12314, Philadelphia, Pennsylvania, United States
| | - MeiLan K. Han
- University of Michigan, Ann Arbor, Michigan, United States
| | | | - Peter Calverley
- University of Liverpool, Liverpool, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
10
|
Genome-Wide RNAi Screening Identifies Novel Pathways/Genes Involved in Oxidative Stress and Repurposable Drugs to Preserve Cystic Fibrosis Airway Epithelial Cell Integrity. Antioxidants (Basel) 2021; 10:antiox10121936. [PMID: 34943039 PMCID: PMC8750174 DOI: 10.3390/antiox10121936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022] Open
Abstract
Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing "protective" drugs. This approach could also prove useful to other respiratory pathologies.
Collapse
|
11
|
McMahon DB, Carey RM, Kohanski MA, Adappa ND, Palmer JN, Lee RJ. PAR-2-activated secretion by airway gland serous cells: role for CFTR and inhibition by Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2021; 320:L845-L879. [PMID: 33655758 DOI: 10.1152/ajplung.00411.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway submucosal gland serous cells are important sites of fluid secretion in conducting airways. Serous cells also express the cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Protease-activated receptor 2 (PAR-2) is a G protein-coupled receptor that activates secretion from intact airway glands. We tested if and how human nasal serous cells secrete fluid in response to PAR-2 stimulation using Ca2+ imaging and simultaneous differential interference contrast imaging to track isosmotic cell shrinking and swelling reflecting activation of solute efflux and influx pathways, respectively. During stimulation of PAR-2, serous cells exhibited dose-dependent increases in intracellular Ca2+. At stimulation levels >EC50 for Ca2+, serous cells simultaneously shrank ∼20% over ∼90 s due to KCl efflux reflecting Ca2+-activated Cl- channel (CaCC, likely TMEM16A)-dependent secretion. At lower levels of PAR-2 stimulation (<EC50 for Ca2+), shrinkage was not evident due to failure to activate CaCC. Low levels of cAMP-elevating VIP receptor (VIPR) stimulation, also insufficient to activate secretion alone, synergized with low-level PAR-2 stimulation to elicit fluid secretion dependent on both cAMP and Ca2+ to activate CFTR and K+ channels, respectively. Polarized cultures of primary serous cells also exhibited synergistic fluid secretion. Pre-exposure to Pseudomonas aeruginosa conditioned media inhibited PAR-2 activation by proteases but not peptide agonists in primary nasal serous cells, Calu-3 bronchial cells, and primary nasal ciliated cells. Disruption of synergistic CFTR-dependent PAR-2/VIPR secretion may contribute to reduced airway surface liquid in CF. Further disruption of the CFTR-independent component of PAR-2-activated secretion by P. aeruginosa may also be important to CF pathophysiology.
Collapse
Affiliation(s)
- Derek B McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael A Kohanski
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Ostedgaard LS, Price MP, Whitworth KM, Abou Alaiwa MH, Fischer AJ, Warrier A, Samuel M, Spate LD, Allen PD, Hilkin BM, Romano Ibarra GS, Ortiz Bezara ME, Goodell BJ, Mather SE, Powers LS, Stroik MR, Gansemer ND, Hippee CE, Zarei K, Goeken JA, Businga TR, Hoffman EA, Meyerholz DK, Prather RS, Stoltz DA, Welsh MJ. Lack of airway submucosal glands impairs respiratory host defenses. eLife 2020; 9:59653. [PMID: 33026343 PMCID: PMC7541087 DOI: 10.7554/elife.59653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Submucosal glands (SMGs) are a prominent structure that lines human cartilaginous airways. Although it has been assumed that SMGs contribute to respiratory defense, that hypothesis has gone without a direct test. Therefore, we studied pigs, which have lungs like humans, and disrupted the gene for ectodysplasin (EDA-KO), which initiates SMG development. EDA-KO pigs lacked SMGs throughout the airways. Their airway surface liquid had a reduced ability to kill bacteria, consistent with SMG production of antimicrobials. In wild-type pigs, SMGs secrete mucus that emerges onto the airway surface as strands. Lack of SMGs and mucus strands disrupted mucociliary transport in EDA-KO pigs. Consequently, EDA-KO pigs failed to eradicate a bacterial challenge in lung regions normally populated by SMGs. These in vivo and ex vivo results indicate that SMGs are required for normal antimicrobial activity and mucociliary transport, two key host defenses that protect the lung.
Collapse
Affiliation(s)
- Lynda S Ostedgaard
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Margaret P Price
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | | | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anthony J Fischer
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Akshaya Warrier
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Melissa Samuel
- Division of Animal Science, University of Missouri, Columbia, United States
| | - Lee D Spate
- Division of Animal Science, University of Missouri, Columbia, United States
| | - Patrick D Allen
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Brieanna M Hilkin
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Guillermo S Romano Ibarra
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Miguel E Ortiz Bezara
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Brian J Goodell
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Steven E Mather
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Linda S Powers
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Mallory R Stroik
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Nicholas D Gansemer
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Camilla E Hippee
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Keyan Zarei
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, United States
| | - J Adam Goeken
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Thomas R Businga
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, United States.,Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, United States
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, United States.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Michael J Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Howard Hughes Medical Institute, University of Iowa, Iowa City, United States
| |
Collapse
|
13
|
Xie Y, Lu L, Tang XX, Moninger TO, Huang TJ, Stoltz DA, Welsh MJ. Acidic Submucosal Gland pH and Elevated Protein Concentration Produce Abnormal Cystic Fibrosis Mucus. Dev Cell 2020; 54:488-500.e5. [PMID: 32730755 DOI: 10.1016/j.devcel.2020.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 10/24/2022]
Abstract
In response to respiratory insults, airway submucosal glands secrete copious mucus strands to increase mucociliary clearance and protect the lung. However, in cystic fibrosis, stimulating submucosal glands has the opposite effect, disrupting mucociliary transport. In cystic fibrosis (CF) pigs, loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channels produced submucosal gland mucus that was abnormally acidic with an increased protein concentration. To test whether these variables alter mucus, we produced a microfluidic model of submucosal glands using mucus vesicles from banana slugs. Acidic pH and increased protein concentration decreased mucus gel volume and increased mucus strand elasticity and tensile strength. However, once mucus strands were formed, changing pH or protein concentration largely failed to alter the biophysical properties. Likewise, raising pH or apical perfusion did not improve clearance of mucus strands from CF airways. These findings reveal mechanisms responsible for impaired mucociliary transport in CF and have important implications for potential treatments.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lin Lu
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Xiao Xiao Tang
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas O Moninger
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Michael J Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
14
|
Abstract
Cystic fibrosis (CF) lung disease is the major cause of morbidity and mortality in people with CF. Abnormal mucociliary transport has been the leading hypothesis for the underlying pathogenesis of CF airway disease. However, this has been difficult to investigate at very early time points. A porcine CF model, which recapitulates many features of CF disease in humans, enables studies to be performed in non-CF and CF pigs on the day that they are born. In newborn CF pigs, we found that under basal conditions, mucociliary transport rates in non-CF and CF pigs are similar. However, after cholinergic stimulation, which stimulates submucosal gland secretion, particles become stuck in the CF airways owing to a failure of mucus strands to release from submucosal glands. In this review, we summarize these recent discoveries and also discuss the morphology, composition, and function of mucins in the porcine lung.
Collapse
|
15
|
Gamo S, Tamada T, Murakami K, Muramatsu S, Aritake H, Nara M, Kazama I, Okazaki T, Sugiura H, Ichinose M. TLR7 agonist attenuates acetylcholine-induced, Ca 2+ -dependent ionic currents in swine tracheal submucosal gland cells. Exp Physiol 2018; 103:1543-1559. [PMID: 30194882 DOI: 10.1113/ep087221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/04/2018] [Indexed: 01/17/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does Toll-like receptor 7 (TLR7) have any direct effects on Ca2+ -dependent physiological function of tracheal submucosal gland cells? What is the main finding and its importance? TLR7 is co-localized with SERCA2 in tracheal submucosal gland cells and causes a rapid attenuation of acetylcholine (ACh)-induced, Ca2+ -dependent ionic currents through the activation of SERCA2-dependent Ca2+ clearance. TLR7 is abundantly expressed in the airways of both swine and healthy human subjects, but is significantly downregulated in chronic obstructive pulmonary disease (COPD) airways. These findings suggest that a dysfunction of TLR7 in COPD removes the brake on ACh-induced serous secretion during viral infections, resulting in prolonged airway hypersecretion, and that it is one of the triggers of COPD exacerbations. ABSTRACT Airway surface fluids are mainly secreted from submucosal glands (SMGs) and play important roles in the defence of airways via the activation of mucociliary transport. Toll-like receptor 7 (TLR7) recognizes and eliminates single stranded RNA (ssRNA) viruses through the induction of innate immunity. However, there is no obvious connection between TLR7 and mucus secretion, aside from TLR7 recognizing ssRNA viruses, which are often associated with airway hypersecretion in chronic obstructive pulmonary disease (COPD). Here, we investigated whether TLR7 has any direct effects on the Ca2+ -dependent physiological function of tracheal SMG cells. Patch-clamp analyses revealed that TLR7 ligand inhibited the acetylcholine (ACh)-induced ionic currents in isolated tracheal SMG cells. Intracellular calcium assays and pharmacological analyses revealed that TLR7 attenuated the transient rises in the intracellular calcium concentration evoked by ACh by activating sarco/endoplasmic reticulum Ca2+ -ATPase 2 (SERCA2). Immunofluorescence staining and immunohistochemical staining revealed that TLR7 was co-localized with SERCA2. These findings suggest that the activation of TLR7 during viral infections contributes to the rapid attenuation of ACh-induced ionic currents through an increase in SERCA2-dependent Ca2+ clearance in healthy airway SMG cells. Our study also revealed that TLR7 expression was significantly downregulated in COPD airways. Based on these findings, we speculate that a dysfunction of TLR7 may not only have an adverse effect on the elimination of these viruses but also remove the brake on ACh-induced serous secretion, resulting in prolonged hypersecretion and acting as one of the triggers of COPD exacerbations.
Collapse
Affiliation(s)
- Shunichi Gamo
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Koji Murakami
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Soshi Muramatsu
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Hidemi Aritake
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Masayuki Nara
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Itsuro Kazama
- Miyagi University, School of Nursing, 1-1 Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi, 981-3298, Japan
| | - Tatsuma Okazaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| |
Collapse
|
16
|
Antosova M, Mokra D, Pepucha L, Plevkova J, Buday T, Sterusky M, Bencova A. Physiology of nitric oxide in the respiratory system. Physiol Res 2018; 66:S159-S172. [PMID: 28937232 DOI: 10.33549/physiolres.933673] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important endogenous neurotransmitter and mediator. It participates in regulation of physiological processes in different organ systems including airways. Therefore, it is important to clarify its role in the regulation of both airway and vascular smooth muscle, neurotransmission and neurotoxicity, mucus transport, lung development and in the. surfactant production. The bioactivity of NO is highly variable and depends on many factors: the presence and activity of NO-producing enzymes, activity of competitive enzymes (e.g. arginase), the amount of substrate for the NO production, the presence of reactive oxygen species and others. All of these can change NO primary physiological role into potentially harmful. The borderline between them is very fragile and in many cases not entirely clear. For this reason, the research focuses on a comprehensive understanding of NO synthesis and its metabolic pathways, genetic polymorphisms of NO synthesizing enzymes and related effects. Research is also motivated by frequent use of exhaled NO monitoring in the clinical manifestations of respiratory diseases. The review focuses on the latest knowledge about the production and function of this mediator and understanding the basic physiological processes in the airways.
Collapse
Affiliation(s)
- M Antosova
- Biomedical Center Martin, Division of Respirology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Birket SE, Davis JM, Fernandez CM, Tuggle KL, Oden AM, Chu KK, Tearney GJ, Fanucchi MV, Sorscher EJ, Rowe SM. Development of an airway mucus defect in the cystic fibrosis rat. JCI Insight 2018; 3:97199. [PMID: 29321377 DOI: 10.1172/jci.insight.97199] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying the development and natural progression of the airway mucus defect in cystic fibrosis (CF) remain largely unclear. New animal models of CF, coupled with imaging using micro-optical coherence tomography, can lead to insights regarding these questions. The Cftr-/- (KO) rat allows for longitudinal examination of the development and progression of airway mucus abnormalities. The KO rat exhibits decreased periciliary depth, hyperacidic pH, and increased mucus solid content percentage; however, the transport rates and viscoelastic properties of the mucus are unaffected until the KO rat ages. Airway submucosal gland hypertrophy develops in the KO rat by 6 months of age. Only then does it induce increased mucus viscosity, collapse of the periciliary layer, and delayed mucociliary transport; stimulation of gland secretion potentiates this evolution. These findings could be reversed by bicarbonate repletion but not pH correction without counterion donation. These studies demonstrate that abnormal surface epithelium in CF does not cause delayed mucus transport in the absence of functional gland secretions. Furthermore, abnormal bicarbonate transport represents a specific target for restoring mucus clearance, independent of effects on periciliary collapse. Thus, mature airway secretions are required to manifest the CF defect primed by airway dehydration and bicarbonate deficiency.
Collapse
Affiliation(s)
- Susan E Birket
- Department of Medicine and.,Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Katherine L Tuggle
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Michelle V Fanucchi
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Steven M Rowe
- Department of Medicine and.,Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cellular, Developmental, and Integrative Biology and.,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Wu D, Boucher RC, Button B, Elston T, Lin CL. An integrated mathematical epithelial cell model for airway surface liquid regulation by mechanical forces. J Theor Biol 2017; 438:34-45. [PMID: 29154907 DOI: 10.1016/j.jtbi.2017.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 01/17/2023]
Abstract
A robust method based on reverse engineering was utilized to construct the ion-channel conductance functions for airway epithelial sodium channels (ENaC), the cystic fibrosis transmembrane conductance regulator (CFTR), and calcium-activated chloride channels (CaCC). The ion-channel conductance models for both normal (NL) and cystic fibrosis (CF) airway epithelia were developed and then coupled to an adenosine triphosphate (ATP) metabolism model and a fluid transport model (collectively called the integrated cell model) to investigate airway surface liquid (ASL) volume regulation and hence mucus concentration, by mechanical forces in NL and CF human airways. The epithelial cell models for NL and CF required differences in Cl- secretion (decreased in CF) and Na+ absorption (raised in CF) to reproduce behaviors similar to in vitro epithelial cells exposed to mechanical forces (cyclic shear stress, cyclic compressive pressure and cilial strain) and selected modulators of ion channels and ATP release. The epithelial cell models were then used to investigate the effects of mechanical forces and evaporative flux on ASL and mucus homeostasis in both NL and CF airway epithelia. Because of reduced CF ASL volumes, CF mucus concentrations increased and produced a greater dependence of ASL volume regulation on cilia-mucus-ATP release interactions in CF than NL epithelial nodules. Similarly, the CF model was less tolerant to evaporation induced ASL volume reduction at all ATP release rates than the NL model. Consequently, this reverse engineered model appears to provide a robust tool for investigating CF pathophysiology and novel therapies.
Collapse
Affiliation(s)
- Dan Wu
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, 7008 Marsico Hall, Chapel Hill, NC 27599-7248, United States; Department of Mechanical and Industrial Engineering, The University of Iowa, 2406 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, United States
| | - Richard C Boucher
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, 7008 Marsico Hall, Chapel Hill, NC 27599-7248, United States.
| | - Brian Button
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, 7008 Marsico Hall, Chapel Hill, NC 27599-7248, United States
| | - Timothy Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Ching-Long Lin
- Department of Mechanical and Industrial Engineering, The University of Iowa, 2406 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, United States.
| |
Collapse
|
19
|
Gel-forming mucins form distinct morphologic structures in airways. Proc Natl Acad Sci U S A 2017; 114:6842-6847. [PMID: 28607090 PMCID: PMC5495256 DOI: 10.1073/pnas.1703228114] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gel-forming mucins, the primary macromolecular components of airway mucus, facilitate airway clearance by mucociliary transport. In cystic fibrosis (CF) altered mucus properties impair mucociliary transport. Airways primarily secrete two closely related gel-forming mucins, MUC5B and MUC5AC. However, their morphologic structures and associations in airways that contain abundant submucosal glands and goblet cells are uncertain. Moreover, there is limited knowledge about mucins in airways not affected by inflammation, infection, or remodeling or in CF airways. Therefore, we examined airways freshly excised from newborn non-CF pigs and CF pigs before secondary manifestations develop. We found that porcine submucosal glands produce MUC5B, whereas goblet cells produce predominantly MUC5AC plus some MUC5B. We found that MUC5B emerged from submucosal gland ducts in the form of strands composed of multiple MUC5B filaments. In contrast, MUC5AC emerged from goblet cells as wispy threads and sometimes formed mucin sheets. In addition, MUC5AC often partially coated the MUC5B strands. Compared with non-CF, MUC5B more often filled CF submucosal gland ducts. MUC5AC sheets also accumulated in CF airways overlying MUC5B strands. These results reveal distinct morphology and interactions for MUC5B and MUC5AC and suggest that the two mucins make distinct contributions to mucociliary transport. Thus, they provide a framework for understanding abnormalities in disease.
Collapse
|
20
|
Huguet F, Calvez ML, Benz N, Le Hir S, Mignen O, Buscaglia P, Horgen FD, Férec C, Kerbiriou M, Trouvé P. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR. Cell Mol Life Sci 2016; 73:3351-73. [PMID: 26874684 PMCID: PMC11108291 DOI: 10.1007/s00018-016-2149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF), one of the most common fatal hereditary disorders, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR gene product is a multidomain adenosine triphosphate-binding cassette (ABC) protein that functions as a chloride (Cl(-)) channel that is regulated by intracellular magnesium [Mg(2+)]i. The most common mutations in CFTR are a deletion of a phenylalanine residue at position 508 (ΔF508-CFTR, 70-80 % of CF phenotypes) and a Gly551Asp substitution (G551D-CFTR, 4-5 % of alleles), which lead to decreased or almost abolished Cl(-) channel function, respectively. Magnesium ions have to be finely regulated within cells for optimal expression and function of CFTR. Therefore, the melastatin-like transient receptor potential cation channel, subfamily M, member 7 (TRPM7), which is responsible for Mg(2+) entry, was studies and [Mg(2+)]i measured in cells stably expressing wildtype CFTR, and two mutant proteins (ΔF508-CFTR and G551D-CFTR). This study shows for the first time that [Mg(2+)]i is decreased in cells expressing ΔF508-CFTR and G551D-CFTR mutated proteins. It was also observed that the expression of the TRPM7 protein is increased; however, membrane localization was altered for both ΔF508del-CFTR and G551D-CFTR. Furthermore, both the function and regulation of the TRPM7 channel regarding Mg(2+) is decreased in the cells expressing the mutated CFTR. Ca(2+) influx via TRPM7 were also modified in cells expressing a mutated CFTR. Therefore, there appears to be a direct involvement of TRPM7 in CF physiopathology. Finally, we propose that the TRPM7 activator Naltriben is a new potentiator for G551D-CFTR as the function of this mutant increases upon activation of TRPM7 by Naltriben.
Collapse
Affiliation(s)
- F Huguet
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - M L Calvez
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
- Association G. Saleun, Brest, 29218, France
| | - N Benz
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Association G. Saleun, Brest, 29218, France
| | - S Le Hir
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Laboratoire de Génétique Moléculaire, Hôpital Morvan, C.H.U. Brest, Brest, 29200, France
| | - O Mignen
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - P Buscaglia
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - F D Horgen
- Laboratory of Marine Biological Chemistry, Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - C Férec
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France.
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France.
- Laboratoire de Génétique Moléculaire, Hôpital Morvan, C.H.U. Brest, Brest, 29200, France.
- Etablissement Français du Sang - Bretagne, Brest, 29200, France.
| | - M Kerbiriou
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France
- Faculté de Médecine et des sciences de la santé, Université de Bretagne Occidentale, Brest, 29200, France
| | - P Trouvé
- Inserm, UMR1078, 46, rue Félix le Dantec, CS 51819, 29218, Brest Cedex 2, France.
| |
Collapse
|
21
|
Abstract
Objective: To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel. Data Sources: The data analyzed in this review were the English articles from 1980 to 2015 from journal databases, primarily PubMed and Google Scholar. The terms used in the literature search were: (1) ENaCs; cystic fibrosis (CF) transmembrane conductance regulator (CFTR); asthma/asthmatic, (2) ENaC/sodium salt; CF; asthma/asthmatic, (3) CFTR/chlorine ion channels; asthma/asthmatic, (4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt; asthma/asthmatic, lung/pulmonary/respiratory/tracheal/alveolar, and (5) CFTR; CF; asthma/asthmatic (ti). Study Selection: These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015). The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors. Results: Airway surface liquid dehydration can cause airway inflammation and obstruction. ENaC and CFTR are closely related to the airway mucociliary clearance. Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations. Conclusions: Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease.
Collapse
Affiliation(s)
- Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing 100020, China; Department of Cellular and Molecular Biology, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler Texas 75708, USA,
| | | |
Collapse
|
22
|
Amaral MD, Balch WE. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. J Cyst Fibros 2015; 14:687-99. [PMID: 26526359 PMCID: PMC4644672 DOI: 10.1016/j.jcf.2015.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023]
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein does not operate in isolation, rather in a dynamic network of interacting components that impact its synthesis, folding, stability, intracellular location and function, referred to herein as the 'CFTR Functional Landscape (CFFL)'. For the prominent F508del mutation, many of these interactors are deeply connected to a protein fold management system, the proteostasis network (PN). However, CF encompasses an additional 2000 CFTR variants distributed along its entire coding sequence (referred to as CFTR2), and each variant contributes a differential liability to PN management of CFTR and to a protein 'social network' (SN) that directs the probability of the (patho)physiologic events that impact ion transport in each cell, tissue and patient in health and disease. Recognition of the importance of the PN and SN in driving the unique patient CFFL leading to disease highlights the importance of precision medicine in therapeutic management of disease progression. We take the view herein that it is not CFTR, rather the PN/SN, and their impact on the CFFL, that are the key physiologic forces driving onset and clinical progression of CF. We posit that a deep understanding of each patients PN/SN gained by merging genomic, proteomic (mass spectrometry (MS)), and high-content microscopy (HCM) technologies in the context of novel network learning algorithms will lead to a paradigm shift in CF clinical management. This should allow for generation of new classes of patient specific PN/SN directed therapeutics for personalized management of the CFFL in the clinic.
Collapse
Affiliation(s)
- Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal.
| | - William E Balch
- Department of Chemical Physiology, Department of Cell and Molecular Biology, The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
23
|
Garnett JP, Hickman E, Tunkamnerdthai O, Cuthbert AW, Gray MA. Protein phosphatase 1 coordinates CFTR-dependent airway epithelial HCO3- secretion by reciprocal regulation of apical and basolateral membrane Cl(-)-HCO3- exchangers. Br J Pharmacol 2015; 168:1946-60. [PMID: 23215877 DOI: 10.1111/bph.12085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/14/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Our recent studies on human airway serous-like Calu-3 cells showed that cAMP agonists stimulated a HCO3(-) rich secretion containing up to 80 mM HCO3(-). This alkaline secretion relied on a coordinated switch in the activity of distinct Cl(-)-HCO3(-) anion exchangers (AE) located at different regions of the cell. At the apical membrane, cAMP agonists activated the electroneutral AE pendrin (SLC26A4), together with cystic fibrosis transmembrane conductance regulator (CFTR), while at the basolateral membrane the agonists inhibited AE2 (SLC4A2). However, the underlying mechanism(s) that orchestrates this cAMP-dependent switch in AE activity has not been elucidated. EXPERIMENTAL APPROACH Apical and basolateral Cl(-)-HCO3(-) exchange was assessed by measuring Cl(-)-dependent changes in intracellular pH (pH(i)). KEY RESULTS We show that protein phosphatase 1 (PP1), together with CFTR, play central roles in this reciprocal regulation of AE activity. Activation of pendrin by cAMP agonists, but not inhibition of the basolateral exchanger, was protein kinase A-dependent. Knocking down CFTR expression, or blocking its activity with GlyH-101, led to incomplete inhibition of the basolateral AE by cAMP, supporting a role for CFTR in this process. Addition of the PP1/2A inhibitor, okadaic acid, but not the PP2A specific inhibitor fostreicin, mimicked the effect of cAMP stimulation. Furthermore, okadaic acid-treated Calu-3 monolayers produced a more alkaline fluid than untreated cells, which was comparable with that produced by cAMP stimulation. CONCLUSIONS AND IMPLICATIONS These results identify PP1 as a novel regulator of AE activity which, in concert with CFTR, coordinates events at both apical and basolateral membranes, crucial for efficient HCO3(-) secretion from Calu-3 cells.
Collapse
Affiliation(s)
- James P Garnett
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
24
|
May A, Tucker A. Understanding the development of the respiratory glands. Dev Dyn 2015; 244:525-39. [PMID: 25648514 DOI: 10.1002/dvdy.24250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The submucosal glands (SMGs) of the respiratory system are specialized structures essential for maintaining airway homeostasis. The significance of SMGs is highlighted by their involvement in respiratory diseases such as cystic fibrosis, asthma and chronic bronchitis, where their phenotype and function are severely altered. Uncovering the normal development of the airway SMGs is essential to elucidate their role in these disorders, however, very little is known about the cellular mechanisms and intracellular signals involved in their morphogenesis. RESULTS This review describes in detail the embryonic developmental journey of the nasal SMGs and the postnatal development of the tracheal SMGs in the mouse. Current knowledge of the genes and signalling molecules involved in SMG organogenesis is also explored. CONCLUSION Here we review the temporal localisation and development of the murine respiratory glands in the hope of stimulating further research into the mechanisms required for successful SMG patterning and function.
Collapse
Affiliation(s)
- Alison May
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | | |
Collapse
|
25
|
|
26
|
Åstrand ABM, Hemmerling M, Root J, Wingren C, Pesic J, Johansson E, Garland AL, Ghosh A, Tarran R. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am J Physiol Lung Cell Mol Physiol 2014; 308:L22-32. [PMID: 25361567 DOI: 10.1152/ajplung.00163.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis and chronic bronchitis (CB). Rehydration by hypertonic saline is efficacious but suffers from a short duration of action. We tested whether epithelial sodium channel (ENaC) inhibition would rehydrate normal and dehydrated airways to increase mucociliary clearance (MCC) over a significant time frame. For this, we used a tool compound (Compound A), which displays nanomolar ENaC affinity and retention in the airway surface liquid (ASL). Using normal human bronchial epithelial cultures (HBECs) grown at an air-liquid interface, we evaluated in vitro potency and efficacy using short-circuit current (I(sc)) and ASL height measurements where it inhibited I(sc) and increased ASL height by ∼ 50% (0.052 μM at 6 h), respectively. The in vivo efficacy was investigated in a modified guinea pig tracheal potential difference model, where we observed an effective dose (ED50) of 5 μg/kg (i.t.), and by MCC measures in rats and sheep, where we demonstrated max clearance rates at 100 μg/kg (i.t.) and 75 μg/kg (i.t.), respectively. Acute cigarette smoke-induced ASL height depletion in HBECs was used to mimic the situation in patients with CB, and pretreatment prevented both cigarette smoke-induced ASL dehydration and lessened the decrease in ciliary beat frequency. Furthermore, when added after cigarette smoke exposure, Compound A increased the rate of ASL rehydration. In conclusion, Compound A demonstrated significant effects and a link between increased airway hydration, ciliary function, and MCC. These data support the hypothesis that ENaC inhibition may be efficacious in the restoration of mucus hydration and transport in patients with CB.
Collapse
Affiliation(s)
| | | | - James Root
- AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | | | | - Alaina L Garland
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Arunava Ghosh
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Judge EP, Hughes JML, Egan JJ, Maguire M, Molloy EL, O'Dea S. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine. Am J Respir Cell Mol Biol 2014; 51:334-43. [PMID: 24828366 DOI: 10.1165/rcmb.2013-0453tr] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The porcine model has contributed significantly to biomedical research over many decades. The similar size and anatomy of pig and human organs make this model particularly beneficial for translational research in areas such as medical device development, therapeutics and xenotransplantation. In recent years, a major limitation with the porcine model was overcome with the successful generation of gene-targeted pigs and the publication of the pig genome. As a result, the role of this model is likely to become even more important. For the respiratory medicine field, the similarities between pig and human lungs give the porcine model particular potential for advancing translational medicine. An increasing number of lung conditions are being studied and modeled in the pig. Genetically modified porcine models of cystic fibrosis have been generated that, unlike mouse models, develop lung disease similar to human cystic fibrosis. However, the scientific literature relating specifically to porcine lung anatomy and airway histology is limited and is largely restricted to veterinary literature and textbooks. Furthermore, methods for in vivo lung procedures in the pig are rarely described. The aims of this review are to collate the disparate literature on porcine lung anatomy, histology, and microbiology; to provide a comparison with the human lung; and to describe appropriate bronchoscopy procedures for the pig lungs to aid clinical researchers working in the area of translational respiratory medicine using the porcine model.
Collapse
Affiliation(s)
- Eoin P Judge
- 1 Irish National Lung and Heart Transplant Program, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
28
|
Hoegger MJ, Fischer AJ, McMenimen JD, Ostedgaard LS, Tucker AJ, Awadalla MA, Moninger TO, Michalski AS, Hoffman EA, Zabner J, Stoltz DA, Welsh MJ. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 2014; 345:818-22. [PMID: 25124441 DOI: 10.1126/science.1255825] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lung disease in people with cystic fibrosis (CF) is initiated by defective host defense that predisposes airways to bacterial infection. Advanced CF is characterized by a deficit in mucociliary transport (MCT), a process that traps and propels bacteria out of the lungs, but whether this deficit occurs first or is secondary to airway remodeling has been unclear. To assess MCT, we tracked movement of radiodense microdisks in airways of newborn piglets with CF. Cholinergic stimulation, which elicits mucus secretion, substantially reduced microdisk movement. Impaired MCT was not due to periciliary liquid depletion; rather, CF submucosal glands secreted mucus strands that remained tethered to gland ducts. Inhibiting anion secretion in non-CF airways replicated CF abnormalities. Thus, impaired MCT is a primary defect in CF, suggesting that submucosal glands and tethered mucus may be targets for early CF treatment.
Collapse
Affiliation(s)
- Mark J Hoegger
- Department of Molecular Physiology and Biophysics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Anthony J Fischer
- Department of Pediatrics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - James D McMenimen
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lynda S Ostedgaard
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Alex J Tucker
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Maged A Awadalla
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas O Moninger
- Central Microscopy Research Facility, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew S Michalski
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Eric A Hoffman
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Department of Radiology, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - David A Stoltz
- Department of Molecular Physiology and Biophysics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA.
| | - Michael J Welsh
- Department of Molecular Physiology and Biophysics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Howard Hughes Medical Institute (HHMI), University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Jeffrey J. Wine
- CF Research Laboratory, Department of Psychology, Stanford University, Stanford, CA 94305–2130, USA
| |
Collapse
|
30
|
Holcomb J, Jiang Y, Lu G, Trescott L, Brunzelle J, Sirinupong N, Li C, Naren AP, Yang Z. Structural insights into PDZ-mediated interaction of NHERF2 and LPA(2), a cellular event implicated in CFTR channel regulation. Biochem Biophys Res Commun 2014; 446:399-403. [PMID: 24613836 DOI: 10.1016/j.bbrc.2014.02.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
The formation of CFTR-NHERF2-LPA2 macromolecular complex in airway epithelia regulates CFTR channel function and plays an important role in compartmentalized cAMP signaling. We previously have shown that disruption of the PDZ-mediated NHERF2-LPA2 interaction abolishes the LPA inhibitory effect and augments CFTR Cl(-) channel activity in vitro and in vivo. Here we report the first crystal structure of the NHERF2 PDZ1 domain in complex with the C-terminal LPA2 sequence. The structure reveals that the PDZ1-LPA2 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four LPA2 residues contributing to specific interactions. Comparison of the PDZ1-LPA2 structure to the structure of PDZ1 in complex with a different peptide provides insights into the diverse nature of PDZ1 substrate recognition and suggests that the conformational flexibility in the ligand binding pocket is involved in determining the broad substrate specificity of PDZ1. In addition, the structure reveals a small surface pocket adjacent to the ligand-binding site, which may have therapeutic implications. This study provides an understanding of the structural basis for the PDZ-mediated NHERF2-LPA2 interaction that could prove valuable in selective drug design against CFTR-related human diseases.
Collapse
Affiliation(s)
- Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuanyuan Jiang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guorong Lu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Laura Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anjaparavanda P Naren
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
31
|
Lee RJ, Foskett JK. Ca²⁺ signaling and fluid secretion by secretory cells of the airway epithelium. Cell Calcium 2014; 55:325-36. [PMID: 24703093 DOI: 10.1016/j.ceca.2014.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic Ca(2+) is a master regulator of airway physiology; it controls fluid, mucus, and antimicrobial peptide secretion, ciliary beating, and smooth muscle contraction. The focus of this review is on the role of cytoplasmic Ca(2+) in fluid secretion by airway exocrine secretory cells. Airway submucosal gland serous acinar cells are the primary fluid secreting cell type of the cartilaginous conducting airways, and this review summarizes the current state of knowledge of the molecular mechanisms of serous cell ion transport, with an emphasis on their regulation by intracellular Ca(2+). Many neurotransmitters that regulate secretion from serous acinar cells utilize Ca(2+) as a second messenger. Changes in intracellular Ca(2+) concentration regulate the activities of ion transporters and channels involved in transepithelial ion transport and fluid secretion, including Ca(2+)-activated K(+) channels and Cl(-) channels. We also review evidence of interactions of Ca(2+) signaling with other signaling pathways (cAMP, NO) that impinge upon different ion transport pathways, including the cAMP/PKA-activated cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel. A better understanding of Ca(2+) signaling and its targets in airway fluid secretion may identify novel strategies to intervene in airway diseases, for example to enhance fluid secretion in CF airways.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
32
|
Muramatsu S, Tamada T, Nara M, Murakami K, Kikuchi T, Kanehira M, Maruyama Y, Ebina M, Nukiwa T, Ichinose M. Flagellin/TLR5 signaling potentiates airway serous secretion from swine tracheal submucosal glands. Am J Physiol Lung Cell Mol Physiol 2013; 305:L819-30. [PMID: 24097563 DOI: 10.1152/ajplung.00053.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway serous secretion is essential for the maintenance of mucociliary transport in airway mucosa, which is responsible for the upregulation of mucosal immunity. Although there are many articles concerning the importance of Toll-like receptors (TLRs) in airway immune systems, the direct relationship between TLRs and airway serous secretion has not been well investigated. Here, we focused on whether TLR5 ligand flagellin, which is one of the components of Pseudomonas aeruginosa, is involved in the upregulation of airway serous secretion. Freshly isolated swine tracheal submucosal gland cells were prepared, and the standard patch-clamp technique was applied for measurements of the whole cell ionic responses of these cells. Flagellin showed potentiating effects on these oscillatory currents induced by physiologically relevant low doses of acetylcholine (ACh) in a dose-dependent manner. These potentiating effects were TLR5 dependent but TLR4 independent. Both nitric oxide (NO) synthase inhibitors and cGMP-dependent protein kinase (cGK) inhibitors abolished these flagellin-induced potentiating effects. Furthermore, TLR5 was abundantly expressed on tracheal submucosal glands. Flagellin/TLR5 signaling further accelerated the intracellular NO synthesis induced by ACh. These findings suggest that TLR5 takes part in the airway mucosal defense systems as a unique endogenous potentiator of airway serous secretions and that NO/cGMP/cGK signaling is involved in this rapid potentiation by TLR5 signaling.
Collapse
Affiliation(s)
- Soshi Muramatsu
- Dept. of Respiratory Medicine, Tohoku Univ. Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, JAPAN.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee RJ, Chen B, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Cohen NA. Vasoactive intestinal peptide regulates sinonasal mucociliary clearance and synergizes with histamine in stimulating sinonasal fluid secretion. FASEB J 2013; 27:5094-103. [PMID: 23934280 DOI: 10.1096/fj.13-234476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mucociliary clearance (MCC) is the primary physical airway defense against inhaled pathogens and particulates. MCC depends on both proper fluid/mucus homeostasis and epithelial ciliary beating. Vasoactive intestinal peptide (VIP) is a neurotransmitter expressed in the sinonasal epithelium that is up-regulated in allergy. However, the effects of VIP on human sinonasal physiology are unknown, as are VIP's interactions with histamine, a major regulator of allergic disease. We imaged ciliary beat frequency, mucociliary transport, apical Cl(-) permeability, and airway surface liquid (ASL) height in primary human sinonasal air-liquid-interface cultures to investigate the effects of VIP and histamine. VIP stimulated an increase in ciliary beat frequency (EC50 0.5 μM; maximal increase ∼40% compared with control) and cystic fibrosis transmembrane conductance regulator (CFTR)-dependent and Na(+)K(+)2Cl(-) cotransporter-dependent fluid secretion, all requiring cAMP/PKA signaling. Histamine activated Ca(2+) signaling that increased ASL height but not ciliary beating. Low concentrations of VIP and histamine had synergistic effects on CFTR-dependent fluid secretion, revealed by increased ASL heights. An up-regulation of VIP in histamine-driven allergic rhinitis would likely enhance mucosal fluid secretion and contribute to allergic rhinorrhea. Conversely, a loss of VIP-activated secretion in patients with CF may impair mucociliary transport, contributing to increased incidences of sinonasal infections and rhinosinusitis.
Collapse
Affiliation(s)
- Robert J Lee
- 1Department of Otorhinolaryngology, Head and Neck Surgery, Hospital of the University of Pennsylvania, Ravdin Bldg, 5th Floor, 3400 Spruce St., Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ganesan S, Comstock AT, Sajjan US. Barrier function of airway tract epithelium. Tissue Barriers 2013; 1:e24997. [PMID: 24665407 PMCID: PMC3783221 DOI: 10.4161/tisb.24997] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022] Open
Abstract
Airway epithelium contributes significantly to the barrier function of airway tract. Mucociliary escalator, intercellular apical junctional complexes which regulate paracellular permeability and antimicrobial peptides secreted by the airway epithelial cells are the three primary components of barrier function of airway tract. These three components act cooperatively to clear inhaled pathogens, allergens and particulate matter without inducing inflammation and maintain tissue homeostasis. Therefore impairment of one or more of these essential components of barrier function may increase susceptibility to infection and promote exaggerated and prolonged innate immune responses to environmental factors including allergens and pathogens resulting in chronic inflammation. Here we review the regulation of components of barrier function with respect to chronic airways diseases.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor, MI USA
| | - Adam T Comstock
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor, MI USA
| | - Uma S Sajjan
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor, MI USA
| |
Collapse
|
35
|
Tarran R, Sabater JR, Clarke TC, Tan CD, Davies CM, Liu J, Yeung A, Garland AL, Stutts MJ, Abraham WM, Phillips G, Baker WR, Wright CD, Wilbert S. Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion. Am J Physiol Lung Cell Mol Physiol 2013; 304:L746-56. [PMID: 23542952 DOI: 10.1152/ajplung.00292.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucus clearance is an important component of the lung's innate defense system. A failure of this system brought on by mucus dehydration is common to both cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Mucus clearance rates are regulated by the volume of airway surface liquid (ASL) and by ciliary beat frequency (CBF). Chronic treatment with macrolide antibiotics is known to be beneficial to both CF and COPD patients. However, chronic macrolide usage may induce bacterial resistance. We have developed a novel macrolide, 2'-desoxy-9-(S)-erythromycylamine (GS-459755), that has significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and Haemophilus influenzae. Since neutrophilia frequently occurs in chronic lung disease and human neutrophil elastase (HNE) induces mucus stasis by activating the epithelial sodium channel (ENaC), we tested the ability of GS-459755 to protect against HNE-induced mucus stasis. GS-459755 had no effect on HNE activity. However, GS-459755 pretreatment protected against HNE-induced ASL volume depletion in human bronchial epithelial cells (HBECs). The effect of GS-459755 on ASL volume was dose dependent (IC₅₀ ~3.9 μM) and comparable to the antibacterial macrolide azithromycin (IC₅₀ ~2.4 μM). Macrolides had no significant effect on CBF or on transepithelial water permeability. However, the amiloride-sensitive transepithelial voltage, a marker of ENaC activity, was diminished by macrolide pretreatment. We conclude that GS-459755 may limit HNE-induced activation of ENaC and may be useful for the treatment of mucus dehydration in CF and COPD without inducing bacterial resistance.
Collapse
Affiliation(s)
- Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27516, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee RJ, Foskett JK. Why mouse airway submucosal gland serous cells do not secrete fluid in response to cAMP stimulation. J Biol Chem 2012; 287:38316-26. [PMID: 22989883 DOI: 10.1074/jbc.m112.412817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Airway submucosal glands are important sites of cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl(-)) channel expression and fluid secretion in the airway. Whereas both mouse and human submucosal glands and their serous acinar cells express CFTR, human glands and serous cells secrete much more robustly than mouse cells/glands in response to cAMP-generating agonists such as forskolin and vasoactive intestinal peptide. In this study, we examined mouse and human serous acinar cells to explain this difference and reveal further insights into the mechanisms of serous cell secretion. We found that mouse serous cells possess a robust cAMP-activated CFTR-dependent Cl(-) permeability, but they lack cAMP-activated calcium (Ca(2+)) signaling observed in human cells. Similar to human cells, basal K(+) conductance is extremely small in mouse acinar cells. Lack of cAMP-activated Ca(2+) signaling in mouse cells results in the absence of K(+) conductances required for secretion. However, cAMP activates CFTR-dependent fluid secretion during low-level cholinergic stimulation that fails to activate secretion on its own. Robust CFTR-dependent fluid secretion was also observed when cAMP stimulation was combined with direct pharmacological activation of epithelial K(+) channels with 1-ethyl-2-benzimidazolinone (EBIO). Our data suggest that mouse serous cells lack cAMP-mediated Ca(2+) signaling to activate basolateral membrane K(+) conductance, resulting in weak cAMP-driven serous cell fluid secretion, providing the likely explanation for reduced cAMP-driven secretion observed in mouse compared with human glands.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
37
|
Abstract
Mucus pathology in cystic fibrosis (CF) has been known for as long as the disease has been recognized and is sometimes called mucoviscidosis. The disease is marked by mucus hyperproduction and plugging in many organs, which are usually most fatal in the airways of CF patients, once the problem of meconium ileus at birth is resolved. After the CF gene, CFTR, was cloned and its protein product identified as a cAMP-regulated Cl(-) channel, causal mechanisms underlying the strong mucus phenotype of the disease became obscure. Here we focus on mucin genes and polymeric mucin glycoproteins, examining their regulation and potential relationships to a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR). Detailed examination of CFTR expression in organs and different cell types indicates that changes in CFTR expression do not always correlate with the severity of CF disease or mucus accumulation. Thus, the mucus hyperproduction that typifies CF does not appear to be a direct cause of a defective CFTR but, rather, to be a downstream consequence. In organs like the lung, up-regulation of mucin gene expression by inflammation results from chronic infection; however, in other instances and organs, the inflammation may have a non-infectious origin. The mucus plugging phenotype of the β-subunit of the epithelial Na(+) channel (βENaC)-overexpressing mouse is proving to be an archetypal example of this kind of inflammation, with a dehydrated airway surface/concentrated mucus gel apparently providing the inflammatory stimulus. Data indicate that the luminal HCO(3)(-) deficiency recently described for CF epithelia may also provide such a stimulus, perhaps by causing a mal-maturation of mucins as they are released onto luminal surfaces. In any event, the path between CFTR dysfunction and mucus hyperproduction has proven tortuous, and its unraveling continues to offer its own twists and turns, along with fascinating glimpses into biology.
Collapse
Affiliation(s)
- Silvia M Kreda
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27517-7248, USA
| | | | | |
Collapse
|
38
|
Rebeyrol C, Saint-Criq V, Guillot L, Riffault L, Corvol H, Chadelat K, Ray DW, Clement A, Tabary O, Le Rouzic P. Glucocorticoids reduce inflammation in cystic fibrosis bronchial epithelial cells. Cell Signal 2012; 24:1093-9. [PMID: 22285804 DOI: 10.1016/j.cellsig.2012.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/16/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
Reduction of lung inflammation is one of the goals of cystic fibrosis (CF) therapy. Among anti-inflammatory molecules, glucocorticoids (GC) are one of the most prescribed. However, CF patients seem to be resistant to glucocorticoid treatment. Several molecular mechanisms that contribute to decrease anti-inflammatory effects of glucocorticoids have been identified in pulmonary diseases, but the molecular actions of glucocorticoids have never been studied in CF. In the cytoplasm, glucocorticoids bind to glucocorticoid receptor (GR) and then, control NF-κB and MAPK pathways through direct interaction with AP-1 and NF-κB in the nucleus. Conversely, MAPK can regulate glucocorticoid activation by targeting GR phosphorylation. Together these pathways regulate IL-8 release in the lung. Using bronchial epithelial cell lines derived from non CF and CF patients, we analyzed GR-based effects of glucocorticoids on NF-κB and MAPK pathways, after stimulation with TNF-α. We demonstrate that the synthetic glucocorticoid dexamethasone (Dex) significantly decreases IL-8 secretion, AP-1 and NF-κB activity in CF cells in a pro-inflammatory context. Moreover, we show that p38 MAPK controls IL-8 release by determining GR activation through specific phosphorylation on serine 211. Finally, we demonstrate a synergistic effect of dexamethasone treatment and inhibition of p38 MAPK inducing more than 90% inhibition of IL-8 production in CF cells. All together, these results demonstrate the good responsiveness to glucocorticoids of CF bronchial epithelial cells and the reciprocal link between glucocorticoids and p38 MAPK in the control of CF lung inflammation.
Collapse
|
39
|
Murakami K, Tamada T, Nara M, Muramatsu S, Kikuchi T, Kanehira M, Maruyama Y, Ebina M, Nukiwa T. Toll-Like Receptor 4 Potentiates Ca2+-Dependent Secretion of Electrolytes from Swine Tracheal Glands. Am J Respir Cell Mol Biol 2011; 45:1101-10. [DOI: 10.1165/rcmb.2011-0020oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Functional regulation of cystic fibrosis transmembrane conductance regulator-containing macromolecular complexes: a small-molecule inhibitor approach. Biochem J 2011; 435:451-62. [PMID: 21299497 DOI: 10.1042/bj20101725] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) has been shown to form multiple protein macromolecular complexes with its interacting partners at discrete subcellular microdomains to modulate trafficking, transport and signalling in cells. Targeting protein-protein interactions within these macromolecular complexes would affect the expression or function of the CFTR channel. We specifically targeted the PDZ domain-based LPA2 (type 2 lysophosphatidic acid receptor)-NHERF2 (Na+/H+ exchanger regulatory factor-2) interaction within the CFTR-NHERF2-LPA2-containing macromolecular complexes in airway epithelia and tested its regulatory role on CFTR channel function. We identified a cell-permeable small-molecule compound that preferentially inhibits the LPA2-NHERF2 interaction. We show that this compound can disrupt the LPA2-NHERF2 interaction in cells and thus compromises the integrity of macromolecular complexes. Functionally, it elevates cAMP levels in proximity to CFTR and upregulates its channel activity. The results of the present study demonstrate that CFTR Cl- channel function can be finely tuned by modulating PDZ domain-based protein-protein interactions within the CFTR-containing macromolecular complexes. The present study might help to identify novel therapeutic targets to treat diseases associated with dysfunctional CFTR Cl- channels.
Collapse
|
41
|
Defective fluid secretion from submucosal glands of nasal turbinates from CFTR-/- and CFTR (ΔF508/ΔF508) pigs. PLoS One 2011; 6:e24424. [PMID: 21935358 PMCID: PMC3164206 DOI: 10.1371/journal.pone.0024424] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 08/09/2011] [Indexed: 11/23/2022] Open
Abstract
Background Cystic fibrosis (CF), caused by reduced CFTR function, includes severe sinonasal disease which may predispose to lung disease. Newly developed CF pigs provide models to study the onset of CF pathophysiology. We asked if glands from pig nasal turbinates have secretory responses similar to those of tracheal glands and if CF nasal glands show reduced fluid secretion. Methodology/Principal Findings Unexpectedly, we found that nasal glands differed from tracheal glands in five ways, being smaller, more numerous (density per airway surface area), more sensitive to carbachol, more sensitive to forskolin, and nonresponsive to Substance P (a potent agonist for pig tracheal glands). Nasal gland fluid secretion from newborn piglets (12 CF and 12 controls) in response to agonists was measured using digital imaging of mucus bubbles formed under oil. Secretion rates were significantly reduced in all conditions tested. Fluid secretory rates (Controls vs. CF, in pl/min/gland) were as follows: 3 µM forskolin: 9.2±2.2 vs. 0.6±0.3; 1 µM carbachol: 143.5±35.5 vs. 52.2±10.3; 3 µM forskolin + 0.1 µM carbachol: 25.8±5.8 vs. CF 4.5±0.9. We also compared CFΔF508/ΔF508 with CFTR-/- piglets and found significantly greater forskolin-stimulated secretion rates in the ΔF508 vs. the null piglets (1.4±0.8, n = 4 vs. 0.2±0.1, n = 7). An unexpected age effect was also discovered: the ratio of secretion to 3 µM forskolin vs. 1 µM carbachol was ∼4 times greater in adult than in neonatal nasal glands. Conclusions/Significance These findings reveal differences between nasal and tracheal glands, show defective fluid secretion in nasal glands of CF pigs, reveal some spared function in the ΔF508 vs. null piglets, and show unexpected age-dependent differences. Reduced nasal gland fluid secretion may predispose to sinonasal and lung infections.
Collapse
|
42
|
Finkbeiner WE, Zlock LT, Morikawa M, Lao AY, Dasari V, Widdicombe JH. Cystic fibrosis and the relationship between mucin and chloride secretion by cultures of human airway gland mucous cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L402-14. [PMID: 21724859 DOI: 10.1152/ajplung.00210.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated how cystic fibrosis (CF) alters the relationship between Cl(-) and mucin secretion in cultures of non-CF and CF human tracheobronchial gland mucous (HTGM and CFTGM, respectively) cells. Biochemical studies showed that HTMG cells secreted typical airway mucins, and immunohistochemical studies showed that these cells expressed MUC1, MUC4, MUC5B, MUC8, MUC13, MUC16, and MUC20. Effects of cumulative doses of methacholine (MCh), phenylephrine (Phe), isoproterenol (Iso), and ATP on mucin and Cl(-) secretion were studied on HTGM and CFTGM cultures. Baseline mucin secretion was not significantly altered in CFTGM cells, and the increases in mucin secretion induced by mediators were unaltered (Iso, Phe) or slightly decreased (MCh, ATP). Across mediators, there was no correlation between the maximal increases in Cl(-) secretion and mucin secretion. In HTGM cells, the Cl(-) channel blocker, diphenylamine-2-carboxylic acid, greatly inhibited Cl(-) secretion but did not alter mucin release. In HTGM cells, mediators (10(-5) M) increased mucin secretion in the rank order ATP > Phe = Iso > MCh. They increased Cl(-) secretion in the sequence ATP > MCh ≈ Iso > Phe. The responses in Cl(-) secretion to MCh, ATP, and Phe were unaltered by CF, but the response to Iso was greatly reduced. We conclude that mucin secretion by cultures of human tracheobronchial gland cells is independent of Cl(-) secretion, at baseline, and is unaltered in CF; that the ratio of Cl(-) secretion to mucus secretion varies markedly depending on mediator; and that secretions induced by stimulation of β-adrenergic receptors will be abnormally concentrated in CF.
Collapse
Affiliation(s)
- Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, 94110, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Khansaheb M, Choi JY, Joo NS, Yang YM, Krouse M, Wine JJ. Properties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands. Am J Physiol Lung Cell Mol Physiol 2011; 300:L370-9. [DOI: 10.1152/ajplung.00372.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et al. J Clin Invest 120: 3161–3166, 2010). To further define features of SubP-mediated gland secretion, we optically measured secretion rates from individual adult porcine glands in isolated tracheal tissues in response to mucosal capsaicin and serosal SubP. Mucosal capsaicin (EC50 = 19 μM) stimulated low rates of secretion that were partially inhibited by tetrodotoxin and by inhibitors for muscarinic, VIP, and SubP receptors, suggesting reflex stimulation of secretion by multiple transmitters. Secretion in response to mucosal capsaicin was inhibited by CFTRinh-172, but not by niflumic acid. Serosal SubP (EC50 = 230 nM) stimulated 10-fold more secretion than mucosal capsaicin, with a Vmax similar to that of carbachol. Secretion rates peaked within 5 min and then declined to a lower sustained rate. SubP-stimulated secretion was inhibited 75% by bumetanide, 53% by removal of HCO3−, and 85% by bumetanide + removal of HCO3−; it was not inhibited by atropine but was inhibited by niflumic acid, clotrimazole, BAPTA-AM, nominally Ca2+-free bath solution, and the adenylate cyclase inhibitor MDL-12330A. Ratiometric measurements of fura 2 fluorescence in dissociated gland cells showed that SubP and carbachol increased intracellular Ca2+ concentration by similar amounts. SubP produced rapid volume loss by serous and mucous cells, expansion of gland lumina, mucus flow, and exocytosis but little or no contraction of myoepithelial cells. These and prior results suggest that SubP stimulates pig gland secretion via CFTR- and Ca2+-activated Cl− channels.
Collapse
Affiliation(s)
- Monal Khansaheb
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jae Young Choi
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
- Department of Otorhinolaryngology, Yonsei University, and
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Yu-Mi Yang
- Department of Oral Biology, Brain Korea 21 Project, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Mauri Krouse
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
44
|
Abstract
OBJECTIVES Our aim was to verify neural regulation of submucous gland mucus secretions in the Eustachian tubes of guinea pigs. STUDY DESIGN Prospective animal study. METHODS Eustachian tubes harvested from 12 guinea pigs were used for this study. For real-time resolution of pure glandular secretion, we used a modified method of single-gland optical measurement. Secretory monitoring was undertaken after each preparation with phenylephrine, isoproterenol, forskolin, and substance P. To confirm the viability of each tissue, we examined glandular secretion after treatment with carbachol. Secretory effects of each agonist were evaluated by comparing with basal secretion using a Student's t test (p < 0.01). RESULTS The Ca-elevating agonists carbachol and substance P showed greater effects on submucous gland secretions of the Eustachian tube than the cyclic adenosine monophosphate (cAMP)-elevating agonists forskolin and isoproterenol. However, phenylephrine, although it belongs to the Ca-elevating agonist group, did not show any significant secretory effect. CONCLUSION The optical measurement method used in this study had the merit of real-time resolution of submucous glandular secretion. Submucous glandular secretion in the Eustachian tube was regulated by both Ca- and cAMP-elevating agonists, and Ca-elevating agonists seemed to be more potent than cAMP-elevating agonists except phenylephrine. Our results suggest that not only the autonomic nerve system but also the neuropeptides such as substance P are closely related to glandular secretion in the Eustachian tube, and beta-adrenergic receptors seem to be more related to submucous glandular secretion of the Eustachian tube in guinea pig than alpha-adrenergic receptors.
Collapse
|
45
|
Lee RJ, Foskett JK. cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 2010; 120:3137-48. [PMID: 20739756 DOI: 10.1172/jci42992] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/01/2010] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), which is caused by mutations in CFTR, affects many tissues, including the lung. Submucosal gland serous acinar cells are primary sites of fluid secretion and CFTR expression in the lung. Absence of CFTR in these cells may contribute to CF lung pathogenesis by disrupting fluid secretion. Here, we have isolated primary serous acinar cells from wild-type and CFTR-/- pigs and humans without CF to investigate the cellular mechanisms and regulation of fluid secretion by optical imaging. Porcine and human serous cells secrete fluid in response to vasoactive intestinal polypeptide (VIP) and other agents that raise intracellular cAMP levels; here, we have demonstrated that this requires CFTR and a cAMP-dependent rise in intracellular Ca2+ concentration ([Ca2+]i). Importantly, cAMP induced the release of Ca2+ from InsP3-sensitive Ca2+ stores also responsive to cAMP-independent agonists such as cholinergic, histaminergic, and purinergic agonists that stimulate CFTR-independent fluid secretion. This provides two types of synergism that strongly potentiated cAMP-mediated fluid secretion but differed in their CFTR dependencies. First, CFTR-dependent secretion was strongly potentiated by low VIP and carbachol concentrations that individually were unable to stimulate secretion. Second, higher VIP concentrations more strongly potentiated the [Ca2+]i responses, enabling ineffectual levels of cholinergic stimulation to strongly activate CFTR-independent fluid secretion. These results identify important molecular mechanisms of cAMP-dependent secretion, including a requirement for Ca2+ signaling, and suggest new therapeutic approaches to correct defective submucosal gland secretion in CF.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | | |
Collapse
|
46
|
Joo NS, Cho HJ, Khansaheb M, Wine JJ. Hyposecretion of fluid from tracheal submucosal glands of CFTR-deficient pigs. J Clin Invest 2010; 120:3161-6. [PMID: 20739758 DOI: 10.1172/jci43466] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/01/2010] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) results from mutations that disrupt CF transmembrane conductance regulator (CFTR), an anion channel found mainly in apical membranes of epithelial cells. CF leads to chronic infection of the airways with normally innocuous bacteria and fungi. Hypotheses to explain the pathophysiology of CF airways have been difficult to test because mouse models of CF do not develop human-like airway disease. The recent production of pigs lacking CFTR and pigs expressing the most common CF-causing CFTR mutant, DeltaF508, provide another model that might help clarify the pathophysiology of CF airway disease. Here, we studied individual submucosal glands from 1-day-old piglets in situ in explanted tracheas, using optical methods to monitor mucus secretion rates from multiple glands in parallel. Secretion rates from control piglets (WT and CFTR+/-) and piglets with CF-like disease (CFTR-/- and CFTR-/DeltaF508) were measured under 5 conditions: unstimulated (to determine basal secretion), stimulated with forskolin, stimulated with carbachol, stimulated with substance P, and, as a test for synergy, stimulated with forskolin and a low concentration of carbachol. Glands from piglets with CF-like disease responded qualitatively to all agonists like glands from human patients with CF, producing virtually no fluid in response to stimulation with forskolin and substantially less in response to all other agonists except carbachol. These data are a step toward determining whether gland secretory defects contribute to CF airway disease.
Collapse
Affiliation(s)
- Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California 94305-2130, USA
| | | | | | | |
Collapse
|
47
|
Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, Tearney GJ, Zabner J, McCray PB, Welsh MJ. Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 2010; 182:1251-61. [PMID: 20622026 DOI: 10.1164/rccm.201004-0643oc] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Although airway abnormalities are common in patients with cystic fibrosis (CF), it is unknown whether they are all secondary to postnatal infection and inflammation, which characterize the disease. OBJECTIVES To learn whether loss of the cystic fibrosis transmembrane conductance regulator (CFTR) might affect major airways early in life, before the onset of inflammation and infection. METHODS We studied newborn CFTR⁻(/)⁻ pig trachea, using computed tomography (CT) scans, pathology, and morphometry. We retrospectively analyzed trachea CT scans in young children with CF and also previously published data of infants with CF. MEASUREMENTS AND MAIN RESULTS We discovered three abnormalities in the porcine CF trachea. First, the trachea and mainstem bronchi had a uniformly small caliber and cross-sections of trachea were less circular than in controls. Second, trachealis smooth muscle had an altered bundle orientation and increased transcripts in a smooth muscle gene set. Third, submucosal gland units occurred with similar frequency in the mucosa of CF and control airways, but CF submucosal glands were hypoplastic and had global reductions in tissue-specific transcripts. To learn whether any of these changes occurred in young patients with CF, we examined CT scans from children 2 years of age and younger, and found that CF tracheas were less circular in cross-section, but lacked differences in lumen area. However, analysis of previously published morphometric data showed reduced tracheal lumen area in neonates with CF. CONCLUSIONS Our findings in newborn CF pigs and young patients with CF suggest that airway changes begin during fetal life and may contribute to CF pathogenesis and clinical disease during postnatal life.
Collapse
|
48
|
Local pulmonary opioid network in patients with lung cancer: a putative modulator of respiratory function. Pharmacol Rep 2010; 62:139-49. [PMID: 20360624 DOI: 10.1016/s1734-1140(10)70251-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 01/31/2010] [Indexed: 11/23/2022]
Abstract
Recently, there has been growing interest in the opioid regulation of physiological respiratory function. However, evidence for a local opioid network that includes endogenous opioid peptides and their receptors is scarce. Tissue samples from patients with lung cancer were examined by immunohistochemistry to identify the components of the opioid network: beta-endorphin (END); its precursor, proopiomelanocortin (POMC); the key processing enzymes prohormone convertase 1 and 2; carboxypeptidase E; and END's corresponding opioid receptor, the mu-opioid receptor (MOR). Additionally, we tested pulmonary function parameters in a patient with advanced lung cancer after inhalation of nebulized morphine. Confocal immunofluorescence microscopy revealed that the opioid precursor POMC colocalizes with its active peptide END, key processing enzymes and MOR in alveolar macrophages, submucosal glands, cancerous cells, and pulmonary neuroendocrine cells within the bronchial epithelium. In addition, MOR was identified on sensory nerve endings within the bronchial epithelium. Furthermore, nebulized morphine improved pulmonary function parameters in advanced lung cancer. These findings provide evidence of a local opioid network in functionally important anatomical structures of the respiratory system; this network consists of all the machinery required for POMC processing into active peptides, such as END, and contains the receptors for END. Our findings indicate a need for further clinical trials to elucidate the modulatory function of peripheral endogenous opioids in the human lung.
Collapse
|
49
|
Warren NJ, Crampin EJ, Tawhai MH. The role of airway epithelium in replenishment of evaporated airway surface liquid from the human conducting airways. Ann Biomed Eng 2010; 38:3535-49. [PMID: 20596780 DOI: 10.1007/s10439-010-0111-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 06/21/2010] [Indexed: 11/26/2022]
Abstract
This article presents a multi-scale computational model describing the transport of water vapor and heat within the human conducting airways and its interaction with cellular fluid transport kinetics. This tight coupling between the cell and the evaporative flux allows the periciliary liquid (PCL) depth to be investigated within the context of a geometric framework of the human conducting airways with spatial and temporal variations. Within the in vivo airway, the epithelium is not the only source of fluid available for hydration of the PCL, and fluid may also be supplied from submucosal glands (SMGs) or via axial transport of the PCL. The model predicts that without fluid supplied by either SMGs or via PCL transport, significant dehydration would occur under normal breathing conditions. Previous studies have suggested that PCL transport from the periphery to the trachea would require absorption of the fluid by the epithelium; here we show that this can theoretically be sustained by the evaporative load under normal breathing conditions. SMGs could also provide a significant supply of fluid for airway hydration, a hypothesis which is corroborated by comparing the distribution of SMGs as a function of airway generation with the distribution of airway evaporative flux.
Collapse
Affiliation(s)
- N J Warren
- Auckland Bioengineering Institute, University of Auckland, New Zealand.
| | | | | |
Collapse
|
50
|
Erasmus CE, Van Hulst K, Van Den Hoogen FJ, Van Limbeek J, Roeleveld N, Veerman EC, Rotteveel JJ, Jongerius PH. Thickened saliva after effective management of drooling with botulinum toxin A. Dev Med Child Neurol 2010; 52:e114-8. [PMID: 20163435 DOI: 10.1111/j.1469-8749.2009.03601.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to evaluate the rheological properties of saliva after submandibular botulinum toxin type A (BoNT-A) injections. METHOD We enrolled 15 children (11 males and six females; age range 3-17 y, mean age 9 y 10 mo) diagnosed with spastic (n=9) or dyskinetic (n=6) quadriplegic cerebral palsy (CP); Gross Motor Function Classification System level IV or V; and two children with intellectual disability (IQ<70) who experienced moderate to severe drooling. Salivary flow rate and drooling quotient were measured at baseline and at different times after BoNT-A injections up to 24 weeks. The mucin concentration of saliva was analysed before and after BoNT-A treatment. RESULTS Both submandibular salivary flow rate (baseline 0.38 mL/min; 24 wks after injection 0.26 mL/min) and drooling quotient (baseline 42.5%; 24 wks 28.80%) were substantially reduced, with a concomitant increase in mucin concentration within 8 weeks after BoNT-A injection (from 0.612 to 1.830 U/mL). The parents of nine children observed thickened saliva. Swallowing and chewing were problematic in seven children. Two of these children needed treatment with mucolytics because of pooling of thickened saliva in the throat. INTERPRETATION When making decisions about the use of BoNT-A, the risk of problems with masticatory and swallowing functions as a result of thickening of saliva after BoNT-A treatment should be taken into account.
Collapse
Affiliation(s)
- Corrie E Erasmus
- Department of Paediatric Neurology, Radboud University Nijmegen Medical Centre/Donders Institute for Brain, Cognition and Behaviour, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|