1
|
Welch JF, Mitchell GS. Inaugural Review Prize 2023: The exercise hyperpnoea dilemma: A 21st-century perspective. Exp Physiol 2024; 109:1217-1237. [PMID: 38551996 PMCID: PMC11291877 DOI: 10.1113/ep091506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/12/2024] [Indexed: 08/02/2024]
Abstract
During mild or moderate exercise, alveolar ventilation increases in direct proportion to metabolic rate, regulating arterial CO2 pressure near resting levels. Mechanisms giving rise to the hyperpnoea of exercise are unsettled despite over a century of investigation. In the past three decades, neuroscience has advanced tremendously, raising optimism that the 'exercise hyperpnoea dilemma' can finally be solved. In this review, new perspectives are offered in the hope of stimulating original ideas based on modern neuroscience methods and current understanding. We first describe the ventilatory control system and the challenge exercise places upon blood-gas regulation. We highlight relevant system properties, including feedforward, feedback and adaptive (i.e., plasticity) control of breathing. We then elaborate a seldom explored hypothesis that the exercise ventilatory response continuously adapts (learns and relearns) throughout life and ponder if the memory 'engram' encoding the feedforward exercise ventilatory stimulus could reside within the cerebellum. Our hypotheses are based on accumulating evidence supporting the cerebellum's role in motor learning and the numerous direct and indirect projections from deep cerebellar nuclei to brainstem respiratory neurons. We propose that cerebellar learning may be obligatory for the accurate and adjustable exercise hyperpnoea capable of tracking changes in life conditions/experiences, and that learning arises from specific cerebellar microcircuits that can be interrogated using powerful techniques such as optogenetics and chemogenetics. Although this review is speculative, we consider it essential to reframe our perspective if we are to solve the till-now intractable exercise hyperpnoea dilemma.
Collapse
Affiliation(s)
- Joseph F. Welch
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Apicella R, Taccola G. Passive limb training modulates respiratory rhythmic bursts. Sci Rep 2023; 13:7226. [PMID: 37142670 PMCID: PMC10160044 DOI: 10.1038/s41598-023-34422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/29/2023] [Indexed: 05/06/2023] Open
Abstract
Exercise modifies respiratory functions mainly through the afferent feedback provided by exercising limbs and the descending input from suprapontine areas, two contributions that are still underestimated in vitro. To better characterize the role of limb afferents in modulating respiration during physical activity, we designed a novel experimental in vitro platform. The whole central nervous system was isolated from neonatal rodents and kept with hindlimbs attached to an ad-hoc robot (Bipedal Induced Kinetic Exercise, BIKE) driving passive pedaling at calibrated speeds. This setting allowed extracellular recordings of a stable spontaneous respiratory rhythm for more than 4 h, from all cervical ventral roots. BIKE reversibly reduced the duration of single respiratory bursts even at lower pedaling speeds (2 Hz), though only an intense exercise (3.5 Hz) modulated the frequency of breathing. Moreover, brief sessions (5 min) of BIKE at 3.5 Hz augmented the respiratory rate of preparations with slow bursting in control (slower breathers) but did not change the speed of faster breathers. When spontaneous breathing was accelerated by high concentrations of potassium, BIKE reduced bursting frequency. Regardless of the baseline respiratory rhythm, BIKE at 3.5 Hz always decreased duration of single bursts. Surgical ablation of suprapontine structures completely prevented modulation of breathing after intense training. Albeit the variability in baseline breathing rates, intense passive cyclic movement tuned fictive respiration toward a common frequency range and shortened all respiratory events through the involvement of suprapontine areas. These observations contribute to better define how the respiratory system integrates sensory input from moving limbs during development, opening new rehabilitation perspectives.
Collapse
Affiliation(s)
- Rosamaria Apicella
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy
- Applied Neurophysiology and Neuropharmacology Lab, Istituto Di Medicina Fisica E Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy.
- Applied Neurophysiology and Neuropharmacology Lab, Istituto Di Medicina Fisica E Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy.
| |
Collapse
|
3
|
Mitchell GS, Baker TL. Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:409-432. [PMID: 35965036 DOI: 10.1016/b978-0-323-91534-2.00016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Widespread appreciation that neuroplasticity is an essential feature of the neural system controlling breathing has emerged only in recent years. In this chapter, we focus on respiratory motor plasticity, with emphasis on the phrenic motor system. First, we define related but distinct concepts: neuromodulation and neuroplasticity. We then focus on mechanisms underlying two well-studied models of phrenic motor plasticity: (1) phrenic long-term facilitation following brief exposure to acute intermittent hypoxia; and (2) phrenic motor facilitation after prolonged or recurrent bouts of diminished respiratory neural activity. Advances in our understanding of these novel and important forms of plasticity have been rapid and have already inspired translation in multiple respects: (1) development of novel therapeutic strategies to preserve/restore breathing function in humans with severe neurological disorders, such as spinal cord injury and amyotrophic lateral sclerosis; and (2) the discovery that similar plasticity also occurs in nonrespiratory motor systems. Indeed, the realization that similar plasticity occurs in respiratory and nonrespiratory motor neurons inspired clinical trials to restore leg/walking and hand/arm function in people living with chronic, incomplete spinal cord injury. Similar application may be possible to other clinical disorders that compromise respiratory and non-respiratory movements.
Collapse
Affiliation(s)
- Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
4
|
Hatano K, Matsuura R, Ohtsuka Y, Yunoki T. Enhancement of self-sustained muscle activity through external dead space ventilation appears to be associated with hypercapnia. Respir Physiol Neurobiol 2021; 295:103777. [PMID: 34425262 DOI: 10.1016/j.resp.2021.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022]
Abstract
We reported that external dead space ventilation (EDSV) enhanced self-sustained muscle activity (SSMA) of the human soleus muscle, which is an indirect observation of plateau potentials. However, the main factor for EDSV to enhance SSMA remains unclear. The purpose of the present study was to examine the effects of EDSV-induced hypercapnia, hypoxia, and hyperventilation on SSMA. In Experiment 1 (n = 11; normal breathing [NB], EDSV, hypoxia, and voluntary hyperventilation conditions) and Experiment 2 (n = 9; NB and normoxic hypercapnia [NH] conditions), SSMA was evoked by electrical train stimulations of the right tibial nerve and measured using surface electromyography under each respiratory condition. In Experiment 1, SSMA was significantly higher than that in the NB condition only in the EDSV condition (P < 0.05). In Experiment 2, SSMA was higher in the NH condition than in the NB condition (P < 0.05). These results suggest that the EDSV-enhanced SSMA is due to hypercapnia, not hypoxia or increased ventilation.
Collapse
Affiliation(s)
- Kei Hatano
- Graduate School of Education, Hokkaido University, Sapporo, Japan.
| | - Ryouta Matsuura
- Graduate School of Education, Joetsu University of Education, Japan
| | - Yoshinori Ohtsuka
- Department of Sports and Human Studies, Sapporo International University, Japan
| | | |
Collapse
|
5
|
Sheel AW, Scheinowitz M, Iannetta D, Murias JM, Keir DA, Balmain BN, Wilhite DP, Babb TG, Toffoli G, Silva BM, da Silva GSF, Gruet M, Romain AJ, Pageaux B, Sousa FAB, Rodrigues NA, de Araujo GG, Bossi AH, Hopker J, Brietzke C, Pires FO, Angius L. Commentaries on Viewpoint: Time to reconsider how ventilation is regulated above the respiratory compensation point during incremental exercise. J Appl Physiol (1985) 2020; 128:1450-1455. [PMID: 32412390 DOI: 10.1152/japplphysiol.00259.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Andrew William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Juan M. Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Daniel A. Keir
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Bryce N. Balmain
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital and University of Texas Southwestern Medical Center, Dallas Texas
| | - Daniel P. Wilhite
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital and University of Texas Southwestern Medical Center, Dallas Texas
| | - Tony G. Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital and University of Texas Southwestern Medical Center, Dallas Texas
| | | | - Bruno M. Silva
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Glauber S. F. da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Mathieu Gruet
- Unité de Recherche Impact de l’Activité Physique sur la Santé, Université de Toulon, Toulon, France
| | - Ahmed Jérôme Romain
- École de kinésiologie et des sciences de l’activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montreal Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l’activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montreal Canada,Centre de recherche de l’institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Filipe A. B. Sousa
- Laboratory of Applied Sciences do Sport (LACAE), Institute of Physical Education and Sport (IEFE), Federal University of Alagoas (UFAL), Alagoas, Brazil
| | - Natalia A. Rodrigues
- Laboratory of Applied Sciences do Sport (LACAE), Institute of Physical Education and Sport (IEFE), Federal University of Alagoas (UFAL), Alagoas, Brazil
| | - Gustavo G. de Araujo
- Laboratory of Applied Sciences do Sport (LACAE), Institute of Physical Education and Sport (IEFE), Federal University of Alagoas (UFAL), Alagoas, Brazil
| | - Arthur Henrique Bossi
- School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Chatham, Kent, United Kingdom
| | - James Hopker
- School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Chatham, Kent, United Kingdom
| | - Cayque Brietzke
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil,Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Santos, Brazil
| | - Flávio Oliveira Pires
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil,Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Santos, Brazil
| | - Luca Angius
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Hatano K, Shirakawa K, Usuda N, Matsuura R, Ohtsuka Y, Yunoki T. Effect of hypercapnia on self-sustained muscle activity. Respir Physiol Neurobiol 2018; 250:24-30. [PMID: 29428556 DOI: 10.1016/j.resp.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/26/2017] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to determine the effect of hypercapnia on motor neuromuscular activity of the human triceps surae muscle. Nine subjects participated in trials in a normal breathing condition and a CO2 rebreathing condition. In both conditions, in order to provoke self-sustained muscle activity, percutaneous electrical train stimulation was applied to the tibial nerve while each subject lay on a bed. Self-sustained muscle activity, which is an indirect observation of plateau potentials in spinal motoneurons, was measured for 30 s after the train stimulation by using surface electromyography. The sustained muscle activity was increased by CO2 rebreathing (P < 0.05). This finding suggests that motor neuromuscular activity may be linked to the respiratory system that is activated during hypercapnia.
Collapse
Affiliation(s)
- Kei Hatano
- Graduate School of Education, Hokkaido University, Sapporo, Japan.
| | - Kazuki Shirakawa
- Graduate School of Education, Hokkaido University, Sapporo, Japan
| | - Noboru Usuda
- Graduate School of Education, Hokkaido University, Sapporo, Japan
| | - Ryouta Matsuura
- Department of Health and Physical Education, Joetsu University of Education, Joetsu, Japan
| | - Yoshinori Ohtsuka
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Sapporo, Japan
| | - Takahiro Yunoki
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Bernhardt V, Mitchell GS, Lee WY, Babb TG. Short-term modulation of the ventilatory response to exercise is preserved in obstructive sleep apnea. Respir Physiol Neurobiol 2016; 236:42-50. [PMID: 27840272 DOI: 10.1016/j.resp.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The ventilatory response to exercise can be transiently adjusted in response to environmentally (e.g., breathing apparatus) or physiologically altered conditions (e.g., respiratory disease), maintaining constant relative arterial PCO2 regulation from rest to exercise (Mitchell and Babb, 2006); this augmentation is called short-term modulation (STM) of the exercise ventilatory response. Obesity and/or obstructive sleep apnea could affect the exercise ventilatory response and the capacity for STM due to chronically increased mechanical and/or ventilatory loads on the respiratory system, and/or recurrent (chronic) intermittent hypoxia experienced during sleep. We hypothesized that: (1) the exercise ventilatory response is augmented in obese OSA patients compared with obese non-OSA adults, and (2) the capacity for STM with added dead space is diminished in obese OSA patients. METHODS Nine obese adults with OSA (age: 39±6 yr, BMI: 40±5kg/m2, AHI: 25±24 events/h [range 6-73], mean±SD) and 8 obese adults without OSA (age: 38±10 yr, BMI: 37±6kg/m2, AHI: 1±2) completed three, 20-min bouts of constant-load submaximal cycling exercise (8min rest, 6min at 10 and 30W) with or without added external dead space (200 or 400mL; 20min rest between bouts). Steady-state measurements were made of ventilation (V˙E), oxygen consumption V˙O2), carbon dioxide production (V˙CO2), and end-tidal PCO2 (PETCO2). The exercise ventilatory response was defined as the slope of the V˙E-V˙CO2 relationship (ΔV˙E/ΔV˙CO2). RESULTS In control (i.e. no added dead space), the exercise ventilatory response was not significantly different between non-OSA and OSA groups (ΔV˙E/ΔV˙CO2 slope: 30.5±4.2 vs 30.5±3.8, p>0.05); PETCO2 regulation from rest to exercise did not differ between groups (p>0.05). In trials with added external dead space, ΔV˙E/ΔV˙CO2 increased with increased dead space (p < 0.05) and the PETCO2 change from rest to exercise remained small (<2mmHg) in both groups, demonstrating STM. There were no significant differences between groups. CONCLUSIONS Contrary to our hypotheses: (1) the exercise ventilatory response is not increased in obese OSA patients compared with obese non-OSA adults, and (2) the capacity for STM with added dead space is preserved in obese OSA and non-OSA adults.
Collapse
Affiliation(s)
- Vipa Bernhardt
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and UT Southwestern Medical Center, Dallas, TX, USA; Texas A&M University-Commerce, Department of Health and Human Performance, Commerce, TX, USA.
| | - Gordon S Mitchell
- University of Florida, Department of Physical Therapy, Gainesville, FL, USA.
| | - Won Y Lee
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Wood HE, Mitchell GS, Babb TG. Short-term modulation of the exercise ventilatory response in younger and older women. Respir Physiol Neurobiol 2011; 179:235-47. [PMID: 21890003 DOI: 10.1016/j.resp.2011.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 11/29/2022]
Abstract
The exercise ventilatory response (EVR; defined as the slope of the relationship between ventilation and CO(2) production) is reversibly augmented within a single exercise trial with increased respiratory dead space (DS) in both younger (Wood, H.E., Mitchell, G.S., Babb, T.G., 2008. Short-term modulation of the exercise ventilatory response in young men. J. Appl. Physiol. 104, 244-252) and older (Wood, H.E., Mitchell, G.S., Babb, T.G., 2010. Short-term modulation of the exercise ventilatory response in older men. Respir. Physiol. Neurobiol. 173, 37-46) men. The neural mechanism accounting for this augmentation is known as short-term modulation (STM) of the EVR. Since the effects of female sex hormones on STM are unknown, we examined the capacity for STM in healthy adult women of two age groups; nine younger (29±3 yrs, eumenorrheic) and seven older (69±3 yrs, postmenopausal) women were studied at rest and during cycle exercise (10 W, 30 W; not randomized) in control conditions and with added external DS (200 mL, 400 mL; randomized). Within groups, the main effects of DS and work rate on EVR were analyzed with a two-way repeated measures ANOVA; EVR comparisons between groups were made with unpaired t-tests. In both groups, EVR increased progressively with increasing DS volume (e.g. at 10 W 31±4 and 35±6 in control, 40±11 and 40±6 with 200 mL, 48±12 and 49±11 with 400 mL DS in younger and older women, respectively). In younger women, the effects of DS on EVR differed between work rates (significant interaction, p<0.05), although this was not the case for older women. In both groups, [Formula: see text] regulation was similar between DS and control; hence, increased EVR was not due to altered chemoreceptor feedback from rest to exercise. EVR with and without added DS did not differ between age groups. We conclude that the capacity for STM of the EVR with added DS is similar in healthy younger and older women.
Collapse
Affiliation(s)
- Helen E Wood
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX 75231, United States.
| | | | | |
Collapse
|
9
|
Babb TG, Wood HE, Mitchell GS. Short- and long-term modulation of the exercise ventilatory response. Med Sci Sports Exerc 2010; 42:1681-7. [PMID: 20164813 DOI: 10.1249/mss.0b013e3181d7b212] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of adaptive control strategies (modulation and plasticity) in the control of breathing during exercise has become recognized only in recent years. In this review, we discuss new evidence for modulation of the exercise ventilatory response in humans, specifically, short- and long-term modulation. Short-term modulation is proposed to be an important regulatory mechanism that helps maintain blood gas homeostasis during exercise.
Collapse
Affiliation(s)
- Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave, Dallas, TX 75231, USA.
| | | | | |
Collapse
|
10
|
Wood HE, Mitchell GS, Babb TG. Short-term modulation of the exercise ventilatory response in older men. Respir Physiol Neurobiol 2010; 173:37-46. [PMID: 20601211 DOI: 10.1016/j.resp.2010.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 11/27/2022]
Abstract
During exercise with added dead space (DS), the exercise ventilatory response (DeltaV(E)/ DeltaV(CO(2))) is augmented in younger men, via short-term modulation (STM) of the exercise ventilatory response. We hypothesized that STM would be diminished or absent in older men due to age-related changes in respiratory function and ventilatory control. Men were studied at rest and during cycle exercise with and without added DS. DeltaV(E)/ DeltaV(CO(2)) increased progressively with increasing DS volume (p<0.01), such that CO(2) was not retained with added DS versus without. Hence, the increase in DeltaV(E)/ DeltaV(CO(2)) was not due to increased chemoreceptor feedback from rest to exercise. Increasing exercise intensity diminished the DeltaV(E)/ DeltaV(CO(2)) (p<0.01), and the size of this effect varied by DS volume (p<0.05). We conclude that STM of the exercise ventilatory response is robust in older men; hence, despite age-related changes in lung function and ventilatory control, the exercise ventilatory response can still adapt to increased DS, in order to maintain isocapnia during exercise relative to rest.
Collapse
Affiliation(s)
- Helen E Wood
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center-Dallas, 7232 Greenville Ave., Dallas, TX 75231, United States.
| | | | | |
Collapse
|
11
|
Poon CS. Optimal interaction of respiratory and thermal regulation at rest and during exercise: role of a serotonin-gated spinoparabrachial thermoafferent pathway. Respir Physiol Neurobiol 2009; 169:234-42. [PMID: 19770073 DOI: 10.1016/j.resp.2009.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 08/24/2009] [Accepted: 09/14/2009] [Indexed: 11/26/2022]
Abstract
Recent evidence indicates that the lateral parabrachial nucleus (LPBN) in dorsolateral pons is pivotal in mediating the feedback control of inspiratory drive by central chemoreceptor input and feedforward control of body temperature by cutaneous thermoreceptor input. The latter is subject to descending serotonergic inhibition which gates the transmission of ascending thermoafferent information from spinal dorsal horn to the LPBN. Here, a model is proposed which suggests that the LPBN may be important in balancing respiratory and thermal homeostasis, two conflicting goals that are heightened by environmental heat/cold stress or exercise where the effects of respiratory thermolysis become prominent. This optimization model of respiratory-thermoregulatory interaction is supported by a host of recent studies which demonstrate that animals with serotonin (5-HT) dysfunction at the spinal dorsal horn--due to 5-HT antagonism, genetic 5-HT defects or spinal cord injury--all display similar respiratory abnormalities that are consistent with hyperactivity of the spinoparabrachial thermoafferent (and pain) pathway.
Collapse
Affiliation(s)
- Chi-Sang Poon
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Wood HE, Mitchell GS, Babb TG. Breathing mechanics during exercise with added dead space reflect mechanisms of ventilatory control. Respir Physiol Neurobiol 2009; 168:210-7. [DOI: 10.1016/j.resp.2009.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/09/2009] [Accepted: 07/01/2009] [Indexed: 11/30/2022]
|
13
|
Wood HE, Mitchell GS, Babb TG. Reply to Dr. Poon. J Appl Physiol (1985) 2008. [DOI: 10.1152/japplphysiol.90637.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|