1
|
Rana S, Fusco AF, Witkin JM, Radin DP, Cerne R, Lippa A, Fuller DD. Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy. Pharmacol Ther 2025; 265:108744. [PMID: 39521442 DOI: 10.1016/j.pharmthera.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing. In this paper, we describe the influence of ampakines on respiratory motor output in health and disease. We dissect the molecular mechanisms underlying ampakine action, delineate the diverse targets of ampakines along the respiratory neuraxis, survey the spectrum of respiratory disorders in which ampakines have been tested, and culminate with an examination of how ampakines modulate respiratory function after spinal cord injury. Collectively, the studies reviewed here indicate that ampakines may be a useful adjunctive strategy to pair with conventional respiratory rehabilitation approaches in conditions with impaired neural activation of the respiratory muscles.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America.
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Daniel P Radin
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
2
|
Peri F, Cherchi C, Chiarini Testa MB, Pavone M, Verrillo E, Cutrera R. The Efficacy of Noninvasive Ventilation in Patients Affected by Rett Syndrome With Hypoventilation. Pediatr Neurol 2024; 158:81-85. [PMID: 39002354 DOI: 10.1016/j.pediatrneurol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Rett syndrome is a progressive neurological disorder associated to several comorbidities that contribute significantly to impair lung function. Respiratory morbidity represents a major cause of death in this population. Little is known about the benefit of noninvasive ventilation. METHODS We retrospectively enrolled patients with Rett syndrome who underwent a pneumological evaluation combined with a cardiorespiratory polygraphy and/or a pulse oximetry and capnography from 2012 to 2022. RESULTS Medical records of 11 patients with Rett syndrome, mean age 13 ± 6 years, were evaluated. Most patients presented with both epilepsy and scoliosis. Five patients showed a pathologic sleep study and/or impaired night gas exchange: mean obstructive apnea-hypopnea index was 4 ± 3 events/hour; mean and minimal SpO2 were, respectively, 93% ± 2% and 83% ± 6%, while mean and maximal transcutaneous carbon dioxide monitoring (PtcCO2) were, respectively, 51 ± 5 mm Hg and 55 ± 8 mm Hg; and mean oxygen desaturation index was 13 ± 11 events/hour. These patients started noninvasive ventilation with clinical benefit and improved gas exchange mostly in terms of PtcCO2 (mean PtcCO2 51 ± 5 mm Hg before and 46 ± 6 mm Hg after noninvasive ventilation). CONCLUSIONS Noninvasive ventilation is a suitable option for patients with Rett syndrome.
Collapse
Affiliation(s)
- Francesca Peri
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy; Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy.
| | - Claudio Cherchi
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Maria Beatrice Chiarini Testa
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Martino Pavone
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Elisabetta Verrillo
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Renato Cutrera
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
3
|
Mafa-dependent GABAergic activity promotes mouse neonatal apneas. Nat Commun 2022; 13:3284. [PMID: 35672398 PMCID: PMC9174494 DOI: 10.1038/s41467-022-30825-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/19/2022] [Indexed: 01/17/2023] Open
Abstract
While apneas are associated with multiple pathological and fatal conditions, the underlying molecular mechanisms remain elusive. We report that a mutated form of the transcription factor Mafa (Mafa4A) that prevents phosphorylation of the Mafa protein leads to an abnormally high incidence of breath holding apneas and death in newborn Mafa4A/4A mutant mice. This apneic breathing is phenocopied by restricting the mutation to central GABAergic inhibitory neurons and by activation of inhibitory Mafa neurons while reversed by inhibiting GABAergic transmission centrally. We find that Mafa activates the Gad2 promoter in vitro and that this activation is enhanced by the mutation that likely results in increased inhibitory drives onto target neurons. We also find that Mafa inhibitory neurons are absent from respiratory, sensory (primary and secondary) and pontine structures but are present in the vicinity of the hypoglossal motor nucleus including premotor neurons that innervate the geniohyoid muscle, to control upper airway patency. Altogether, our data reveal a role for Mafa phosphorylation in regulation of GABAergic drives and suggest a mechanism whereby reduced premotor drives to upper airway muscles may cause apneic breathing at birth. Apneas are associated with many pathological conditions. Here, the authors show in a mouse model that stabilization of the transcription factor Mafa in brainstem GABAergic neurons may contribute to apnea, by decreasing motor drive to muscles controlling the airways.
Collapse
|
4
|
Leoncini S, Signorini C, Boasiako L, Scandurra V, Hayek J, Ciccoli L, Rossi M, Canitano R, De Felice C. Breathing Abnormalities During Sleep and Wakefulness in Rett Syndrome: Clinical Relevance and Paradoxical Relationship With Circulating Pro-oxidant Markers. Front Neurol 2022; 13:833239. [PMID: 35422749 PMCID: PMC9001904 DOI: 10.3389/fneur.2022.833239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBreathing abnormalities are common in Rett syndrome (RTT), a pervasive neurodevelopmental disorder almost exclusively affecting females. RTT is linked to mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. Our aim was to assess the clinical relevance of apneas during sleep-wakefulness cycle in a population with RTT and the possible impact of apneas on circulating oxidative stress markers.MethodsFemale patients with a clinical diagnosis of typical RTT (n = 66), MECP2 gene mutation, and apneas were enrolled (mean age: 12.5 years). Baseline clinical severity, arterial blood gas analysis, and red blood cell count were assessed. Breathing was monitored during the wakefulness and sleep states (average recording time: 13 ± 0.5 h) with a portable polygraphic screening device. According to prevalence of breath holdings, the population was categorized into the wakefulness apnea (WA) and sleep apnea (SA) groups, and apnea-hypopnea index (AHI) was calculated. The impact of respiratory events on oxidative stress was assessed by plasma and intra-erythrocyte non-protein-bound iron (P-NPBI and IE-NPBI, respectively), and plasma F2-isoprostane (F2-IsoP) assays.ResultsSignificant prevalence of obstructive apneas with values of AHI > 15 was present in 69.7% of the population with RTT. The group with SA showed significantly increased AHI values > 15 (p = 0.0032), total breath holding episodes (p = 0.007), and average SpO2 (p = 0.0001) as well as lower nadir SpO2 (p = 0.0004) compared with the patients with WAs. The subgroups of patients with WA and SA showed no significant differences in arterial blood gas analysis variables (p > 0.089). Decreased mean cell hemoglobin (MCH) (p = 0.038) was observed in the group with WAs. P-NPBI levels were significantly higher in the group with WA than in that with SAs (p = 0.0001). Stepwise multiple linear regression models showed WA being related to nadir SpO2, average SpO2, and P-NPBI (adjusted R2 = 0.613, multiple correlation coefficient = 0.795 p < 0.0001), and P-NPBI being related to average SpO2, blood PaCO2, red blood cell mean corpuscular volume (MCV), age, and topiramate treatment (adjusted R2 = 0.551, multiple correlation coefficient = 0.765, p < 0.0001).ConclusionOur findings indicate that the impact of apneas in RTT is uneven according to the sleep-wakefulness cycle, and that plasma redox active iron represents a potential novel therapeutic target.
Collapse
Affiliation(s)
- Silvia Leoncini
- Rett Syndrome Trial Center, Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lidia Boasiako
- Rett Syndrome Trial Center, Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Valeria Scandurra
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marcello Rossi
- Respiratory Pathophysiology and Rehabilitation Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Canitano
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Claudio De Felice
- Rett Syndrome Trial Center, Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
5
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:139-151. [PMID: 36031301 PMCID: PMC10029146 DOI: 10.1016/b978-0-323-91532-8.00018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rett Syndrome is an X-linked neurological disorder characterized by behavioral and neurological regression, seizures, motor deficits, and dysautonomia. A particularly prominent presentation includes breathing abnormalities characterized by breathing irregularities, hyperventilation, repetitive breathholding during wakefulness, obstructive and central apneas during sleep, and abnormal responses to hypoxia and hypercapnia. The condition and pathology of the respiratory system is further complicated by dysfunctions of breathing-motor coordination, which is reflected in dysphagia. The discovery of the X-linked mutations in the MECP2 gene has transformed our understanding of the cellular and molecular mechanisms that are at the root of various clinical phenotypes. However, the genotype-phenotype relationship is complicated by various factors which include not only X-inactivation but also consequences of the intermittent hypoxia and oxidative stress associated with the breathing abnormalities.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States.
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
6
|
Musi CA, Castaldo AM, Valsecchi AE, Cimini S, Morello N, Pizzo R, Renieri A, Meloni I, Bonati M, Giustetto M, Borsello T. JNK signaling provides a novel therapeutic target for Rett syndrome. BMC Biol 2021; 19:256. [PMID: 34911542 PMCID: PMC8675514 DOI: 10.1186/s12915-021-01190-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background Rett syndrome (RTT) is a monogenic X-linked neurodevelopmental disorder characterized by loss-of-function mutations in the MECP2 gene, which lead to structural and functional changes in synapse communication, and impairments of neural activity at the basis of cognitive deficits that progress from an early age. While the restoration of MECP2 in animal models has been shown to rescue some RTT symptoms, gene therapy intervention presents potential side effects, and with gene- and RNA-editing approaches still far from clinical application, strategies focusing on signaling pathways downstream of MeCP2 may provide alternatives for the development of more effective therapies in vivo. Here, we investigate the role of the c-Jun N-terminal kinase (JNK) stress pathway in the pathogenesis of RTT using different animal and cell models and evaluate JNK inhibition as a potential therapeutic approach. Results We discovered that the c-Jun N-terminal kinase (JNK) stress pathway is activated in Mecp2-knockout, Mecp2-heterozygous mice, and in human MECP2-mutated iPSC neurons. The specific JNK inhibitor, D-JNKI1, promotes recovery of body weight and locomotor impairments in two mouse models of RTT and rescues their dendritic spine alterations. Mecp2-knockout presents intermittent crises of apnea/hypopnea, one of the most invalidating RTT pathological symptoms, and D-JNKI1 powerfully reduces this breathing dysfunction. Importantly, we discovered that also neurons derived from hiPSC-MECP2 mut show JNK activation, high-phosphorylated c-Jun levels, and cell death, which is not observed in the isogenic control wt allele hiPSCs. Treatment with D-JNKI1 inhibits neuronal death induced by MECP2 mutation in hiPSCs mut neurons. Conclusions As a summary, we found altered JNK signaling in models of RTT and suggest that D-JNKI1 treatment prevents clinical symptoms, with coherent results at the cellular, molecular, and functional levels. This is the first proof of concept that JNK plays a key role in RTT and its specific inhibition offers a new and potential therapeutic tool to tackle RTT. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01190-2.
Collapse
Affiliation(s)
- Clara Alice Musi
- Department of Pharmacological and Biomolecular Sciences, Milan University, Via Balzaretti 9, 20133, Milan, Italy.,Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Anna Maria Castaldo
- Department of Pharmacological and Biomolecular Sciences, Milan University, Via Balzaretti 9, 20133, Milan, Italy
| | | | - Sara Cimini
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Noemi Morello
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Riccardo Pizzo
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | | | | | - Maurizio Bonati
- Department of Public Heath, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Maurizio Giustetto
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Milan University, Via Balzaretti 9, 20133, Milan, Italy. .,Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| |
Collapse
|
7
|
Adams I, Yang T, Longo FM, Katz DM. Restoration of motor learning in a mouse model of Rett syndrome following long-term treatment with a novel small-molecule activator of TrkB. Dis Model Mech 2020; 13:13/11/dmm044685. [PMID: 33361117 PMCID: PMC7710018 DOI: 10.1242/dmm.044685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Reduced expression of brain-derived neurotrophic factor (BDNF) and impaired activation of the BDNF receptor, tropomyosin receptor kinase B (TrkB; also known as Ntrk2), are thought to contribute significantly to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Previous studies from this and other laboratories have shown that enhancing BDNF expression and/or TrkB activation in Mecp2-deficient mouse models of RTT can ameliorate or reverse abnormal neurological phenotypes that mimic human RTT symptoms. The present study reports on the preclinical efficacy of a novel, small-molecule, non-peptide TrkB partial agonist, PTX-BD4-3, in heterozygous female Mecp2 mutant mice, a well-established RTT model that recapitulates the genetic mosaicism of the human disease. PTX-BD4-3 exhibited specificity for TrkB in cell-based assays of neurotrophin receptor activation and neuronal cell survival and in in vitro receptor binding assays. PTX-BD4-3 also activated TrkB following systemic administration to wild-type and Mecp2 mutant mice and was rapidly cleared from the brain and plasma with a half-life of ∼2 h. Chronic intermittent treatment of Mecp2 mutants with a low dose of PTX-BD4-3 (5 mg/kg, intraperitoneally, once every 3 days for 8 weeks) reversed deficits in two core RTT symptom domains – respiration and motor control – and symptom rescue was maintained for at least 24 h after the last dose. Together, these data indicate that significant clinically relevant benefit can be achieved in a mouse model of RTT with a chronic intermittent, low-dose treatment paradigm targeting the neurotrophin receptor TrkB. Editor's choice: Long-term intermittent treatment with a newly developed partial agonist of the TrkB neurotrophin receptor reverses deficits in motor learning and respiration in a mouse model of Rett syndrome.
Collapse
Affiliation(s)
- Ian Adams
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| |
Collapse
|
8
|
Overshooting Subcellular Redox-Responses in Rett-Mouse Hippocampus during Neurotransmitter Stimulation. Cells 2020; 9:cells9122539. [PMID: 33255426 PMCID: PMC7760232 DOI: 10.3390/cells9122539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder associated with disturbed neuronal responsiveness and impaired neuronal network function. Furthermore, mitochondrial alterations and a weakened cellular redox-homeostasis are considered part of the complex pathogenesis. So far, overshooting redox-responses of MeCP2-deficient neurons were observed during oxidant-mediated stress, hypoxia and mitochondrial inhibition. To further clarify the relevance of the fragile redox-balance for the neuronal (dys)function in RTT, we addressed more physiological stimuli and quantified the subcellular redox responses to neurotransmitter-stimulation. The roGFP redox sensor was expressed in either the cytosol or the mitochondrial matrix of cultured mouse hippocampal neurons, and the responses to transient stimulation by glutamate, serotonin, dopamine and norepinephrine were characterized. Each neurotransmitter evoked more intense oxidizing responses in the cytosol of MeCP2-deficient than in wildtype neurons. In the mitochondrial matrix the neurotransmitter-evoked oxidizing changes were more moderate and more uniform among genotypes. This identifies the cytosol as an important reactive oxygen species (ROS) source and as less stably redox buffered. Fura-2 imaging and extracellular Ca2+ withdrawal confirmed cytosolic Ca2+ transients as a contributing factor of neurotransmitter-induced redox responses and their potentiation in the cytosol of MeCP2-deficient neurons. Chemical uncoupling demonstrated the involvement of mitochondria. Nevertheless, cytosolic NADPH- and xanthine oxidases interact to play the leading role in the neurotransmitter-mediated oxidizing responses. As exaggerated redox-responses were already evident in neonatal MeCP2-deficient neurons, they may contribute remarkably to the altered neuronal network performance and the disturbed neuronal signaling, which are among the hallmarks of RTT.
Collapse
|
9
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
10
|
Carroll MS, Ramirez JM, Weese-Mayer DE. Diurnal variation in autonomic regulation among patients with genotyped Rett syndrome. J Med Genet 2020; 57:786-793. [PMID: 32156713 DOI: 10.1136/jmedgenet-2019-106601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Rett syndrome is a severe neurological disorder with a range of disabling autonomic and respiratory symptoms and resulting predominantly from variants in the methyl-CpG binding protein 2 gene on the long arm of the X-chromosome. As basic research begins to suggest potential treatments, sensitive measures of the dynamic phenotype are needed to evaluate the results of these research efforts. Here we test the hypothesis that the physiological fingerprint of Rett syndrome in a naturalistic environment differs from that of controls, and differs among genotypes within Rett syndrome. METHODS A comprehensive array of heart rate variability, cardiorespiratory coupling and cardiac repolarisation measures were evaluated from an existing database of overnight and daytime inhome ambulatory recordings in 47 cases and matched controls. RESULTS Differences between girls with Rett syndrome and matched controls were apparent in a range of autonomic measures, and suggest a shift towards sympathetic activation and/or parasympathetic inactivation. Daily temporal trends analysed in the context of circadian rhythms reveal alterations in amplitude and phase of diurnal patterns of autonomic balance. Further analysis by genotype class confirms a graded presentation of the Rett syndrome phenotype such that patients with early truncating mutations were most different from controls, while late truncating and missense mutations were least different from controls. CONCLUSIONS Comprehensive autonomic measures from extensive inhome physiological measurements can detect subtle variations in the phenotype of girls with Rett syndrome, suggesting these techniques are suitable for guiding novel therapies.
Collapse
Affiliation(s)
- Michael Sean Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA .,Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Debra E Weese-Mayer
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Early Postnatal Treatment with Valproate Induces Gad1 Promoter Remodeling in the Brain and Reduces Apnea Episodes in Mecp2-Null Mice. Int J Mol Sci 2019; 20:ijms20205177. [PMID: 31635390 PMCID: PMC6834123 DOI: 10.3390/ijms20205177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
The deletion of Mecp2, the gene encoding methyl-CpG-binding protein 2, causes severe breathing defects and developmental anomalies in mammals. In Mecp2-null mice, impaired GABAergic neurotransmission is demonstrated at the early stage of life. GABAergic dysfunction in neurons in the rostral ventrolateral medulla (RVLM) is considered as a primary cause of breathing abnormality in Mecp2-null mice, but its molecular mechanism is unclear. Here, we report that mRNA expression levels of Gad1, which encodes glutamate decarboxylase 67 (GAD67), in the RVLM of Mecp2-null (Mecp2-/y, B6.129P2(C)-Mecp2tm1.1Bird/J) mice is closely related to the methylation status of its promoter, and valproate (VPA) can upregulate transcription from Gad1 through epigenetic mechanisms. The administration of VPA (300 mg/kg/day) together with L-carnitine (30 mg/kg/day) from day 8 to day 14 after birth increased Gad1 mRNA expression in the RVLM and reduced apnea counts in Mecp2-/y mice on postnatal day 15. Cytosine methylation levels in the Gad1 promoter were higher in the RVLM of Mecp2-/y mice compared to wild-type mice born to C57BL/6J females, while VPA treatment decreased the methylation levels in Mecp2-/y mice. Chromatin immunoprecipitation assay revealed that the VPA treatment reduced the binding of methyl-CpG binding domain protein 1 (MBD1) to the Gad1 promoter in Mecp2-/y mice. These results suggest that VPA improves breathing of Mecp2-/y mice by reducing the Gad1 promoter methylation, which potentially leads to the enhancement of GABAergic neurotransmission in the RVLM.
Collapse
|
12
|
Cohen EM, Farnham MMJ, Kakall Z, Kim SJ, Nedoboy PE, Pilowsky PM. Glia and central cardiorespiratory pathology. Auton Neurosci 2018; 214:24-34. [PMID: 30172674 DOI: 10.1016/j.autneu.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
Abstract
Respiration and blood pressure are primarily controlled by somatic and autonomic motor neurones, respectively. Central cardiorespiratory control is critical in moment-to-moment survival, but it also has a role in the development and maintenance of chronic pathological conditions such as hypertension. The glial cells of the brain are non-neuronal cells with metabolic, immune, and developmental functions. Recent evidence shows that glia play an active role in supporting and regulating the neuronal circuitry which drives the cardiorespiratory system. Here we will review the activities of two key types of glial cell, microglia and astrocytes, in assisting normal central cardiorespiratory control and in pathology.
Collapse
Affiliation(s)
- E Myfanwy Cohen
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Melissa M J Farnham
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zohra Kakall
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Seung Jae Kim
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
13
|
Bright FM, Vink R, Byard RW. The potential role of substance P in brainstem homeostatic control in the pathogenesis of sudden infant death syndrome (SIDS). Neuropeptides 2018; 70:1-8. [PMID: 29908886 DOI: 10.1016/j.npep.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Victims of sudden infant death syndrome (SIDS) are believed to have an underlying dysfunction in medullary homeostatic control that impairs critical responses to life threatening challenges such as hypoxia, hypercarbia and asphyxia, often during a sleep period. This failure is thought to result from abnormalities in a network of neural pathways in the medulla oblongata that control respiration, chemosensitivity, autonomic function and arousal. Studies have mainly focused on the role of serotonin, 5-hydroxytyptamine (5HT), although the neuropeptide substance P (SP) has also been shown to play an integral role in the modulation of medullary homeostatic function, often in conjunction with 5-HT. Actions of SP include regulation of respiratory rhythm generation, integration of cardiovascular control, modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may, therefore, also play a significant role in homeostatic dysfunction of the neurotransmitter network in SIDS. This review focuses on the pathways within the medulla involving SP and its tachykinin NK1 receptor, their potential relationship with the medullary 5-HT system, and possible involvement in the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Fiona M Bright
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia.
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Roger W Byard
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia
| |
Collapse
|
14
|
Pathogenesis of Lethal Aspiration Pneumonia in Mecp2-null Mouse Model for Rett Syndrome. Sci Rep 2017; 7:12032. [PMID: 28931890 PMCID: PMC5607245 DOI: 10.1038/s41598-017-12293-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/06/2017] [Indexed: 11/09/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder mainly caused by mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding protein 2 (MeCP2), located on the X chromosome. Many RTT patients have breathing abnormalities, such as apnea and breathing irregularity, and respiratory infection is the most common cause of death in these individuals. Previous studies showed that MeCP2 is highly expressed in the lung, but its role in pulmonary function remains unknown. In this study, we found that MeCP2 deficiency affects pulmonary gene expression and structures. We also found that Mecp2-null mice, which also have breathing problems, often exhibit inflammatory lung injury. These injuries occurred in specific sites in the lung lobes. In addition, polarizable foreign materials were identified in the injured lungs of Mecp2-null mice. These results indicated that aspiration might be a cause of inflammatory lung injury in Mecp2-null mice. On the other hand, MeCP2 deficiency affected the expression of several neuromodulator genes in the lower brainstem. Among them, neuropeptide substance P (SP) immunostaining was reduced in Mecp2-null brainstem. These findings suggest that alteration of SP expression in brainstem may be involved in autonomic dysregulation, and may be one of the causes of aspiration in Mecp2-null mice.
Collapse
|
15
|
Sun JJ, Huang TW, Neul JL, Ray RS. Embryonic hindbrain patterning genes delineate distinct cardio-respiratory and metabolic homeostatic populations in the adult. Sci Rep 2017; 7:9117. [PMID: 28831138 PMCID: PMC5567350 DOI: 10.1038/s41598-017-08810-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Previous studies based on mouse genetic mutations suggest that proper partitioning of the hindbrain into transient, genetically-defined segments called rhombomeres is required for normal respiratory development and function in neonates. Less clear is what role these genes and the neurons they define play in adult respiratory circuit organization. Several Cre drivers are used to access and study developmental rhombomeric domains (Eng1Cre, HoxA2-Cre, Egr2Cre, HoxB1Cre, and HoxA4-Cre) in the adult. However, these drivers show cumulative activity beyond the brainstem while being used in intersectional genetic experiments to map central respiratory circuitry. We crossed these drivers to conditional DREADD mouse lines to further characterize the functional contributions of Cre defined populations. In the adult, we show that acute DREADD inhibition of targeted populations results in a variety of not only respiratory phenotypes but also metabolic and temperature changes that likely play a significant role in the observed respiratory alterations. DREADD mediated excitation of targeted domains all resulted in death, with unique differences in the patterns of cardio-respiratory failure. These data add to a growing body of work aimed at understanding the role of early embryonic patterning genes in organizing adult respiratory homeostatic networks that may be perturbed in congenital pathophysiologies.
Collapse
Affiliation(s)
- Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey L Neul
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA. .,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA. .,McNair Medical Institute, TX-77030, Houston, USA.
| |
Collapse
|
16
|
Burger BJ, Rose S, Bennuri SC, Gill PS, Tippett ML, Delhey L, Melnyk S, Frye RE. Autistic Siblings with Novel Mutations in Two Different Genes: Insight for Genetic Workups of Autistic Siblings and Connection to Mitochondrial Dysfunction. Front Pediatr 2017; 5:219. [PMID: 29075622 PMCID: PMC5643424 DOI: 10.3389/fped.2017.00219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is high, yet the etiology of this disorder is still uncertain. Advancements in genetic analysis have provided the ability to identify potential genetic changes that may contribute to ASD. Interestingly, several genetic syndromes have been linked to metabolic dysfunction, suggesting an avenue for treatment. In this case study, we report siblings with ASD who had similar initial phenotypic presentations. Whole exome sequencing (WES) revealed a novel c.795delT mutation in the WDR45 gene affecting the girl, which was consistent with her eventual progression to a Rett-like syndrome phenotype including seizures along with a stereotypical cyclic breathing pattern. Interestingly, WES identified that the brother harbored a novel heterozygous Y1546H variant in the DEP domain-containing protein 5 (DEPDC5) gene, consistent with his presentation. Both siblings underwent a metabolic workup that demonstrated different patterns of mitochondrial dysfunction. The girl demonstrated statistically significant elevations in mitochondrial activity of complex I + III in both muscle and fibroblasts and increased respiration in peripheral blood mononuclear cells (PBMCs) on Seahorse Extracellular Flux analysis. The boy demonstrates a statistically significant decrease in complex IV activity in buccal epithelium and decreased respiration in PBMCs. These cases highlight the differences in genetic abnormalities even in siblings with ASD phenotypes as well as highlights the individual role of novel mutations in the WDR45 and DEPDC5 genes. These cases demonstrate the importance of advanced genetic testing combined with metabolic evaluations in the workup of children with ASD.
Collapse
Affiliation(s)
- Barrett J Burger
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shannon Rose
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Sirish C Bennuri
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | | | - Marie L Tippett
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Leanna Delhey
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Stepan Melnyk
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Richard E Frye
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
17
|
Developmental plasticity in the neural control of breathing. Exp Neurol 2017; 287:176-191. [DOI: 10.1016/j.expneurol.2016.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
|
18
|
Johnson CM, Zhong W, Cui N, Wu Y, Xing H, Zhang S, Jiang C. Defects in brainstem neurons associated with breathing and motor function in the Mecp2R168X/Y mouse model of Rett syndrome. Am J Physiol Cell Physiol 2016; 311:C895-C909. [PMID: 27653984 DOI: 10.1152/ajpcell.00132.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022]
Abstract
Rett Syndrome (RTT) is an X-linked neurodevelopmental disorder caused mostly by disruption of the MECP2 gene. Among several RTT-like mouse models, one of them is a strain of mice that carries an R168X point mutation in Mecp2 and resembles one of the most common RTT-causing mutations in humans. Although several behavioral defects have previously been found in the Mecp2R168X/Y mice, alterations in nerve cells remain unknown. Here we compare several behavioral and cellular outcomes between this Mecp2R168X/Y model and a widely used Mecp2Bird/Y mouse model. With lower body weight and shorter lifespan than their wild-type littermates, the Mecp2R168X/Y mice showed impairments of breathing and motor function. Thus we studied brainstem CO2-chemosensitive neurons and propriosensory cells that are associated with these two functions, respectively. Neurons in the locus coeruleus (LC) of both mutant strains showed defects in their intrinsic membrane properties, including changes in action potential morphology and excessive firing activity. Neurons in the mesencephalic trigeminal nucleus (Me5) of both strains displayed a higher firing response to depolarization than their wild-type littermates, likely attributable to a lower firing threshold. Because the increased excitability in LC and Me5 neurons tends to impact the excitation-inhibition balances in brainstem neuronal networks as well as their associated functions, it is likely that the defects in the intrinsic membrane properties of these brainstem neurons contribute to the breathing abnormalities and motor dysfunction. Furthermore, our results showing comparable phenotypical outcomes of Mecp2R168X/Y mice with Mecp2Bird/Y mice suggest that both strains are valid animal models for RTT research.
Collapse
Affiliation(s)
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Yang Wu
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Hao Xing
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shuang Zhang
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
19
|
Patterson KC, Hawkins VE, Arps KM, Mulkey DK, Olsen ML. MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats. Hum Mol Genet 2016; 25:3303-3320. [PMID: 27329765 PMCID: PMC5179928 DOI: 10.1093/hmg/ddw179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 11/12/2022] Open
Abstract
Since the identification of MECP2 as the causative gene in the majority of Rett Syndrome (RTT) cases, transgenic mouse models have played a critical role in our understanding of this disease. The use of additional mammalian RTT models offers the promise of further elucidating critical early mechanisms of disease as well as providing new avenues for translational studies. We have identified significant abnormalities in growth as well as motor and behavioural function in a novel zinc-finger nuclease model of RTT utilizing both male and female rats throughout development. Male rats lacking MeCP2 (Mecp2ZFN/y) were noticeably symptomatic as early as postnatal day 21, with most dying by postnatal day 55, while females lacking one copy of Mecp2 (Mecp2ZFN/+) displayed a more protracted disease course. Brain weights of Mecp2ZFN/y and Mecp2ZFN/+ rats were significantly reduced by postnatal day 14 and 21, respectively. Early motor and breathing abnormalities were apparent in Mecp2ZFN/y rats, whereas Mecp2ZFN/+ rats displayed functional irregularities later in development. The large size of this species will provide profound advantages in the identification of early disease mechanisms and the development of appropriately timed therapeutics. The current study establishes a foundational basis for the continued utilization of this rat model in future RTT research.
Collapse
Affiliation(s)
- Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia E Hawkins
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Kara M Arps
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Michelle L Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
20
|
Wu Y, Zhong W, Cui N, Johnson CM, Xing H, Zhang S, Jiang C. Characterization of Rett Syndrome-like phenotypes in Mecp2-knockout rats. J Neurodev Disord 2016; 8:23. [PMID: 27313794 PMCID: PMC4910223 DOI: 10.1186/s11689-016-9156-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/02/2016] [Indexed: 12/04/2022] Open
Abstract
Background Rett Syndrome (RTT) is a neurodevelopmental disease caused by the disruption of the MECP2 gene. Several mouse models of RTT have been developed with Mecp2 disruptions. Although the mouse models are widely used in RTT research, results obtained need to be validated in other species. Therefore, we performed these studies to characterize phenotypes of a novel Mecp2−/Y rat model and compared them with the Mecp2tm1.1Bird mouse model of RTT. Methods RTT-like phenotypes were systematically studied and compared between Mecp2−/Y rats and Mecp2−/Y mice. In-cage conditions of the rats were monitored. Grip strength and spontaneous locomotion were used to evaluate the motor function. Three-chamber test was performed to show autism-type behaviors. Breathing activity was recorded with the plethysmograph. Individual neurons in the locus coeruleus (LC) were studied in the whole-cell current clamp. The lifespan of the rats was determined with their survival time. Results Mecp2−/Y rats displayed growth retardation, malocclusion, and lack of movements, while hindlimb clasping was not seen. They had weaker forelimb grip strength and a lower rate of locomotion than the WT littermates. Defects in social interaction with other rats were obvious. Breathing frequency variation and apnea in the null rats were significantly higher than in the WT. LC neurons in the null rats showed excessive firing activity. A half of the null rats died in 2 months. Most of the RTT-like symptoms were comparable to those seen in Mecp2−/Y mice, while some appeared more or less severe. The findings that most RTT-like symptoms exist in the rat model with moderate variations and differences from the mouse models support the usefulness of both Mecp2−/Y rodent models. Conclusions The novel Mecp2−/Y rat model recapitulated numerous RTT-like symptoms as Mecp2−/Y mouse models did, which makes it a valuable alternative model in the RTT studies when the body size matters.
Collapse
Affiliation(s)
- Yang Wu
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302 USA
| | - Weiwei Zhong
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302 USA
| | - Ningren Cui
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302 USA
| | - Christopher M Johnson
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302 USA
| | - Hao Xing
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302 USA
| | - Shuang Zhang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302 USA
| | - Chun Jiang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302 USA
| |
Collapse
|
21
|
Rumbak DM, Mowrey W, W Schwartz S, Sarwahi V, Djukic A, Killinger JS, Katyal C. Spinal Fusion for Scoliosis in Rett Syndrome With an Emphasis on Respiratory Failure and Opioid Usage. J Child Neurol 2016; 31:153-8. [PMID: 25991642 DOI: 10.1177/0883073815585352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/06/2015] [Indexed: 11/17/2022]
Abstract
Our objective was to characterize our experience with 8 patients with Rett syndrome undergoing scoliosis surgery in regard to rates of respiratory failure and rates of ventilator-acquired pneumonia in comparison to patients with neurologic scoliosis and adolescent idiopathic scoliosis. This study was a retrospective chart review of patients undergoing scoliosis surgery at a tertiary children's hospital. Patients were divided into 3 groups: (1) adolescent idiopathic scoliosis, (2) neurologic scoliosis, and (3) Rett syndrome. There were 133 patients with adolescent idiopathic scoliosis, 48 patients with neurologic scoliosis, and 8 patients with Rett syndrome. We found that patients with Rett syndrome undergoing scoliosis surgery have higher rates of respiratory failure and longer ventilation times in the postoperative period when compared with both adolescent idiopathic scoliosis and neurologic scoliosis patients. There is insufficient evidence to suggest a difference in the incidence of ventilator-acquired pneumonia between the Rett syndrome and the neurologic scoliosis group. We believe our findings are the first in the literature to show a statistically significant difference between these 3 groups in regard to incidence of respiratory failure.
Collapse
Affiliation(s)
- Dania M Rumbak
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital at Montefiore/Albert Einstein College of Medicine, USA Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Wenzhu Mowrey
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Skai W Schwartz
- Department of Epidemiology and Biostatistics, University of South Florida College of Public Health, Tampa, FL, USA
| | - Vishal Sarwahi
- Department of Orthopaedic Surgery, Montefiore Medical Center, Bronx, NY, USA
| | - Aleksandra Djukic
- Division of Neurology and Tri-State Rett Syndrome Center, Department of Pediatrics, Children's Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA
| | - James S Killinger
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital at Montefiore/Albert Einstein College of Medicine, USA Division of Pediatric Critical Care Medicine, Department of Pediatrics, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Chhavi Katyal
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital at Montefiore/Albert Einstein College of Medicine, USA
| |
Collapse
|
22
|
Nobuta H, Cilio MR, Danhaive O, Tsai HH, Tupal S, Chang SM, Murnen A, Kreitzer F, Bravo V, Czeisler C, Gokozan HN, Gygli P, Bush S, Weese-Mayer DE, Conklin B, Yee SP, Huang EJ, Gray PA, Rowitch D, Otero JJ. Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome. Acta Neuropathol 2015; 130:171-83. [PMID: 25975378 PMCID: PMC4503865 DOI: 10.1007/s00401-015-1441-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 12/29/2022]
Abstract
Human congenital central hypoventilation syndrome (CCHS), resulting from mutations in transcription factor PHOX2B, manifests with impaired responses to hypoxemia and hypercapnia especially during sleep. To identify brainstem structures developmentally affected in CCHS, we analyzed two postmortem neonatal-lethal cases with confirmed polyalanine repeat expansion (PARM) or Non-PARM (PHOX2B∆8) mutation of PHOX2B. Both human cases showed neuronal losses within the locus coeruleus (LC), which is important for central noradrenergic signaling. Using a conditionally active transgenic mouse model of the PHOX2B∆8 mutation, we found that early embryonic expression (<E10.5) caused failure of LC neuronal specification and perinatal respiratory lethality. In contrast, later onset (E11.5) of PHOX2B∆8 expression was not deleterious to LC development and perinatal respiratory lethality was rescued, despite failure of chemosensor retrotrapezoid nucleus formation. Our findings indicate that early-onset mutant PHOX2B expression inhibits LC neuronal development in CCHS. They further suggest that such mutations result in dysregulation of central noradrenergic signaling, and therefore, potential for early pharmacologic intervention in humans with CCHS.
Collapse
|
23
|
Chapleau CA, Lane J, Pozzo-Miller L, Percy AK. Evaluation of current pharmacological treatment options in the management of Rett syndrome: from the present to future therapeutic alternatives. ACTA ACUST UNITED AC 2014; 8:358-69. [PMID: 24050745 DOI: 10.2174/15748847113086660069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/14/2013] [Accepted: 02/21/2013] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental disorders are a large family of conditions of genetic or environmental origin that are characterized by deficiencies in cognitive and behavioral functions. The therapeutic management of individuals with these disorders is typically complex and is limited to the treatment of specific symptoms that characterize each disorder. The neurodevelopmental disorder Rett syndrome (RTT) is the leading cause of severe intellectual disability in females. Mutations in the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MECP2), located on the X chromosome, have been confirmed in more than 95% of individuals meeting diagnostic criteria for classical RTT. RTT is characterized by an uneventful early infancy followed by stagnation and regression of growth, motor, language, and social skills later in development. This review will discuss the genetics, pathology, and symptoms that distinguish RTT from other neurodevelopmental disorders associated with intellectual disability. Because great progress has been made in the basic and clinical science of RTT, the goal of this review is to provide a thorough assessment of current pharmacotherapeutic options to treat the symptoms associated with this disorder. Furthermore, we will highlight recent discoveries made with novel pharmacological interventions in experimental preclinical phases, and which have reversed pathological phenotypes in mouse and cell culture models of RTT and may result in clinical trials.
Collapse
Affiliation(s)
- Christopher A Chapleau
- Department of Pediatrics, CIRC-320, The University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-0021, USA.
| | | | | | | |
Collapse
|
24
|
Inflammatory lung disease in Rett syndrome. Mediators Inflamm 2014; 2014:560120. [PMID: 24757286 PMCID: PMC3976920 DOI: 10.1155/2014/560120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/06/2014] [Accepted: 01/14/2014] [Indexed: 12/30/2022] Open
Abstract
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly linked to mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Respiratory dysfunction, historically credited to brainstem immaturity, represents a major challenge in RTT. Our aim was to characterize the relationships between pulmonary gas exchange abnormality (GEA), upper airway obstruction, and redox status in patients with typical RTT (n = 228) and to examine lung histology in a Mecp2-null mouse model of the disease. GEA was detectable in ~80% (184/228) of patients versus ~18% of healthy controls, with “high” (39.8%) and “low” (34.8%) patterns dominating over “mixed” (19.6%) and “simple mismatch” (5.9%) types. Increased plasma levels of non-protein-bound iron (NPBI), F2-isoprostanes (F2-IsoPs), intraerythrocyte NPBI (IE-NPBI), and reduced and oxidized glutathione (i.e., GSH and GSSG) were evidenced in RTT with consequently decreased GSH/GSSG ratios. Apnea frequency/severity was positively correlated with IE-NPBI, F2-IsoPs, and GSSG and negatively with GSH/GSSG ratio. A diffuse inflammatory infiltrate of the terminal bronchioles and alveoli was evidenced in half of the examined Mecp2-mutant mice, well fitting with the radiological findings previously observed in RTT patients. Our findings indicate that GEA is a key feature of RTT and that terminal bronchioles are a likely major target of the disease.
Collapse
|
25
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
26
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
27
|
Buchovecky CM, Hill MG, Borkey JM, Kyle SM, Justice MJ. Evaluation of Rett Syndrome Symptom Improvement by Metabolic Modulators in Mecp2-Mutant Mice. ACTA ACUST UNITED AC 2013; 3:187-204. [PMID: 26069093 DOI: 10.1002/9780470942390.mo130157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mouse models recapitulate many symptoms of Rett Syndrome, an X-linked disorder caused by mutations in methyl-CpG-binding protein 2 (MECP2). The study of Mecp2-null male mice has provided insight into pathogenesis of the disorder-most recently, dysregulation of cholesterol and lipid metabolism. Perisymptomatic treatment with statin drugs successfully mitigates the effects of this metabolic syndrome, increases longevity, and improves motor function. Described here is a metabolic drug screening protocol and timeline for symptom evaluation in Mecp2-mutant mice. Specifically, mice are treated twice weekly with a compound of interest alongside subjective health assessments, bi-weekly body composition measurements, and blood chemistries. Throughout treatment, behavioral phenotyping tests are carried out at specific time points. This protocol is highly adaptable to other neurological diseases; however, the time for completion depends on the specific mutant model under study. The protocol highlights the use of techniques described in several different Current Protocols in Mouse Biology articles to carry out testing in a preclinical model. Curr. Protoc. Mouse Biol. 3:187-204 © 2013 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Christie M Buchovecky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Misty G Hill
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jennifer M Borkey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Stephanie M Kyle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Monica J Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Gallego J. Genetic diseases: congenital central hypoventilation, Rett, and Prader-Willi syndromes. Compr Physiol 2013; 2:2255-79. [PMID: 23723037 DOI: 10.1002/cphy.c100037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present review summarizes current knowledge on three rare genetic disorders of respiratory control, congenital central hypoventilation syndrome (CCHS), Rett syndrome (RTT), and Prader-Willi syndrome (PWS). CCHS is characterized by lack of ventilatory chemosensitivity caused by PHOX2B gene abnormalities consisting mainly of alanine expansions. RTT is associated with episodes of tachypneic and irregular breathing intermixed with breathholds and apneas and is caused by mutations in the X-linked MECP2 gene encoding methyl-CpG-binding protein. PWS manifests as sleep-disordered breathing with apneas and episodes of hypoventilation and is caused by the loss of a group of paternally inherited genes on chromosome 15. CCHS is the most specific disorder of respiratory control, whereas the breathing disorders in RTT and PWS are components of a more general developmental disorder. The main clinical features of these three disorders are reviewed with special emphasis on the associated brain abnormalities. In all three syndromes, disease-causing genetic defects have been identified, allowing the development of genetically engineered mouse models. New directions for future therapies based on these models or, in some cases, on clinical experience are delineated. Studies of CCHS, RTT, and PWS extend our knowledge of the molecular and cellular aspects of respiratory rhythm generation and suggest possible pharmacological approaches to respiratory control disorders. This knowledge is relevant for the clinical management of many respiratory disorders that are far more prevalent than the rare diseases discussed here.
Collapse
Affiliation(s)
- Jorge Gallego
- Inserm U676 and University of Paris Diderot, Paris, France.
| |
Collapse
|
29
|
Johnson RA, Mitchell GS. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders. Respir Physiol Neurobiol 2013; 189:419-28. [PMID: 23727226 PMCID: PMC3812344 DOI: 10.1016/j.resp.2013.05.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
In many neurological disorders that disrupt spinal function and compromise breathing (e.g. ALS, cervical spinal injury, MS), patients often maintain ventilatory capacity well after the onset of severe CNS pathology. In progressive neurodegenerative diseases, patients ultimately reach a point where compensation is no longer possible, leading to catastrophic ventilatory failure. In this brief review, we consider evidence that common mechanisms of compensatory respiratory plasticity preserve breathing capacity in diverse clinical disorders, despite the onset of severe pathology (e.g. respiratory motor neuron denervation and/or death). We propose that a suite of mechanisms, operating at distinct sites in the respiratory control system, underlies compensatory respiratory plasticity, including: (1) increased (descending) central respiratory drive, (2) motor neuron plasticity, (3) plasticity at the neuromuscular junction or spared respiratory motor neurons, and (4) shifts in the balance from more to less severely compromised respiratory muscles. To establish this framework, we contrast three rodent models of neural dysfunction, each posing unique problems for the generation of adequate inspiratory motor output: (1) respiratory motor neuron death, (2) de- or dysmyelination of cervical spinal pathways, and (3) cervical spinal cord injury, a neuropathology with components of demyelination and motor neuron death. Through this contrast, we hope to understand the multilayered strategies used to "fight" for adequate breathing in the face of mounting pathology.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, United States.
| | | |
Collapse
|
30
|
Ramirez JM, Ward CS, Neul JL. Breathing challenges in Rett syndrome: lessons learned from humans and animal models. Respir Physiol Neurobiol 2013; 189:280-7. [PMID: 23816600 DOI: 10.1016/j.resp.2013.06.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 01/17/2023]
Abstract
Breathing disturbances are a major challenge in Rett Syndrome (RTT). These disturbances are more pronounced during wakefulness; but irregular breathing occurs also during sleep. During the day patients can exhibit alternating bouts of hypoventilation and irregular hyperventilation. But there is significant individual variability in severity, onset, duration and type of breathing disturbances. Research in mouse models of RTT suggests that different areas in the ventrolateral medulla and pons give rise to different aspects of this breathing disorder. Pre-clinical experiments in mouse models that target different neuromodulatory and neurotransmitter receptors and MeCP2 function within glia cells can partly reverse breathing abnormalities. The success in animal models raises optimism that one day it will be possible to control or potentially cure the devastating symptoms also in human patients with RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, Seattle, WA 98101, USA.
| | | | | |
Collapse
|
31
|
Fine-Goulden MR, Puppala NK, Durward A. Mechanisms of ventilator dependence in children with neuromuscular and respiratory control disorders identified by monitoring diaphragm electrical activity. Intensive Care Med 2012; 38:2072-9. [PMID: 23093244 DOI: 10.1007/s00134-012-2724-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To report on the monitoring of diaphragm electrical activity (Edi) using neurally adjusted ventilator assist (NAVA) technology to investigate the mechanisms of ventilator dependence in children with neuromuscular and respiratory control disorders. PATIENTS AND METHODS Using NAVA technology, electrical activity of the diaphragm (Edi) was monitored at the lowest achievable level of respiratory support in six ventilator-dependent patients with neuromuscular and respiratory control disorders, aged 6 weeks to 12 years, admitted to a tertiary paediatric intensive care unit between 2009 and 2011. RESULTS Edi monitoring identified markedly abnormal respiratory dynamic patterns that were not always apparent clinically. These were associated with disorders of central respiratory control, muscle weakness and diaphragm pathology. CONCLUSIONS Edi monitoring using NAVA technology is a valuable, minimally invasive, diagnostic adjunct in children with neuromuscular and respiratory control disorders who are ventilator-dependent.
Collapse
|
32
|
Yamauchi M, Jacono FJ, Fujita Y, Yoshikawa M, Ohnishi Y, Nakano H, Campanaro CK, Loparo KA, Strohl KP, Kimura H. Breathing irregularity during wakefulness associates with CPAP acceptance in sleep apnea. Sleep Breath 2012; 17:845-52. [PMID: 23080481 DOI: 10.1007/s11325-012-0775-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/29/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022]
Abstract
PURPOSE Individuals have different breathing patterns at rest, during wakefulness, and during sleep, and patients with sleep apnea are no different. The hypothesis for this study was that breathing irregularity during wakefulness associates with CPAP acceptance in obstructive sleep apnea (OSA). METHODS From a 2007-2010-database of patients with a diagnostic polysomnography (PSG) and prescribed CPAP (n = 380), retrospectively, 66 patients who quit CPAP treatment at 6 months were identified. Among them, 27 OSA patients quit despite having no side effects for discontinuing CPAP (Group A) and were compared to a matched group (age, body mass index, and apnea-hypopnea index) with good 6-month CPAP adherence (Group B; n = 21). Five minutes of respiratory signal during wakefulness at the initial PSG were extracted from respiratory inductance plethysmography recordings, and measured in a blinded fashion. The coefficients of variation (CV) for the breath-to-breath inspiration time (T i), expiration time (T e), T i + T e (T tot), and relative tidal volume, as well as an independent information theory-based metric of signal pattern variability (mutual information) were compared between groups. RESULTS The CV for tidal volume was significantly greater (p = 0.001), and mutual information was significantly lower (p = 0.041) in Group A as compared to Group B. CONCLUSIONS Differences in two independent measures of breathing irregularity correlated with CPAP rejection in OSA patients without nasal symptoms or comorbidity. Prospective studies of adherence should examine traits of breathing stability.
Collapse
Affiliation(s)
- Motoo Yamauchi
- Second Department of Internal Medicine (Department of Respiratory Medicine), Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
De Filippis B, Fabbri A, Simone D, Canese R, Ricceri L, Malchiodi-Albedi F, Laviola G, Fiorentini C. Modulation of RhoGTPases improves the behavioral phenotype and reverses astrocytic deficits in a mouse model of Rett syndrome. Neuropsychopharmacology 2012; 37:1152-63. [PMID: 22157810 PMCID: PMC3306877 DOI: 10.1038/npp.2011.301] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 11/09/2022]
Abstract
RhoGTPases are crucial molecules in neuronal plasticity and cognition, as confirmed by their role in non-syndromic mental retardation. Activation of brain RhoGTPases by the bacterial cytotoxic necrotizing factor 1 (CNF1) reshapes the actin cytoskeleton and enhances neurotransmission and synaptic plasticity in mouse brains. We evaluated the effects of a single CNF1 intracerebroventricular inoculation in a mouse model of Rett syndrome (RTT), a rare neurodevelopmental disorder and a genetic cause of mental retardation, for which no effective therapy is available. Fully symptomatic MeCP2-308 male mice were evaluated in a battery of tests specifically tailored to detect RTT-related impairments. At the end of behavioral testing, brain sections were immunohistochemically characterized. Magnetic resonance imaging and spectroscopy (MRS) were also applied to assess morphological and metabolic brain changes. The CNF1 administration markedly improved the behavioral phenotype of MeCP2-308 mice. CNF1 also dramatically reversed the evident signs of atrophy in astrocytes of mutant mice and restored wt-like levels of this cell population. A partial rescue of the overexpression of IL-6 cytokine was also observed in RTT brains. CNF1-induced brain metabolic changes detected by MRS analysis involved markers of glial integrity and bioenergetics, and point to improved mitochondria functionality in CNF1-treated mice. These results clearly indicate that modulation of brain RhoGTPases by CNF1 may constitute a totally innovative therapeutic approach for RTT and, possibly, for other disorders associated with mental retardation.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Alessia Fabbri
- Department Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Daiana Simone
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Rossella Canese
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Laura Ricceri
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | - Giovanni Laviola
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Carla Fiorentini
- Department Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
34
|
Schmid DA, Yang T, Ogier M, Adams I, Mirakhur Y, Wang Q, Massa SM, Longo FM, Katz DM. A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome. J Neurosci 2012; 32:1803-10. [PMID: 22302819 PMCID: PMC3710112 DOI: 10.1523/jneurosci.0865-11.2012] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 12/02/2011] [Accepted: 12/13/2011] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) results from loss-of-function mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2) and is characterized by abnormal motor, respiratory and autonomic control, cognitive impairment, autistic-like behaviors and increased risk of seizures. RTT patients and Mecp2-null mice exhibit reduced expression of brain-derived neurotrophic factor (BDNF), which has been linked in mice to increased respiratory frequency, a hallmark of RTT. The present study was undertaken to test the hypotheses that BDNF deficits in Mecp2 mutants are associated with reduced activation of the BDNF receptor, TrkB, and that pharmacologic activation of TrkB would improve respiratory function. We characterized BDNF protein expression, TrkB activation and respiration in heterozygous female Mecp2 mutant mice (Het), a model that recapitulates the somatic mosaicism for mutant MECP2 found in typical RTT patients, and evaluated the ability of a small molecule TrkB agonist, LM22A-4, to ameliorate biochemical and functional abnormalities in these animals. We found that Het mice exhibit (1) reduced BDNF expression and TrkB activation in the medulla and pons and (2) breathing dysfunction, characterized by increased frequency due to periods of tachypnea, and increased apneas, as in RTT patients. Treatment of Het mice with LM22A-4 for 4 weeks rescued wild-type levels of TrkB phosphorylation in the medulla and pons and restored wild-type breathing frequency. These data provide new insight into the role of BDNF signaling deficits in the pathophysiology of RTT and highlight TrkB as a possible therapeutic target in this disease.
Collapse
Affiliation(s)
- Danielle A. Schmid
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, and
| | - Michael Ogier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Ian Adams
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Yatin Mirakhur
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Qifang Wang
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Stephen M. Massa
- Department of Neurology and Laboratory for Computational Neurochemistry and Drug Discovery, San Francisco Veterans Affairs Medical Center, and Department of Neurology, University of California, San Francisco, California 94121
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, and
| | - David M. Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
35
|
Shepherd GMG, Katz DM. Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr Opin Neurobiol 2011; 21:827-33. [PMID: 21733672 PMCID: PMC3199024 DOI: 10.1016/j.conb.2011.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/20/2022]
Abstract
Recent findings in the genetics of neurodevelopmental syndromes have ushered in an exciting era of discovery in which substrates of neurologic dysfunction are being identified at the synaptic and microcircuit levels in mouse models of these disorders. We review recent progress in this area, focusing on two examples of mouse models of autism spectrum disorders (ASDs): Mecp2 models of Rett syndrome, and a Met-knockout model of non-syndromic forms of autism. In both cases, a dominant theme is changes in synaptic strength, associated with hyper-connectivity or hypo-connectivity in specific microcircuits. Alterations in intrinsic neuronal excitability are also found, but do not appear to be as common. The microcircuit-specific nature of synaptic changes observed in these ASD models indicates that it will be necessary to define mechanisms of circuit dysfunction on a case-by-case basis, not only in neocortex but also in brainstem and other sub-cortical areas. Thus, functional microcircuit analysis is emerging as an important line of investigation, highly complementary to neurogenetic and molecular strategies, and holds promise for generating models of the underlying pathophysiology and for guiding development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
36
|
Zhang X, Su J, Cui N, Gai H, Wu Z, Jiang C. The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome. Am J Physiol Cell Physiol 2011; 301:C729-38. [PMID: 21307341 PMCID: PMC3174562 DOI: 10.1152/ajpcell.00334.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 02/07/2011] [Indexed: 01/14/2023]
Abstract
People with Rett syndrome (RTT) have breathing instability in addition to other neuropathological manifestations. The breathing disturbances contribute to the high incidence of unexplained death and abnormal brain development. However, the cellular mechanisms underlying the breathing abnormalities remain unclear. To test the hypothesis that the central CO(2) chemoreception in these people is disrupted, we studied the CO(2) chemosensitivity in a mouse model of RTT. The Mecp2-null mice showed a selective loss of their respiratory response to 1-3% CO(2) (mild hypercapnia), whereas they displayed more regular breathing in response to 6-9% CO(2) (severe hypercapnia). The defect was alleviated with the NE uptake blocker desipramine (10 mg·kg(-1)·day(-1) ip, for 5-7 days). Consistent with the in vivo observations, in vitro studies in brain slices indicated that CO(2) chemosensitivity of locus coeruleus (LC) neurons was impaired in Mecp2-null mice. Two major neuronal pH-sensitive Kir currents that resembled homomeric Kir4.1 and heteromeric Ki4.1/Kir5.1 channels were identified in the LC neurons. The screening of Kir channels with real-time PCR indicated the overexpression of Kir4.1 in the LC region of Mecp2-null mice. In a heterologous expression system, an overexpression of Kir4.1 resulted in a reduction in the pH sensitivity of the heteromeric Kir4.1-Kir5.1 channels. Given that Kir4.1 and Kir5.1 subunits are also expressed in brain stem respiration-related areas, the Kir4.1 overexpression may not allow CO(2) to be detected until hypercapnia becomes severe, leading to periodical hyper- and hypoventilation in Mecp2-null mice and, perhaps, in people with RTT as well.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Dept. of Biology, Georgia State Univ., Atlanta, 30303, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kron M, Zimmermann JL, Dutschmann M, Funke F, Müller M. Altered responses of MeCP2-deficient mouse brain stem to severe hypoxia. J Neurophysiol 2011; 105:3067-79. [DOI: 10.1152/jn.00822.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rett syndrome (RTT) patients suffer from respiratory arrhythmias with frequent apneas causing intermittent hypoxia. In a RTT mouse model (methyl-CpG-binding protein 2-deficient mice; Mecp2−/ y) we recently discovered an enhanced hippocampal susceptibility to hypoxia and hypoxia-induced spreading depression (HSD). In the present study we investigated whether this also applies to infant Mecp2−/ y brain stem, which could become life-threatening due to failure of cardiorespiratory control. HSD most reliably occurred in the nucleus of the solitary tract (NTS) and the spinal trigeminal nucleus (Sp5). HSD susceptibility of the Mecp2−/ y NTS and Sp5 was increased on 8 mM K+-mediated conditioning. 5-HT1A receptor stimulation with 8-hydroxy-2-(di-propylamino)tetralin (8-OH-DPAT) postponed HSD by up to 40%, mediating genotype-independent protection. The deleterious impact of HSD on in vitro respiration became obvious in rhythmically active slices, where HSD propagation into the pre-Bötzinger complex (pre-BötC) immediately arrested the respiratory rhythm. Compared with wild-type, the Mecp2−/ y pre-BötC was invaded less frequently by HSD, but if so, HSD occurred earlier. On reoxygenation, in vitro rhythms reappeared with increased frequency, which was less pronounced in Mecp2−/ y slices. 8-OH-DPAT increased respiratory frequency but failed to postpone HSD in the pre-BötC. Repetitive hypoxia facilitated posthypoxic recovery only if HSD occurred. In 57% of Mecp2−/ y slices, however, HSD spared the pre-BötC. Although this occasionally promoted residual hypoxic respiratory activity (“gasping”), it also prolonged the posthypoxic recovery, and thus the absence of central inspiratory drive, which in vivo would lengthen respiratory arrest. In view of the breathing disorders in RTTs, the increased hypoxia susceptibility of MeCP2-deficient brain stem potentially contributes to life-threatening disturbances of cardiorespiratory control.
Collapse
Affiliation(s)
- Miriam Kron
- Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, and
- Bernstein Center for Computational Neuroscience, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Jasper L. Zimmermann
- Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, and
| | - Mathias Dutschmann
- Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, and
- Bernstein Center for Computational Neuroscience, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Frank Funke
- Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, and
| | - Michael Müller
- Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, and
- Bernstein Center for Computational Neuroscience, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
38
|
Song G, Tin C, Giacometti E, Poon CS. Habituation without NMDA Receptor-Dependent Desensitization of Hering-Breuer Apnea Reflex in a Mecp2 Mutant Mouse Model of Rett Syndrome. Front Integr Neurosci 2011; 5:6. [PMID: 21629824 PMCID: PMC3096835 DOI: 10.3389/fnint.2011.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/12/2011] [Indexed: 01/20/2023] Open
Abstract
Non-associative learning is a basic neuroadaptive behavior exhibited in almost all animal species and sensory modalities but its functions and mechanisms in the mammalian brain are poorly understood. Previous studies have identified two distinct forms of non-associative learning in the classic Hering-Breuer inflation reflex (HBIR) induced apnea in rats: NMDA receptor (NMDAR)-independent habituation in a primary vagal pathway and NMDAR-dependent desensitization in a secondary pontine pathway. Here, we show that abnormal non-associative learning of the HBIR may underlie the endophenotypic tachypnea in an animal model of Rett syndrome (RTT), an autism-spectrum disorder caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2). Mecp2(+/-) symptomatic mice on a mixed-strain background demonstrated significantly increased resting respiratory frequency with shortened expiration and normal inspiratory duration compared with asymptomatic mutants and wild-type controls, a phenotype that is characteristic of girls with RTT. Low-intensity electrical stimulation of the vagus nerve elicited fictive HBIR with time-dependent habituation in both Mecp2(+/-) and wild-type mice. However, time-dependent desensitization of the HBIR was evidenced only in wild-type controls and asymptomatic mutant mice but was absent or suppressed in Mecp2(+/-) symptomatic mice or in wild-type mice after blockade of NMDAR with dizocilpine. Remarkably, ∼50% of the Mecp2(+/-) mice developed these X-linked phenotypes despite somatic mosaicism. Such RTT-like respiratory endophenotypes in mixed-strain Mecp2(+/-) mice differed from those previously reported in Mecp2(-/y) mice on pure C57BL/6J background. These findings provide the first evidence indicating that impaired NMDAR-dependent desensitization of the HBIR may contribute to the endophenotypic tachypnea in RTT.
Collapse
Affiliation(s)
- Gang Song
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA, USA
| | | | | | | |
Collapse
|
39
|
Yamauchi M, Tamaki S, Yoshikawa M, Ohnishi Y, Nakano H, Jacono FJ, Loparo KA, Strohl KP, Kimura H. Differences in breathing patterning during wakefulness in patients with mixed apnea-dominant vs obstructive-dominant sleep apnea. Chest 2011; 140:54-61. [PMID: 21393396 DOI: 10.1378/chest.10-1082] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Mixed apneas share both central and obstructive components and are often treated as if they are obstructive events. The hypothesis is that patients with obstructive sleep apnea syndrome (OSAS) who exhibit a majority of mixed apneas will differ in ventilatory control from those with predominantly obstructive apneas during wakefulness; moreover, this difference could affect nasal continuous positive airway pressure (CPAP) adherence. METHODS In a retrospectively derived case-control study, 5 min of respiratory inductance plethysmography signals during wakefulness prior to sleep onset were extracted from a diagnostic polysomnogram in these groups: (1) mixed apnea-dominant OSAS (mix-OSAS) (n = 36), (2) obstructive apnea-dominant OSAS (pure-OSAS) (n = 20), (3) central apnea-dominant sleep apnea syndrome (pure-CSAS) (n = 6), and (4) control subjects (n = 10). Breathing patterning was compared between the groups using the coefficient of variation (CV) for breath-to-breath inspiration time (TI), expiration time (TE), TI + TE (Ttot), and tidal volume, and an information theory-based metric of signal pattern variability (sample entropy). Subsequent CPAP adherence over 12 months was determined in OSAS groups. RESULTS Breath-to-breath CV parameters and sample entropy in the mix-OSAS group were significantly greater as compared with the pure-OSAS and control groups. In a subanalysis, CV and sample entropy were similar in the mix-OSAS and the pure-CSAS groups. CPAP adherence was significantly poorer in mix-OSAS compared with pure-OSAS. CONCLUSIONS During wakefulness, both breath patterning and sample entropy in mix-OSAS are similar to pure-CSAS and more variable than in pure-OSAS. In addition, CPAP adherence was decreased in patients with mix-OSAS, which may be related to basic differences in respiratory control.
Collapse
Affiliation(s)
- Motoo Yamauchi
- Second Department of Internal Medicine, Department of Respiratory Medicine, Nara Medical University, Kashihara.
| | - Shinji Tamaki
- Second Department of Internal Medicine, Department of Respiratory Medicine, Nara Medical University, Kashihara
| | - Masanori Yoshikawa
- Second Department of Internal Medicine, Department of Respiratory Medicine, Nara Medical University, Kashihara
| | | | - Hiroshi Nakano
- Department of Pulmonology, Fukuoka National Hospital, Fukuoka, Japan
| | - Frank J Jacono
- Division of Pulmonary, Critical Care, and Sleep Medicine, Case Western Reserve University and Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Kenneth A Loparo
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH
| | - Kingman P Strohl
- Division of Pulmonary, Critical Care, and Sleep Medicine, Case Western Reserve University and Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Hiroshi Kimura
- Second Department of Internal Medicine, Department of Respiratory Medicine, Nara Medical University, Kashihara
| |
Collapse
|
40
|
Lioy DT, Wu WW, Bissonnette JM. Autonomic dysfunction with mutations in the gene that encodes methyl-CpG-binding protein 2: insights into Rett syndrome. Auton Neurosci 2011; 161:55-62. [PMID: 21316312 DOI: 10.1016/j.autneu.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/12/2011] [Accepted: 01/18/2011] [Indexed: 11/30/2022]
Abstract
Rett syndrome (RTT) is an autism spectrum disorder with an incidence of ~1:10,000 females (reviewed in Bird, 2008; Chahrour et al., 2007; Francke, 2006). Affected individuals are apparently normal at birth. Between 6-18 months of age, however, RTT patients begin to exhibit deceleration of head growth, replacement of purposeful hand movements with stereotypic hand wringing, loss of speech, social withdrawal and other autistic features. RTT is caused by loss of function mutations in the gene that encodes methyl-CpG-binding protein 2 (Mecp2) (Amir et al., 1999), a transcriptional repressor that targets genes essential for neuronal survival, dendritic growth, synaptogenesis, and activity dependent plasticity. MECP2 is X-linked, and males die soon after birth. Included in the RTT phenotype are cardiorespiratory disorders involving the autonomic nervous system. The respiratory disorders, including the roles of bioaminergic and brain derived neurotrophic factor (BDNF) signaling in the respiratory pathophysiology of RTT have been recently reviewed (Bissonnette et al., 2007a; Ogier et al., 2008; Katz et al., 2009). Here we will cover the work on RTT regarding respiration that has appeared since 2009 as well as cardiovascular abnormalities.
Collapse
Affiliation(s)
- Daniel T Lioy
- Vollum Institute and Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
41
|
Voituron N, Menuet C, Dutschmann M, Hilaire G. Physiological definition of upper airway obstructions in mouse model for Rett syndrome. Respir Physiol Neurobiol 2010; 173:146-56. [DOI: 10.1016/j.resp.2010.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 11/17/2022]
|
42
|
Tang S, Machaalani R, Waters KA. Immunolocalization of pro- and mature-brain derived neurotrophic factor (BDNF) and receptor TrkB in the human brainstem and hippocampus. Brain Res 2010; 1354:1-14. [PMID: 20673758 DOI: 10.1016/j.brainres.2010.07.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 06/02/2010] [Accepted: 07/15/2010] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are essential in promoting normal development of the central nervous system. Specific functions that are affected in knockout models include respiratory control, coordination of movement and balance, and feeding activities. The expression of these markers has not yet been studied in the human infant brain. This study provides a detailed account of the distribution and localization of both pro- and mature-recombinant human (rh) forms of BDNF, and of TrkB in the human infant brainstem and hippocampus, and qualitatively compares this expression to that seen in the human adult. Using commercially available antibodies, we applied immunohistochemistry on formalin fixed and paraffin embedded human brain tissue [n=8 for infant, n=6 for adult], and qualitatively analyzed the expression of proBDNF, rhBDNF and TrkB. Amongst the brainstem regions studied, the greatest expression of the markers was in the mesencephalic trigeminal of the pons, and in the medulla, the inferior olive and arcuate nucleus. The lowest expression was in the substantia nigra of the midbrain and pontine locus coeruleus. Compared to adults, all the studied markers had a higher expression in the infant brainstem nuclei of the hypoglossal, vestibular, dorsal motor nucleus of the vagus, prepositus, cuneate, and dorsal raphe. In the hippocampus, only TrkB showed a higher expression in infants compared to adults. We conclude that BDNF and TrkB play important roles in controlling respiration, movement, balance and feeding in the brainstem and that the TrkB receptor is the most age-sensitive component of this system, especially in the hippocampus.
Collapse
Affiliation(s)
- Samantha Tang
- Department of Paediatrics and Child Health, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
43
|
Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci 2010; 30:5303-10. [PMID: 20392952 DOI: 10.1523/jneurosci.5503-09.2010] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Postnatal deficits in brain-derived neurotrophic factor (BDNF) are thought to contribute to pathogenesis of Rett syndrome (RTT), a progressive neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2-null mice, a model of RTT, BDNF deficits are most pronounced in structures important for autonomic and respiratory control, functions that are severely affected in RTT patients. However, relatively little is known about how these deficits affect neuronal function or how they may be linked to specific RTT endophenotypes. To approach these issues, we analyzed synaptic function in the brainstem nucleus tractus solitarius (nTS), the principal site for integration of primary visceral afferent inputs to central autonomic pathways and a region in which we found markedly reduced levels of BDNF in Mecp2 mutants. Our results demonstrate that the amplitude of spontaneous miniature and evoked EPSCs in nTS neurons is significantly increased in Mecp2-null mice and, accordingly, that mutant cells are more likely than wild- type cells to fire action potentials in response to primary afferent stimulation. These changes occur without any increase in intrinsic neuronal excitability and are unaffected by blockade of inhibitory GABA currents. However, this synaptopathy is associated with decreased BDNF availability in the primary afferent pathway and can be rescued by application of exogenous BDNF. On the basis of these findings, we hypothesize that altered sensory gating in nTS contributes to cardiorespiratory instability in RTT and that nTS is a site at which restoration of normal BDNF signaling could help reestablish normal homeostatic controls.
Collapse
|
44
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
De Filippis B, Ricceri L, Laviola G. Investigating Rett Syndrome Through Genetic Mouse Models: Presymptomatic, Clearly Symptomatic Phases, and Innovative Therapeutic Approaches. NEUROMETHODS 2010. [DOI: 10.1007/978-1-60761-474-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Voituron N, Zanella S, Menuet C, Lajard AM, Dutschmann M, Hilaire G. Early abnormalities of post-sigh breathing in a mouse model of Rett syndrome. Respir Physiol Neurobiol 2009; 170:173-82. [PMID: 20040383 DOI: 10.1016/j.resp.2009.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 01/07/2023]
Abstract
Rett syndrome is a neurodevelopmental disease accompanied by complex, disabling symptoms, including breathing symptoms. Because Rett syndrome is caused by mutations in the transcriptional repressor methyl-CpG-binding protein 2 (MeCP2), Mecp2-deficient mice have been generated as experimental model. Males of Mecp2-deficient mice (Mecp2(-/y)) breathe normally at birth but show abnormal respiratory responses to hypoxia and hypercapnia from postnatal day 25 (P25). After P30, Mecp2(-/y) mice develop breathing symptoms reminiscent of Rett syndrome, aggravating until premature death at around P60. Using plethysmography, we analyzed the sighs and the post-sigh breathing pattern of unrestrained wild type male mice (WT) and Mecp2(-/y) mice from P15 to P60. Sighs are spontaneous large inspirations known to prevent lung atelectasis and to improve alveolar oxygenation. However, Mecp2(-/y) mice show early abnormalities of post-sigh breathing, with long-lasting post-sigh apnoeas, reduced tidal volume when eupnoea resumes and lack of post-sigh bradypnoea which develop from P15, aggravate with age and possibly contribute to breathing symptoms to come.
Collapse
Affiliation(s)
- N Voituron
- Maturation, Plasticity, Physiology and Pathology of Respiration (mp3-resp team), Unité Mixte de Recherche 6231 CNRS, Faculté Saint-Jérôme, Service 362, 13397 Marseilles Cedex 20, France
| | | | | | | | | | | |
Collapse
|
47
|
Efficacy of levetiracetam in the treatment of drug-resistant Rett syndrome. Epilepsy Res 2009; 88:112-7. [PMID: 19914805 DOI: 10.1016/j.eplepsyres.2009.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 10/07/2009] [Accepted: 10/12/2009] [Indexed: 11/23/2022]
Abstract
Rett syndrome (RTT) is a progressive neurological disorder characterized by a wide spectrum of phenotypes. Epilepsy is reported to occur in 50-90% of patients with RTT; some develop medically refractory epilepsy. The aim of this study is to investigate the efficacy of levetiracetam (LEV) in drug-resistant patients with RTT. This prospective, pragmatic, open-label study consisted of an 8-week baseline period and a 6-month evaluation period. Efficacy variable was the mean frequency of monthly seizures before, and after 3 and 6 months of treatment with LEV. Eight female patients, aged 7.5-19 years (M12.8+/-5) entered the study. Mean age at epilepsy onset was 25.8+/-14.1 months. All patients showed MeCP2 mutation. Patients had been treated with a mean of 3.4 AEDs (2-7) before LEV. The mean LEV dose was 44.84+/-18.02mg/kg/day. The mean monthly seizure frequency for all types of seizures during the baseline period was 21.3+/-8.1 (range 10-35); after 3 months it was 3.3+/-4.1 (range 0-9) and after 6 months of LEV treatment it was 1.5+/-2 (range 0-4), p<0.0001. The mean follow-up period was 20.2+/-13 months. Mild sleepiness occurred in two patients, one reported intermittent agitation. Levetiracetam appeared effective in our series of drug-resistant RTT patients. All reported a reduction in seizure frequency and consequently a better quality of life.
Collapse
|
48
|
De Filippis B, Ricceri L, Laviola G. Early postnatal behavioral changes in the Mecp2-308 truncation mouse model of Rett syndrome. GENES BRAIN AND BEHAVIOR 2009; 9:213-23. [PMID: 19958389 DOI: 10.1111/j.1601-183x.2009.00551.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a mouse model of Rett syndrome (RTT) which expresses a truncated form of methyl-CpG-binding protein 2 (Mecp2) gene (Mecp2-308), we performed a neurobehavioral evaluation across the life span, starting from soon after birth till adulthood. A focus was made on those developmental phases and behavioral domains which have not been previously investigated. The results evidenced subtle anomalies on postnatal days (pnds) 3 to 9 (so-called presymptomatic phase) in spontaneous movements by hemizygous neonatal male mice. Specifically as early as pnd 3, mutant pups exhibited more intense curling and more side responses and on pnd 9 more pivoting and head rising behaviors than wild type (wt) littermates. A significant decrease in ultrasonic vocalization rate, also emerged in Mecp2-308 pups. The same mice were also characterized by increased anxiety-like behaviors (open-field and zero-maze tests) during the early symptomatic phase, in the absence of changes in cognitive passive-avoidance task and rotarod performances. Upon the clearly symptomatic stage, 5-month-old Mecp2-308 mice were also associated with reduced spontaneous home-cage motor activity, motor coordination impairments (rotarod and dowel tests), and a more marked profile of D-amphetamine (10 mg/kg) released stereotyped behavioral syndrome than wt mice. Present results provide an interesting timeline of the progression of symptoms in the Mecp2-308 model and emphasize the need for increased attention to the presymptomatic phase which may be especially informative in mouse models of human neurodevelopmental disorders. This analysis has provided evidence of precocious behavioral markers of RTT and has identified an early developmental window of opportunities on which potential therapies could be investigated.
Collapse
Affiliation(s)
- B De Filippis
- Section of Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanita, Roma, Italy
| | | | | |
Collapse
|
49
|
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the Methyl-CpG-binding protein-2 (MECP2) gene and is characterized by derangements in cognition, behavior, motor control, respiration and autonomic homeostasis, as well as seizures. Deficits in norepinephrine (NE) are thought to contribute to RTT pathogenesis, but little is known about how MeCP2 regulates function of noradrenergic neurons. We therefore characterized morphological, electrical, and neurochemical properties of neurons in the locus ceruleus (LC), the major source of noradrenergic innervation to the central neuraxis, in Mecp2 mutant mice. We found that MeCP2 null LC neurons are electrically hyperexcitable, smaller in size, and express less of the NE-synthesizing enzyme tyrosine hydroxylase (TH) compared with wild-type neurons. Increased excitability of mutant neurons is associated with reductions in passive membrane conductance and the amplitude of the slow afterhyperpolarization. Studies in Mecp2 heterozygotes, which are mosaic for the null allele, demonstrated that electrical hyperexcitability and reduced neuronal size are cell-autonomous consequences of MeCP2 loss, whereas reduced TH expression appears to reflect both cell-autonomous and non-autonomous influences. Finally, we found reduced levels of TH and norepinephrine in cingulate cortex, a forebrain target of the LC. Thus, genetic loss of MeCP2 results in a somewhat paradoxical LC neuron phenotype, characterized by both electrical hyperexcitability and reduced indices of noradrenergic function. Given the importance of the LC in modulating activity in brainstem and forebrain networks, we hypothesize that dysregulation of LC function in the absence of MeCP2 plays a key role in the pathophysiology of RTT.
Collapse
|
50
|
BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res 2009; 199:203-34. [PMID: 19777221 DOI: 10.1007/s00221-009-1994-z] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/12/2009] [Indexed: 01/17/2023]
Abstract
In the past 15 years numerous reports provided strong evidence that brain-derived neurotrophic factor (BDNF) is one of the most important modulators of glutamatergic and GABAergic synapses. Remarkable progress regarding localization, kinetics, and molecular mechanisms of BDNF secretion has been achieved, and a large number of studies provided evidence that continuous extracellular supply of BDNF is important for the proper formation and functional maturation of glutamatergic and GABAergic synapses. BDNF can play a permissive role in shaping synaptic networks, making them more susceptible for the occurrence of plastic changes. In addition, BDNF appears to be also an instructive factor for activity-dependent long-term synaptic plasticity. BDNF release just in response to synaptic stimulation might be a molecular trigger to convert high-frequency synaptic activity into long-term synaptic memories. This review attempts to summarize the current knowledge in synaptic secretion and synaptic action of BDNF, including both permissive and instructive effects of BDNF in synaptic plasticity.
Collapse
|