1
|
Salzmann K, Sanchez AMJ, Borrani F. Effects of Blood Flow Restriction on O 2 Muscle Extraction and O 2 Pulmonary Uptake Kinetics During Heavy Exercise. Front Physiol 2021; 12:722848. [PMID: 34539445 PMCID: PMC8441002 DOI: 10.3389/fphys.2021.722848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine the effects of three levels of blood flow restriction (BFR) onV ˙ O 2 and O 2 extraction kinetics during heavy cycling exercise transitions. Twelve healthy trained males completed two bouts of 10 min heavy intensity exercise without BFR (CON), with 40% or 50% BFR (BFR40 and BFR50, respectively).V ˙ O 2 and tissue saturation index (TSI) were continuously measured and modelled using multiexponential functions. The time constant of theV ˙ O 2 primary phase was significantly slowed in BFR40 (26.4 ± 2.0s; p < 0.001) and BFR50 (27.1 ± 2.1s; p = 0.001) compared to CON (19.0 ± 1.1s). The amplitude of theV ˙ O 2 slow component was significantly increased (p < 0.001) with BFR in a pressure-dependent manner 3.6 ± 0.7, 6.7 ± 0.9 and 9.7 ± 1.0 ml·min-1·kg-1 for CON, BFR40, and BFR50, respectively. While no acceleration of the primary component of the TSI kinetics was observed, there was an increase (p < 0.001) of the phase 3 amplitude with BFR (CON -0.8 ± 0.3% VS BFR40 -2.9 ± 0.9%, CON VS BFR50 -2.8 ± 0.8%). It may be speculated that BFR applied during cycling exercise in the heavy intensity domain shifted the working muscles to an O 2 dependent situation. The acceleration of the extraction kinetics could have reached a plateau, hence not permitting compensation for the slowdown of the blood flow kinetics, and slowingV ˙ O 2 kinetics.
Collapse
Affiliation(s)
- Killian Salzmann
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Anthony M. J. Sanchez
- University of Perpignan Via Domitia (UPVD), Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement De Montagne (LIPSEM), Font-Romeu, France
| | - Fabio Borrani
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Boyes NG, Eckstein J, Pylypchuk S, Marciniuk DD, Butcher SJ, Lahti DS, Dewa DMK, Haykowsky MJ, Wells CR, Tomczak CR. Effects of heavy-intensity priming exercise on pulmonary oxygen uptake kinetics and muscle oxygenation in heart failure with preserved ejection fraction. Am J Physiol Regul Integr Comp Physiol 2019; 316:R199-R209. [PMID: 30601707 DOI: 10.1152/ajpregu.00290.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise intolerance is a hallmark feature in heart failure with preserved ejection fraction (HFpEF). Prior heavy exercise ("priming exercise") speeds pulmonary oxygen uptake (V̇o2p) kinetics in older adults through increased muscle oxygen delivery and/or alterations in mitochondrial metabolic activity. We tested the hypothesis that priming exercise would speed V̇o2p on-kinetics in patients with HFpEF because of acute improvements in muscle oxygen delivery. Seven patients with HFpEF performed three bouts of two exercise transitions: MOD1, rest to 4-min moderate-intensity cycling and MOD2, MOD1 preceded by heavy-intensity cycling. V̇o2p, heart rate (HR), total peripheral resistance (TPR), and vastus lateralis tissue oxygenation index (TOI; near-infrared spectroscopy) were measured, interpolated, time-aligned, and averaged. V̇o2p and HR were monoexponentially curve-fitted. TPR and TOI levels were analyzed as repeated measures between pretransition baseline, minimum value, and steady state. Significance was P < 0.05. Time constant (τ; tau) V̇o2p (MOD1 49 ± 16 s) was significantly faster after priming (41 ± 14 s; P = 0.002), and the effective HR τ was slower following priming (41 ± 27 vs. 51 ± 32 s; P = 0.025). TPR in both conditions decreased from baseline to minimum TPR ( P < 0.001), increased from minimum to steady state ( P = 0.041) but remained below baseline throughout ( P = 0.001). Priming increased baseline ( P = 0.003) and minimum TOI ( P = 0.002) and decreased the TOI muscle deoxygenation overshoot ( P = 0.041). Priming may speed the slow V̇o2p on-kinetics in HFpEF and increase muscle oxygen delivery (TOI) at the onset of and throughout exercise. Microvascular muscle oxygen delivery may limit exercise tolerance in HFpEF.
Collapse
Affiliation(s)
- Natasha G Boyes
- College of Kinesiology, University of Saskatchewan , Saskatoon, SK , Canada
| | - Janine Eckstein
- College of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Stephen Pylypchuk
- College of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Darcy D Marciniuk
- College of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Scotty J Butcher
- School of Physical Therapy, University of Saskatchewan , Saskatoon, SK , Canada
| | - Dana S Lahti
- College of Kinesiology, University of Saskatchewan , Saskatoon, SK , Canada
| | - Dalisizwe M K Dewa
- College of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Mark J Haykowsky
- Integrated Cardiovascular Exercise Physiology and Rehabilitation Laboratory, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - Calvin R Wells
- College of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Corey R Tomczak
- College of Kinesiology, University of Saskatchewan , Saskatoon, SK , Canada
| |
Collapse
|
3
|
Niemeijer VM, Snijders T, Verdijk LB, van Kranenburg J, Groen BBL, Holwerda AM, Spee RF, Wijn PFF, van Loon LJC, Kemps HMC. Skeletal muscle fiber characteristics in patients with chronic heart failure: impact of disease severity and relation with muscle oxygenation during exercise. J Appl Physiol (1985) 2018; 125:1266-1276. [PMID: 30091667 DOI: 10.1152/japplphysiol.00057.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Skeletal muscle function in patients with heart failure and reduced ejection fraction (HFrEF) greatly determines exercise capacity. However, reports on skeletal muscle fiber dimensions, fiber capillarization, and their physiological importance are inconsistent. METHODS Twenty-five moderately-impaired patients with HFrEF and 25 healthy control (HC) subjects underwent muscle biopsy sampling. Type I and type II muscle fiber characteristics were determined by immunohistochemistry. In patients with HFrEF, enzymatic oxidative capacity was assessed, and pulmonary oxygen uptake (VO2) and skeletal muscle oxygenation during maximal and moderate-intensity exercise were measured using near-infrared spectroscopy. RESULTS While muscle fiber cross-sectional area (CSA) was not different between patients with HFrEF and HC, percentage of type I fibers was higher in HC (46±15% versus 37±12%, respectively, P=0.041). Fiber type distribution and CSA were not different between patients in New York Heart Association (NYHA) class II and III. Type I muscle fiber capillarization was higher in HFrEF compared with controls (capillary-to-fiber perimeter exchange (CFPE) index: 5.70±0.92 versus 5.05±0.82, respectively, P=0.027). Patients in NYHA class III had slower VO2 and muscle deoxygenation kinetics during onset of exercise, and lower muscle oxidative capacity than those in class II (P<0.05). Also, fiber capillarization was lower, but not compared with HC. Higher CFPE index was related to faster deoxygenation (rspearman=-0.682, P=0.001), however, not to muscle oxidative capacity (r=-0.282, P=0.216). CONCLUSIONS Type I muscle fiber capillarization is higher in HFrEF compared with HC, but not in patients with greater exercise impairment. Greater capillarization may positively affect VO2 kinetics by enhancing muscle oxygen diffusion.
Collapse
Affiliation(s)
- Victor M Niemeijer
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands, Netherlands
| | - Tim Snijders
- Human Movement Sciences, Maastricht University Medical Centre+, Netherlands
| | - Lex B Verdijk
- Human Movement Sciences, Maastricht University Medical Centre, Netherlands
| | - Janneau van Kranenburg
- Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+ (MUMC+)
| | - Bart B L Groen
- Department of Human Movement Sciences, Maastricht University Medical Centre, Netherlands
| | | | - Ruud F Spee
- Department of Cardiology, Maxima Medical Center, Netherlands
| | - Pieter F F Wijn
- Department of Applied Physics, Eindhoven University of Technology
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Netherlands
| | | |
Collapse
|
4
|
Niemeijer VM, Spee RF, Schoots T, Wijn PFF, Kemps HMC. Limitations of skeletal muscle oxygen delivery and utilization during moderate-intensity exercise in moderately impaired patients with chronic heart failure. Am J Physiol Heart Circ Physiol 2016; 311:H1530-H1539. [DOI: 10.1152/ajpheart.00474.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/28/2016] [Indexed: 11/22/2022]
Abstract
The extent and speed of transient skeletal muscle deoxygenation during exercise onset in patients with chronic heart failure (CHF) are related to impairments of local O2 delivery and utilization. This study examined the physiological background of submaximal exercise performance in 19 moderately impaired patients with CHF (Weber class A, B, and C) compared with 19 matched healthy control (HC) subjects by measuring skeletal muscle oxygenation (SmO2) changes during cycling exercise. All subjects performed two subsequent moderate-intensity 6-min exercise tests (bouts 1 and 2) with measurements of pulmonary oxygen uptake kinetics and SmO2 using near-infrared spatially resolved spectroscopy at the vastus lateralis for determination of absolute oxygenation values, amplitudes, kinetics (mean response time for onset), and deoxygenation overshoot characteristics. In CHF, deoxygenation kinetics were slower compared with HC (21.3 ± 5.3 s vs. 16.7 ± 4.4 s, P < 0.05, respectively). After priming exercise (i.e., during bout 2), deoxygenation kinetics were accelerated in CHF to values no longer different from HC (16.9 ± 4.6 s vs. 15.4 ± 4.2 s, P = 0.35). However, priming did not speed deoxygenation kinetics in CHF subjects with a deoxygenation overshoot, whereas it did reduce the incidence of the overshoot in this specific group ( P < 0.05). These results provide evidence for heterogeneity with respect to limitations of O2 delivery and utilization during moderate-intensity exercise in patients with CHF, with slowed deoxygenation kinetics indicating a predominant O2 utilization impairment and the presence of a deoxygenation overshoot, with a reduction after priming in a subgroup, indicating an initial O2 delivery to utilization mismatch.
Collapse
Affiliation(s)
- Victor M. Niemeijer
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Ruud F. Spee
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Thijs Schoots
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Pieter F. F. Wijn
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; and
- Department of Medical Physics, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Hareld M. C. Kemps
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| |
Collapse
|
5
|
Niemeijer VM, Spee RF, Jansen JP, Buskermolen ABC, van Dijk T, Wijn PFF, Kemps HMC. Test-retest reliability of skeletal muscle oxygenation measurements during submaximal cycling exercise in patients with chronic heart failure. Clin Physiol Funct Imaging 2015; 37:68-78. [DOI: 10.1111/cpf.12269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/27/2015] [Indexed: 01/26/2023]
Affiliation(s)
| | - Ruud F. Spee
- Department of Cardiology; Máxima Medical Centre; Veldhoven The Netherlands
| | - Jasper P. Jansen
- Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven The Netherlands
| | | | - Thomas van Dijk
- Department of Medical Physics; Máxima Medical Centre; Veldhoven The Netherlands
| | - Pieter F. F. Wijn
- Department of Applied Physics; Eindhoven University of Technology; Eindhoven The Netherlands
- Department of Medical Physics; Máxima Medical Centre; Veldhoven The Netherlands
| | - Hareld M. C. Kemps
- Department of Cardiology; Máxima Medical Centre; Veldhoven The Netherlands
| |
Collapse
|
6
|
Abstract
Muscular exercise requires transitions to and from metabolic rates often exceeding an order of magnitude above resting and places prodigious demands on the oxidative machinery and O2-transport pathway. The science of kinetics seeks to characterize the dynamic profiles of the respiratory, cardiovascular, and muscular systems and their integration to resolve the essential control mechanisms of muscle energetics and oxidative function: a goal not feasible using the steady-state response. Essential features of the O2 uptake (VO2) kinetics response are highly conserved across the animal kingdom. For a given metabolic demand, fast VO2 kinetics mandates a smaller O2 deficit, less substrate-level phosphorylation and high exercise tolerance. By the same token, slow VO2 kinetics incurs a high O2 deficit, presents a greater challenge to homeostasis and presages poor exercise tolerance. Compelling evidence supports that, in healthy individuals walking, running, or cycling upright, VO2 kinetics control resides within the exercising muscle(s) and is therefore not dependent upon, or limited by, upstream O2-transport systems. However, disease, aging, and other imposed constraints may redistribute VO2 kinetics control more proximally within the O2-transport system. Greater understanding of VO2 kinetics control and, in particular, its relation to the plasticity of the O2-transport/utilization system is considered important for improving the human condition, not just in athletic populations, but crucially for patients suffering from pathologically slowed VO2 kinetics as well as the burgeoning elderly population.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas, USA.
| | | |
Collapse
|
7
|
Bowen TS, Rossiter HB, Benson AP, Amano T, Kondo N, Kowalchuk JM, Koga S. Slowed oxygen uptake kinetics in hypoxia correlate with the transient peak and reduced spatial distribution of absolute skeletal muscle deoxygenation. Exp Physiol 2013; 98:1585-96. [DOI: 10.1113/expphysiol.2013.073270] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Sperandio PA, Oliveira MF, Rodrigues MK, Berton DC, Treptow E, Nery LE, Almeida DR, Neder JA. Sildenafil improves microvascular O2 delivery-to-utilization matching and accelerates exercise O2 uptake kinetics in chronic heart failure. Am J Physiol Heart Circ Physiol 2012; 303:H1474-80. [PMID: 23023868 DOI: 10.1152/ajpheart.00435.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) can temporally and spatially match microvascular oxygen (O(2)) delivery (Qo(2mv)) to O(2) uptake (Vo(2)) in the skeletal muscle, a crucial adjustment-to-exercise tolerance that is impaired in chronic heart failure (CHF). To investigate the effects of NO bioavailability induced by sildenafil intake on muscle Qo(2mv)-to-O(2) utilization matching and Vo(2) kinetics, 10 males with CHF (ejection fraction = 27 ± 6%) undertook constant work-rate exercise (70-80% peak). Breath-by-breath Vo(2), fractional O(2)extraction in the vastus lateralis {∼deoxygenated hemoglobin + myoglobin ([deoxy-Hb + Mb]) by near-infrared spectroscopy}, and cardiac output (CO) were evaluated after sildenafil (50 mg) or placebo. Sildenafil increased exercise tolerance compared with placebo by ∼20%, an effect that was related to faster on- and off-exercise Vo(2) kinetics (P < 0.05). Active treatment, however, failed to accelerate CO dynamics (P > 0.05). On-exercise [deoxy-Hb + Mb] kinetics were slowed by sildenafil (∼25%), and a subsequent response "overshoot" (n = 8) was significantly lessened or even abolished. In contrast, [deoxy-Hb + Mb] recovery was faster with sildenafil (∼15%). Improvements in muscle oxygenation with sildenafil were related to faster on-exercise Vo(2) kinetics, blunted oscillations in ventilation (n = 9), and greater exercise capacity (P < 0.05). Sildenafil intake enhanced intramuscular Qo(2mv)-to-Vo(2) matching with beneficial effects on Vo(2) kinetics and exercise tolerance in CHF. The lack of effect on CO suggests that improvement in blood flow to and within skeletal muscles underlies these effects.
Collapse
Affiliation(s)
- Priscila A Sperandio
- Pulmonary Function and Clinical Exercise Physiology Unit, Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Koga S, Kano Y, Barstow TJ, Ferreira LF, Ohmae E, Sudo M, Poole DC. Kinetics of muscle deoxygenation and microvascular Po2 during contractions in rat: comparison of optical spectroscopy and phosphorescence-quenching techniques. J Appl Physiol (1985) 2012; 112:26-32. [DOI: 10.1152/japplphysiol.00925.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The overarching presumption with near-infrared spectroscopy measurement of muscle deoxygenation is that the signal reflects predominantly the intramuscular microcirculatory compartment rather than intramyocyte myoglobin (Mb). To test this hypothesis, we compared the kinetics profile of muscle deoxygenation using visible light spectroscopy (suitable for the superficial fiber layers) with that for microvascular O2 partial pressure (i.e., PmvO2, phosphorescence quenching) within the same muscle region (0.5∼1 mm depth) during transitions from rest to electrically stimulated contractions in the gastrocnemius of male Wistar rats ( n = 14). Both responses could be modeled by a time delay (TD), followed by a close-to-exponential change to the new steady level. However, the TD for the muscle deoxygenation profile was significantly longer compared with that for the phosphorescence-quenching PmvO2 [8.6 ± 1.4 and 2.7 ± 0.6 s (means ± SE) for the deoxygenation and PmvO2, respectively; P < 0.05]. The time constants (τ) of the responses were not different (8.8 ± 4.7 and 11.2 ± 1.8 s for the deoxygenation and PmvO2, respectively). These disparate (TD) responses suggest that the deoxygenation characteristics of Mb extend the TD, thereby increasing the duration (number of contractions) before the onset of muscle deoxygenation. However, this effect was insufficient to increase the mean response time. Somewhat differently, the muscle deoxygenation response measured using near-infrared spectroscopy in the deeper regions (∼5 mm depth) (∼50% type I Mb-rich, highly oxidative fibers) was slower (τ = 42.3 ± 6.6 s; P < 0.05) than the corresponding value for superficial muscle measured using visible light spectroscopy or PmvO2 and can be explained on the basis of known fiber-type differences in PmvO2 kinetics. These data suggest that, within the superficial and also deeper muscle regions, the τ of the deoxygenation signal may represent a useful index of local O2 extraction kinetics during exercise transients.
Collapse
Affiliation(s)
- Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe
| | - Yutaka Kano
- The University of Electro-Communications, Chofu; and
| | - Thomas J. Barstow
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | - Mizuki Sudo
- The University of Electro-Communications, Chofu; and
| | - David C. Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
10
|
Bowen TS, Cannon DT, Murgatroyd SR, Birch KM, Witte KK, Rossiter HB. The intramuscular contribution to the slow oxygen uptake kinetics during exercise in chronic heart failure is related to the severity of the condition. J Appl Physiol (1985) 2011; 112:378-87. [PMID: 22033530 DOI: 10.1152/japplphysiol.00779.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism for slow pulmonary O(2) uptake (Vo(2)) kinetics in patients with chronic heart failure (CHF) is unclear but may be due to limitations in the intramuscular control of O(2) utilization or O(2) delivery. Recent evidence of a transient overshoot in microvascular deoxygenation supports the latter. Prior (or warm-up) exercise can increase O(2) delivery in healthy individuals. We therefore aimed to determine whether prior exercise could increase muscle oxygenation and speed Vo(2) kinetics during exercise in CHF. Fifteen men with CHF (New York Heart Association I-III) due to left ventricular systolic dysfunction performed two 6-min moderate-intensity exercise transitions (bouts 1 and 2, separated by 6 min of rest) from rest to 90% of lactate threshold on a cycle ergometer. Vo(2) was measured using a turbine and a mass spectrometer, and muscle tissue oxygenation index (TOI) was determined by near-infrared spectroscopy. Prior exercise increased resting TOI by 5.3 ± 2.4% (P = 0.001), attenuated the deoxygenation overshoot (-3.9 ± 3.6 vs. -2.0 ± 1.4%, P = 0.011), and speeded the Vo(2) time constant (τVo(2); 49 ± 19 vs. 41 ± 16 s, P = 0.003). Resting TOI was correlated to τVo(2) before (R(2) = 0.51, P = 0.014) and after (R(2) = 0.36, P = 0.051) warm-up exercise. However, the mean response time of TOI was speeded between bouts in half of the patients (26 ± 8 vs. 20 ± 8 s) and slowed in the remainder (32 ± 11 vs. 44 ± 16 s), the latter group having worse New York Heart Association scores (P = 0.042) and slower Vo(2) kinetics (P = 0.001). These data indicate that prior moderate-intensity exercise improves muscle oxygenation and speeds Vo(2) kinetics in CHF. The most severely limited patients, however, appear to have an intramuscular pathology that limits Vo(2) kinetics during moderate exercise.
Collapse
Affiliation(s)
- T Scott Bowen
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
11
|
Barbosa PB, Ferreira EMV, Arakaki JSO, Takara LS, Moura J, Nascimento RB, Nery LE, Neder JA. Kinetics of skeletal muscle O2 delivery and utilization at the onset of heavy-intensity exercise in pulmonary arterial hypertension. Eur J Appl Physiol 2011; 111:1851-61. [DOI: 10.1007/s00421-010-1799-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/20/2010] [Indexed: 11/30/2022]
|