1
|
Knapman FL, Cohen EM, Kulaga T, Lovell N, Lisowski L, McMullan S, Burke PGR, Bilston LE. Direct optogenetic activation of upper airway muscles in an acute model of upper airway hypotonia mimicking sleep onset. Sleep 2023; 46:zsad226. [PMID: 37651221 DOI: 10.1093/sleep/zsad226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA), where the upper airway collapses repeatedly during sleep due to inadequate dilator muscle tone, is challenging to treat as current therapies are poorly tolerated or have variable and unpredictable efficacy. We propose a novel, optogenetics-based therapy, that stimulates upper airway dilator muscle contractions in response to light. To determine the feasibility of a novel optogenetics-based OSA therapy, we developed a rodent model of human sleep-related upper airway muscle atonia. Using this model, we evaluated intralingual delivery of candidate optogenetic constructs, notably a muscle-targeted approach that will likely have a favorable safety profile. METHODS rAAV serotype 9 viral vectors expressing a channelrhodopsin-2 variant, driven by a muscle-specific or nonspecific promoter were injected into rat tongues to compare strength and specificity of opsin expression. Light-evoked electromyographic responses were recorded in an acute, rodent model of OSA. Airway dilation was captured with ultrasound. RESULTS The muscle-specific promoter produced sufficient opsin expression for light stimulation to restore and/or enhance electromyographic signals (linear mixed model, F = 140.0, p < 0.001) and induce visible tongue contraction and airway dilation. The muscle-specific promoter induced stronger (RM-ANOVA, F(1,8) = 10.0, p = 0.013) and more specific opsin expression than the nonspecific promoter in an otherwise equivalent construct. Viral DNA and RNA were robust in the tongue, but low or absent in all other tissues. CONCLUSIONS Significant functional responses to direct optogenetic muscle activation were achieved following muscle-specific promoter-driven rAAV-mediated transduction, providing proof-of-concept for an optogenetic therapy for patients with inadequate dilator muscle activity during sleep.
Collapse
Affiliation(s)
- Fiona L Knapman
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Tom Kulaga
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nigel Lovell
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Simon McMullan
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Peter G R Burke
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Farré R, Almendros I, Martínez-García MÁ, Gozal D. Experimental Models to Study End-Organ Morbidity in Sleep Apnea: Lessons Learned and Future Directions. Int J Mol Sci 2022; 23:ijms232214430. [PMID: 36430904 PMCID: PMC9696027 DOI: 10.3390/ijms232214430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep apnea (SA) is a very prevalent sleep breathing disorder mainly characterized by intermittent hypoxemia and sleep fragmentation, with ensuing systemic inflammation, oxidative stress, and immune deregulation. These perturbations promote the risk of end-organ morbidity, such that SA patients are at increased risk of cardiovascular, neurocognitive, metabolic and malignant disorders. Investigating the potential mechanisms underlying SA-induced end-organ dysfunction requires the use of comprehensive experimental models at the cell, animal and human levels. This review is primarily focused on the experimental models employed to date in the study of the consequences of SA and tackles 3 different approaches. First, cell culture systems whereby controlled patterns of intermittent hypoxia cycling fast enough to mimic the rates of episodic hypoxemia experienced by patients with SA. Second, animal models consisting of implementing realistic upper airway obstruction patterns, intermittent hypoxia, or sleep fragmentation such as to reproduce the noxious events characterizing SA. Finally, human SA models, which consist either in subjecting healthy volunteers to intermittent hypoxia or sleep fragmentation, or alternatively applying oxygen supplementation or temporary nasal pressure therapy withdrawal to SA patients. The advantages, limitations, and potential improvements of these models along with some of their pertinent findings are reviewed.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
- Correspondence: (R.F.); (D.G.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
| | - Miguel-Ángel Martínez-García
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, The University of Missouri, Columbia, MO 65201, USA
- Correspondence: (R.F.); (D.G.)
| |
Collapse
|
3
|
Badran M, Mashaqi S, Gozal D. The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea. Expert Opin Ther Targets 2020; 24:1263-1282. [PMID: 33180654 PMCID: PMC9394230 DOI: 10.1080/14728222.2020.1841749] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Gut dysbiosis is assumed to play a role in obstructive sleep apnea (OSA)-associated morbidities. Pre- and probiotics, short chain fatty acids (SCFA) and fecal matter transplantation (FMT) may offer potential as novel therapeutic strategies that target this gut dysbiosis. As more mechanisms of OSA-induced dysbiosis are being elucidated, these novel approaches are being tested in preclinical and clinical development. Areas covered: We examined the evidence linking OSA to gut dysbiosis and discuss the effects of pre- and probiotics on associated cardiometabolic, neurobehavioral and gastrointestinal disorders. The therapeutic potential of SCFA and FMT are also discussed. We reviewed the National Center for Biotechnology Information database, including PubMed and PubMed Central between 2000 - 2020. Expert opinion: To date, there are no clinical trials and only limited evidence from animal studies describing the beneficial effects of pre- and probiotic supplementation on OSA-mediated dysbiosis. Thus, more work is necessary to assess whether prebiotics, probiotics and SCFA are promising future novel strategies for targeting OSA-mediated dysbiosis.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| | - Saif Mashaqi
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Arizona School of Medicine , Tucson, AZ, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| |
Collapse
|
4
|
Cananzi SG, White LA, Barzegar M, Boyer CJ, Chernyshev OY, Yun JW, Kelley RE, Almendros I, Minagar A, Farré R, Alexander JS. Obstructive sleep apnea intensifies stroke severity following middle cerebral artery occlusion. Sleep Med 2020; 67:278-285. [PMID: 32057628 DOI: 10.1016/j.sleep.2020.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 11/29/2022]
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) is a sleep disorder caused by transient obstruction of the upper airway and results in intermittent hypoxia, sleep fragmentation, sympathetic nervous system activation, and arousal which can have an adverse effect on cardiovascular disease. It is theorized that OSA might intensify stroke injury. Our goal here was to develop a new model of experimental OSA and test its ability to aggravate behavioral and morphological outcomes following transient brain ischemia/reperfusion. METHODS We used a 3D printed OSA device to expose C57BL6 mice to 3 h of OSA (obstructive apnea index of 20 events per hour) for three days. These mice were then subjected to ischemia/reperfusion using the middle cerebral artery occlusion model (MCAO) stroke and examined for overall survival, infarct size and neurological scoring. RESULTS We found that OSA transiently decreased respiration and reduced oxygen saturation with bradycardia and tachycardia typical of human responses during apneic events. Brain injury from MCAO was significantly increased by OSA as measured by infarct size and location as well as by intensification of neurological deficits; mortality following MCAO was also increased in OSA animals. CONCLUSIONS Our findings suggest that our new model of OSA alters respiratory and cardiovascular physiological functions and is associated with enhanced ischemia/reperfusion mediated injury in our non-invasive, OSA intensified model of stroke.
Collapse
Affiliation(s)
| | - Luke A White
- Molecular & Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, 71130, USA
| | - Mansoureh Barzegar
- Molecular & Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, 71130, USA
| | - Christen J Boyer
- Molecular & Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, 71130, USA
| | - Oleg Y Chernyshev
- Department of Neurology, LSU Health Sciences Center, Shreveport, LA, 71130, USA
| | - J Winny Yun
- Molecular & Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, 71130, USA
| | - R E Kelley
- Molecular & Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, 71130, USA
| | - Isaac Almendros
- Unit of Biophysics and Bioengineering. Department of Biomedicine, Faculty of Medicine and Health Sciences, C/ Casanova, 143, 08036, Barcelona, Spain
| | - Alireza Minagar
- Department of Neurology, LSU Health Sciences Center, Shreveport, LA, 71130, USA
| | - Ramon Farré
- Unit of Biophysics and Bioengineering. Department of Biomedicine, Faculty of Medicine and Health Sciences, C/ Casanova, 143, 08036, Barcelona, Spain
| | | |
Collapse
|
5
|
Kim Y, Bravo E, Thirnbeck CK, Smith-Mellecker LA, Kim SH, Gehlbach BK, Laux LC, Zhou X, Nordli DR, Richerson GB. Severe peri-ictal respiratory dysfunction is common in Dravet syndrome. J Clin Invest 2018; 128:1141-1153. [PMID: 29329111 DOI: 10.1172/jci94999] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/04/2018] [Indexed: 11/17/2022] Open
Abstract
Dravet syndrome (DS) is a severe childhood-onset epilepsy commonly due to mutations of the sodium channel gene SCN1A. Patients with DS have a high risk of sudden unexplained death in epilepsy (SUDEP), widely believed to be due to cardiac mechanisms. Here we show that patients with DS commonly have peri-ictal respiratory dysfunction. One patient had severe and prolonged postictal hypoventilation during video EEG monitoring and died later of SUDEP. Mice with an Scn1aR1407X/+ loss-of-function mutation were monitored and died after spontaneous and heat-induced seizures due to central apnea followed by progressive bradycardia. Death could be prevented with mechanical ventilation after seizures were induced by hyperthermia or maximal electroshock. Muscarinic receptor antagonists did not prevent bradycardia or death when given at doses selective for peripheral parasympathetic blockade, whereas apnea, bradycardia, and death were prevented by the same drugs given at doses high enough to cross the blood-brain barrier. When given via intracerebroventricular infusion at a very low dose, a muscarinic receptor antagonist prevented apnea, bradycardia, and death. We conclude that SUDEP in patients with DS can result from primary central apnea, which can cause bradycardia, presumably via a direct effect of hypoxemia on cardiac muscle.
Collapse
Affiliation(s)
- YuJaung Kim
- Department of Neurology and.,Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Se Hee Kim
- Division of Pediatric Neurology, Northwestern University, Chicago, Illinois, USA
| | | | - Linda C Laux
- Division of Pediatric Neurology, Northwestern University, Chicago, Illinois, USA
| | | | - Douglas R Nordli
- Division of Pediatric Neurology, Northwestern University, Chicago, Illinois, USA
| | - George B Richerson
- Department of Neurology and.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Neurology Service, Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Uchima Koecklin KH, Hiranuma M, Kato C, Funaki Y, Kataguchi T, Yabushita T, Kokai S, Ono T. Unilateral Nasal Obstruction during Later Growth Periods Affects Craniofacial Muscles in Rats. Front Physiol 2017; 7:669. [PMID: 28119621 PMCID: PMC5222814 DOI: 10.3389/fphys.2016.00669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023] Open
Abstract
Nasal obstruction can occur at different life stages. In early stages of life the respiratory system is still under development, maturing during the growth period. Previous studies have shown that nasal obstruction in neonatal rats alters craniofacial function. However, little is known about the effects of nasal obstruction that develops during later growth periods. The aim of this study was to investigate the effects of nasal obstruction during later periods of growth on the functional characteristics of the jaw-opening reflex (JOR) and tongue-protruding muscles. In total, 102 6-day-old male Wistar rats were randomized into either a control or experimental group (both n = 51). In order to determine the appropriate timing of nasal obstruction, the saturation of arterial oxygen (SpO2) was monitored at 8 days, and at 3, 5, 7, 9, and 11 weeks in the control group. Rats in the experimental group underwent unilateral nasal obstruction at the age of 5 weeks. The SpO2 was monitored at 7, 9, and 11 weeks in the experimental group. The electromyographic responses of JOR and the contractile properties of the tongue-protruding muscles were recorded at 7, 9, and 11 weeks. In the control group, SpO2 decreased until 5 weeks of age, and remained relatively stable until 11 weeks of age. The SpO2 was significantly lower in the experimental group than in the control. In the experimental group, JOR changes included a longer latency and smaller peak-to-peak amplitude, while changes in the contractile properties of the tongue-protruding muscles included larger twitch and tetanic forces, and a longer half-decay time. These results suggest that nasal obstruction during later growth periods may affect craniofacial function.
Collapse
Affiliation(s)
- Karin H Uchima Koecklin
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Maya Hiranuma
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Chiho Kato
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Yukiha Funaki
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Taku Kataguchi
- Faculty of Dentistry, Tokyo Medical and Dental University Tokyo, Japan
| | - Tadachika Yabushita
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Satoshi Kokai
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Takashi Ono
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| |
Collapse
|
7
|
Liu CY, Lu HY, Dong FS, Ma WS, Wang J, Hu XY, Wang W. Effects of a mandibular advancement device on genioglossus in obstructive sleep apnoea hypopnea syndrome. Eur J Orthod 2014; 37:290-6. [PMID: 25246607 DOI: 10.1093/ejo/cju042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To investigate effects of mandibular advancement device (MAD) therapy for obstructive sleep apnoea hypopnea syndrome (OSAHS) on the genioglossus contractile properties and fibre-type distribution. MATERIALS AND METHODS Thirty 6-month old male New Zealand white rabbits were randomised into three groups: OSAHS, MAD, and controls. Rabbits in Group OSAHS and Group MAD were established as OSAHS models by injection, at a dose of 2 ml hydrophilic polyacrylamide gel, via the submucous muscular layer of soft palate. Spiral computed tomography (CT) showed a significant reduced retropalatal upper airway, and apnoeas happened with an increase of Apnea Hypopnea Index (AHI) and a decrease of blood oxygen saturation during polysomnography (PSG), which indicated the OSAHS model developed successfully. OSAHS rabbits in Group MAD were fitted with a MAD made from self-curing composite resin, at 30 degrees to the upper incisors, and the mandible was guided forward 3 to 4mm. Further, spiral CT and PSG suggested MAD was effective. Rabbits in 3 groups were induced to sleep for 4-6 hours per day for 8 weeks, after which the genioglossus was removed, mounted in a tissue bath, and stimulated through platinum electrodes; maximal twitch tension, contraction time, half-relaxation time, force-frequency relationship, and fatigability were recorded. The percentage of Type I and Type II fibres was quantified. RESULTS The fatigability and percentage of Type II fibres of genioglossus increased in Group OSAHS compared with controls; this abnormality was corrected by MAD. CONCLUSION MAD therapy for OSAHS could prevent genioglossus fatigue and abnormal fibre-type distribution of genioglossus in OSAHS.
Collapse
Affiliation(s)
| | | | | | | | - Jie Wang
- ***Department of Oral Pathology, College of Stomatology, Hebei Medical University, The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, China
| | | | | |
Collapse
|
8
|
Davis EM, O'Donnell CP. Rodent models of sleep apnea. Respir Physiol Neurobiol 2013; 188:355-61. [PMID: 23722067 DOI: 10.1016/j.resp.2013.05.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/31/2022]
Abstract
Rodent models of sleep apnea have long been used to provide novel insight into the generation and predisposition to apneas as well as to characterize the impact of sleep apnea on cardiovascular, metabolic, and psychological health in humans. Given the significant body of work utilizing rodent models in the field of sleep apnea, the aims of this review are three-fold: first, to review the use of rodents as natural models of sleep apnea; second, to provide an overview of the experimental interventions employed in rodents to simulate sleep apnea; third, to discuss the refinement of rodent models to further our understanding of breathing abnormalities that occur during sleep. Given mounting evidence that sleep apnea impairs cognitive function, reduces quality of life, and exacerbates the course of multiple chronic diseases, rodent models will remain a high priority as a tool to interrogate both the pathophysiology and sequelae of breathing related abnormalities during sleep and to improve approaches to diagnosis and therapy.
Collapse
Affiliation(s)
- Eric M Davis
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
9
|
Dyugovskaya L, Polyakov A, Cohen-Kaplan V, Lavie P, Lavie L. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling. J Transl Med 2012; 10:211. [PMID: 23088735 PMCID: PMC3543281 DOI: 10.1186/1479-5876-10-211] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/16/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA) characterized by nightly intermittent hypoxia (IH). This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. METHODS Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH) using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. RESULTS Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated the IH-induced Mcl-1 increase. In SH, only p38MAPK inhibition decreased Mcl-1 expression. Similar to neutrophils of healthy subjects exposed to IH (0.97± 0.2), in OSA neutrophils, Bax/Mcl-1 ratio was significantly lower compared to normoxic controls (1.0±0.5 vs.1.99±0.3, p=0.015), and Bax did not co-localize with mitochondria. CONCLUSIONS These findings suggest that decreased Bax/Mcl-1 balance promotes neutrophil survival in IH in-vitro as well as in OSA patients. Moreover, Bax/Mcl-1 protein function in IH and SH might be regulated by different signal transduction pathways, highlighting a novel regulatory function through ERK1/2 signaling in IH.
Collapse
Affiliation(s)
- Larissa Dyugovskaya
- The Lloyd Rigler Sleep Apnea Research Laboratory, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andrey Polyakov
- The Lloyd Rigler Sleep Apnea Research Laboratory, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Victoria Cohen-Kaplan
- Cancer and Vascular Biology Research Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Peretz Lavie
- The Lloyd Rigler Sleep Apnea Research Laboratory, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lena Lavie
- The Lloyd Rigler Sleep Apnea Research Laboratory, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, POB 9649, Haifa, 31096, Israel
| |
Collapse
|
10
|
Golbidi S, Badran M, Ayas N, Laher I. Cardiovascular consequences of sleep apnea. Lung 2011; 190:113-32. [PMID: 22048845 DOI: 10.1007/s00408-011-9340-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/03/2011] [Indexed: 12/25/2022]
Abstract
Sleep apnea is a common health concern that is characterized by repetitive episodes of asphyxia. This condition has been linked to serious long-term adverse effects such as hypertension, metabolic dysregulation, and cardiovascular disease. Although the mechanism for the initiation and aggravation of cardiovascular disease has not been fully elucidated, oxidative stress and subsequent endothelial dysfunction play major roles. Animal models, which have the advantage of being free of comorbidities and/or behavioral variables (that commonly occur in humans), allow invasive measurements under well-controlled experimental conditions, and as such are useful tools in the study of the pathophysiological mechanisms of sleep apnea. This review summarizes currently available information on the cardiovascular consequences of sleep apnea and briefly describes common experimental approaches useful to sleep apnea in different animal models.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
11
|
CAI JUN, TUONG CHIMINH, GOZAL DAVID. A neonatal mouse model of intermittent hypoxia associated with features of apnea in premature infants. Respir Physiol Neurobiol 2011; 178:210-7. [PMID: 21699999 PMCID: PMC3164592 DOI: 10.1016/j.resp.2011.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022]
Abstract
A neonatal mouse model of intermittent hypoxia (IH) simulating the recurring hypoxia/reoxygenation episodes of apnea of prematurity (AOP) was developed. C57BL/6 P2 pups were culled for exposure to either intermittent hypoxia or intermittent air as control. The IH paradigms consisted of alternation cycles of 20.9% O2 and either 8.0% or 5.7% O2 every 120 or 140s for 6h a day during daylight hours from day 2 to day 10 postnatally, i.e., roughly equivalent to human brain development in the perinatal period. IH exposures elicited modest to severe decrease in oxygen saturation along with bradycardia in neonatal mice, which were severity-dependent. Hypomyelination in both central and peripheral nervous systems was observed despite the absence of visible growth retardation. The neonatal mouse model of IH in this study partially fulfills the current diagnostic criteria with features of AOP, and provides opportunities to reproduce in rodents some of the pathophysiological changes associated with this disorder, such as alterations in myelination.
Collapse
Affiliation(s)
- JUN CAI
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, The University of Louisville School of Medicine, Louisville, Kentucky 40202
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - CHI MINH TUONG
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, The University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - DAVID GOZAL
- Department of Pediatrics, Comer Children’s Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|