1
|
Hao X, Yang Y, Liu J, Zhang D, Ou M, Ke B, Zhu T, Zhou C. The Modulation by Anesthetics and Analgesics of Respiratory Rhythm in the Nervous System. Curr Neuropharmacol 2024; 22:217-240. [PMID: 37563812 PMCID: PMC10788885 DOI: 10.2174/1570159x21666230810110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/27/2023] [Accepted: 02/28/2023] [Indexed: 08/12/2023] Open
Abstract
Rhythmic eupneic breathing in mammals depends on the coordinated activities of the neural system that sends cranial and spinal motor outputs to respiratory muscles. These outputs modulate lung ventilation and adjust respiratory airflow, which depends on the upper airway patency and ventilatory musculature. Anesthetics are widely used in clinical practice worldwide. In addition to clinically necessary pharmacological effects, respiratory depression is a critical side effect induced by most general anesthetics. Therefore, understanding how general anesthetics modulate the respiratory system is important for the development of safer general anesthetics. Currently used volatile anesthetics and most intravenous anesthetics induce inhibitory effects on respiratory outputs. Various general anesthetics produce differential effects on respiratory characteristics, including the respiratory rate, tidal volume, airway resistance, and ventilatory response. At the cellular and molecular levels, the mechanisms underlying anesthetic-induced breathing depression mainly include modulation of synaptic transmission of ligand-gated ionotropic receptors (e.g., γ-aminobutyric acid, N-methyl-D-aspartate, and nicotinic acetylcholine receptors) and ion channels (e.g., voltage-gated sodium, calcium, and potassium channels, two-pore domain potassium channels, and sodium leak channels), which affect neuronal firing in brainstem respiratory and peripheral chemoreceptor areas. The present review comprehensively summarizes the modulation of the respiratory system by clinically used general anesthetics, including the effects at the molecular, cellular, anatomic, and behavioral levels. Specifically, analgesics, such as opioids, which cause respiratory depression and the "opioid crisis", are discussed. Finally, underlying strategies of respiratory stimulation that target general anesthetics and/or analgesics are summarized.
Collapse
Affiliation(s)
- Xuechao Hao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yaoxin Yang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mengchan Ou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Rezaian S, Asadi Gharabaghi M, Rahimi B, Gholamzadeh M. Concordance between ARISCAT risk score and cardiopulmonary exercise test values in risk prediction of postoperative pulmonary complications of major abdominal surgeries in a tertiary cancer hospital: A cross-sectional study. Health Sci Rep 2023; 6:e1740. [PMID: 38078301 PMCID: PMC10704107 DOI: 10.1002/hsr2.1740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Background and Aims Pulmonary complications are common after surgery. They include vascular thrombosis, pneumonia, respiratory failure (RF), and pain-related atelectasis. There are a number of models to predict the risk of postoperative respiratory events other than thrombosis. The aim of this study was to explore the correlation of assess respiratory risk in surgical patients in Catalonia (ARISCAT) scoring and cardiopulmonary exercise test (CPET) values in prediction of postoperative pulmonary complications (PPCs). Methods Cancer patients referred to a tertiary hospital for elective major abdominal surgeries were studied. Patients were evaluated by ARISCAT score and then CPET was performed to determine the risk of surgery based on maximal oxygen consumption (VO2) value. Patients were followed for RF occurrence up to 72 h after surgery. Finally, the concordance of ARISCAT score and CPET values was evaluated in risk prediction of PPCs. Results The results showed that parameters VO2, ARISCAT score, and anaerobic threshold could predict postoperative RF. Of these parameters, ARISCAT showed the highest sensitivity (100%) and the highest specificity (90.5%) compared with other parameters (Youden's J statistic = 0.905). However, VO2 value showed the highest validity. The percentage of agreement between different subgroups (low, medium, and high) of both criteria (VO2 and ARISCAT) was equal to 81.45% (p < 0.001) and the ϰ coefficient of the given weight was equal to 0.54 (p < 0.001), indicating a good agreement between these two criteria. Conclusion ARISCAT scoring showed high sensitivity and specificity to PPCs in cancer patients and good correlation with CPET value for prediction of PPCs. Therefore, it is a reliable and robust risk prediction tool in major abdominal surgeries on cancer patients.
Collapse
Affiliation(s)
- Somaye Rezaian
- Department of Pulmonary MedicineAlborz University of Medical sciencesTehranIran
| | - Mehrnaz Asadi Gharabaghi
- Department of Pulmonary Medicine, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Besharat Rahimi
- Department of Pulmonary Medicine, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Marsa Gholamzadeh
- Department of Health Information Management and Medical Informatics, School of Allied Medical SciencesTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Gu X, Zhao X, Mao Z, Shi Y, Xu M, Cai M, Xie F. Effect of different anesthetic dose of pentobarbital on respiratory activity in rabbits. Comput Biol Med 2022; 145:105501. [DOI: 10.1016/j.compbiomed.2022.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
|
4
|
Ward-Flanagan R, Lo AS, Clement EA, Dickson CT. A Comparison of Brain-State Dynamics across Common Anesthetic Agents in Male Sprague-Dawley Rats. Int J Mol Sci 2022; 23:ijms23073608. [PMID: 35408973 PMCID: PMC8998244 DOI: 10.3390/ijms23073608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Anesthesia is a powerful tool in neuroscientific research, especially in sleep research where it has the experimental advantage of allowing surgical interventions that are ethically problematic in natural sleep. Yet, while it is well documented that different anesthetic agents produce a variety of brain states, and consequently have differential effects on a multitude of neurophysiological factors, these outcomes vary based on dosages, the animal species used, and the pharmacological mechanisms specific to each anesthetic agent. Thus, our aim was to conduct a controlled comparison of spontaneous electrophysiological dynamics at a surgical plane of anesthesia under six common research anesthetics using a ubiquitous animal model, the Sprague-Dawley rat. From this direct comparison, we also evaluated which anesthetic agents may serve as pharmacological proxies for the electrophysiological features and dynamics of unconscious states such as sleep and coma. We found that at a surgical plane, pentobarbital, isoflurane and propofol all produced a continuous pattern of burst-suppression activity, which is a neurophysiological state characteristically observed during coma. In contrast, ketamine-xylazine produced synchronized, slow-oscillatory activity, similar to that observed during slow-wave sleep. Notably, both urethane and chloral hydrate produced the spontaneous, cyclical alternations between forebrain activation (REM-like) and deactivation (non-REM-like) that are similar to those observed during natural sleep. Thus, choice of anesthesia, in conjunction with continuous brain state monitoring, are critical considerations in order to avoid brain-state confounds when conducting neurophysiological experiments.
Collapse
Affiliation(s)
- Rachel Ward-Flanagan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
| | - Alto S. Lo
- Department of Psychology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Elizabeth A. Clement
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
| | - Clayton T. Dickson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
- Department of Psychology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-(780)-492-7860
| |
Collapse
|
5
|
Breathing variability during propofol/remifentanil procedural sedation with a single additional dose of midazolam or s-ketamine: a prospective observational study. J Clin Monit Comput 2021; 36:1219-1225. [PMID: 34767130 PMCID: PMC9293797 DOI: 10.1007/s10877-021-00773-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022]
Abstract
Purpose Regulation of spontaneous breathing is highly complex and may be influenced by drugs administered during the perioperative period. Because of their different pharmacological properties we hypothesized that midazolam and s-ketamine exert different effects on the variability of minute ventilation (MV), tidal volume (TV) and respiratory rate (RR). Methods Patients undergoing procedural sedation (PSA) with propofol and remifentanil received a single dose of midazolam (1–3 mg, n = 10) or s-ketamine (10–25 mg, n = 10). We used non-invasive impedance-based respiratory volume monitoring to record RR as well as changes in TV and MV. Variability of these three parameters was calculated as coefficients of variation. Results TV and MV decreased during PSA to a comparable extent in both groups, whereas there was no significant change in RR. In line with our hypothesis we observed marked differences in breathing variability. The variability of MV (– 47.5% ± 24.8%, p = 0.011), TV (– 42.1% ± 30.2%, p = 0.003), and RR (– 28.5% ± 29.3%, p = 0.011) was significantly reduced in patients receiving midazolam. In contrast, variability remained unchanged in patients receiving s-ketamine (MV + 16% ± 45.2%, p = 0.182; TV +12% ± 47.7%, p = 0.390; RR +39% ± 65.2%, p = 0.129). After termination of PSA breathing variables returned to baseline values. Conclusions While midazolam reduces respiratory variability in spontaneously breathing patients undergoing procedural sedation, s-ketamine preserves variability suggesting different effects on the regulation of spontaneous breathing.
Collapse
|
6
|
Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse Anesthesia: The Art and Science. ILAR J 2021; 62:238-273. [PMID: 34180990 PMCID: PMC9236661 DOI: 10.1093/ilar/ilab016] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
There is an art and science to performing mouse anesthesia, which is a significant component to animal research. Frequently, anesthesia is one vital step of many over the course of a research project spanning weeks, months, or beyond. It is critical to perform anesthesia according to the approved research protocol using appropriately handled and administered pharmaceutical-grade compounds whenever possible. Sufficient documentation of the anesthetic event and procedure should also be performed to meet the legal, ethical, and research reproducibility obligations. However, this regulatory and documentation process may lead to the use of a few possibly oversimplified anesthetic protocols used for mouse procedures and anesthesia. Although a frequently used anesthetic protocol may work perfectly for each mouse anesthetized, sometimes unexpected complications will arise, and quick adjustments to the anesthetic depth and support provided will be required. As an old saying goes, anesthesia is 99% boredom and 1% sheer terror. The purpose of this review article is to discuss the science of mouse anesthesia together with the art of applying these anesthetic techniques to provide readers with the knowledge needed for successful anesthetic procedures. The authors include experiences in mouse inhalant and injectable anesthesia, peri-anesthetic monitoring, specific procedures, and treating common complications. This article utilizes key points for easy access of important messages and authors’ recommendation based on the authors’ clinical experiences.
Collapse
Affiliation(s)
- Kaela L Navarro
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Monika Huss
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Jennifer C Smith
- Bioresources Department, Henry Ford Health System, Detroit, Michigan, USA
| | - Patrick Sharp
- Office of Research and Economic Development, University of California, Merced, California, USA
- Animal Resources Authority, Murdoch, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - James O Marx
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cholawat Pacharinsak
- Corresponding Author: Cholawat Pacharinsak, DVM, PhD, DACVAA, Stanford University, Department of Comparative Medicine, 287 Campus Drive, Stanford, CA 94305-5410, USA. E-mail:
| |
Collapse
|
7
|
Michel-Flutot P, Mansart A, Deramaudt TB, Jesus I, Lee KZ, Bonay M, Vinit S. Permanent diaphragmatic deficits and spontaneous respiratory plasticity in a mouse model of incomplete cervical spinal cord injury. Respir Physiol Neurobiol 2021; 284:103568. [DOI: 10.1016/j.resp.2020.103568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022]
|
8
|
Qin PP, Jin JY, Wang WJ, Min S. Perioperative breathing training to prevent postoperative pulmonary complications in patients undergoing laparoscopic colorectal surgery: A randomized controlled trial. Clin Rehabil 2020; 35:692-702. [PMID: 33283533 DOI: 10.1177/0269215520972648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether perioperative breathing training reduces the incidence of postoperative pulmonary complications in patients undergoing laparoscopic colorectal surgery. DESIGN A randomized controlled trial. SETTING University hospital. SUBJECTS A total of 240 patients undergoing laparoscopic colorectal surgery participated in this study. INTERVENTION The enrolled patients were randomized into an intervention or control group. Patients in the intervention group received perioperative breathing training, including deep breathing and coughing exercise, balloon-blowing exercise, and pursed lip breathing exercise. The control group received standard perioperative care without any breathing training. MAIN MEASURES The primary endpoint was the incidence of postoperative pulmonary complications. The secondary objectives were to evaluate the effect of perioperative breathing training on arterial oxygenation, incidence of other postoperative complications, patient satisfaction, length of stay, and hospital charges. RESULTS The incidence of postoperative pulmonary complications in the breathing training group was lower than that in the control group (5/120 [4%] vs 14/120 [12%]; RR 0.357, 95%CI 0.133-0.960; P = 0.031). In addition, PaO2 and arterial oxygenation index on the first and fourth days after surgery were significantly higher in the breathing training group than in the control group (P < 0.001). In addition, patients with breathing training had shorter length of stay (6d [IQR 5-7] vs 8d [IQR 7-9]), lower hospital charges (7761 ± 1679 vs 8212 ± 1326), and higher patient satisfaction (9.46 ± 0.65 vs 9.21 ± 0.47) than those without. CONCLUSION Perioperative breathing training may reduce the incidence of postoperative pulmonary complications and preserve of arterial oxygenation after laparoscopic colorectal surgery.
Collapse
Affiliation(s)
- Pei-Pei Qin
- The Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju-Ying Jin
- The Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Jian Wang
- The Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Min
- The Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Volatile Anesthetics Activate a Leak Sodium Conductance in Retrotrapezoid Nucleus Neurons to Maintain Breathing during Anesthesia in Mice. Anesthesiology 2020; 133:824-838. [PMID: 32773689 DOI: 10.1097/aln.0000000000003493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anesthetics moderately depress respiratory function at clinically relevant concentrations. Phox2b-expressing chemosensitive neurons in the retrotrapezoid nucleus, a respiratory control center, are activated by isoflurane, but the underlying mechanisms remain unclear. The hypothesis of this study was that the sodium leak channel contributes to the volatile anesthetics-induced modulation of retrotrapezoid nucleus neurons and to respiratory output. METHODS The contribution of sodium leak channels to isoflurane-, sevoflurane-, and propofol-evoked activity of Phox2b-expressing retrotrapezoid nucleus neurons and respiratory output were evaluated in wild-type and genetically modified mice lacking sodium leak channels (both sexes). Patch-clamp recordings were performed in acute brain slices. Whole-body plethysmography was used to measure the respiratory activity. RESULTS Isoflurane at 0.42 to 0.50 mM (~1.5 minimum alveolar concentration) increased the sodium leak channel-mediated holding currents and conductance from -75.0 ± 12.9 to -130.1 ± 34.9 pA (mean ± SD, P = 0.002, n = 6) and 1.8 ± 0.5 to 3.6 ± 1.0 nS (P = 0.001, n = 6), respectively. At these concentrations, isoflurane increased activity of Phox2b-expressing retrotrapezoid nucleus neurons from 1.1 ± 0.2 to 2.8 ± 0.2 Hz (P < 0.001, n = 5), which was eliminated by bath application of gadolinium or genetic silencing of sodium leak channel. Genetic silencing of sodium leak channel in the retrotrapezoid nucleus resulted in a diminished ventilatory response to carbon dioxide in mice under control conditions and during isoflurane anesthesia. Sevoflurane produced an effect comparable to that of isoflurane, whereas propofol did not activate sodium leak channel-mediated holding conductance. CONCLUSIONS Isoflurane and sevoflurane increase neuronal excitability of chemosensitive retrotrapezoid nucleus neurons partly by enhancing sodium leak channel conductance. Sodium leak channel expression in the retrotrapezoid nucleus is required for the ventilatory response to carbon dioxide during anesthesia by isoflurane and sevoflurane, thus identifying sodium leak channel as a requisite determinant of respiratory output during anesthesia of volatile anesthetics. EDITOR’S PERSPECTIVE
Collapse
|
10
|
Shoemaker A, Steelman K, Srbu R, Bell HJ. Disparity in the effect of morphine on eupnea and gasping in anesthetized spontaneously breathing adult rats. Am J Physiol Regul Integr Comp Physiol 2020; 319:R526-R540. [PMID: 32903040 DOI: 10.1152/ajpregu.00031.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of this study was to examine the effects of systemic morphine on the pattern and morphology of gasping breathing during respiratory autoresuscitation from transient anoxia. We hypothesized that systemic morphine levels sufficient to cause significant depression of eupnea would also cause depression of gasping breathing. Respiratory and cardiovascular variables were studied in 20 spontaneously breathing pentobarbital-anaesthetized adult male rats. Sham (saline) injections caused no significant change in resting respiratory or cardiovascular variables (n = 10 rats). Morphine, on the other hand, caused significant depression of eupneic breathing, with ventilation and peak inspiratory flow decreased by ∼30-60%, depending on the background condition (n = 10 rats). In contrast, morphine did not depress gasping breathing. Duration of primary apnea, time to restore eupnea, the number and amplitude of gasping breaths, average and maximum peak flows, and volume of gasping breaths were not significantly different postinjection in either condition. Blood pressures were all significantly lower following morphine injection at key time points in the process of autoresuscitation. Last, rate of successful recovery from anoxia was 80% in the morphine group (8/10 rats) compared with 100% (10/10 rats) in the sham group, postinjection. We conclude that the mechanisms and/or anatomic correlates underlying generation of gasping rhythm are distinct from those underlying eupnea, allowing gasping to remain robust to systemic morphine levels causing significant depression of eupnea. Morphine nevertheless decreases likelihood of recovery from transient anoxia, possibly as a result of decreased tissue perfusion pressures at critical time points during the process of respiratory autoresuscitation.
Collapse
Affiliation(s)
- Amanda Shoemaker
- Central Michigan University College of Medicine, Mt. Pleasant, Michigan
| | - Kevin Steelman
- Central Michigan University College of Medicine, Mt. Pleasant, Michigan
| | - Rebeka Srbu
- Central Michigan University College of Medicine, Mt. Pleasant, Michigan
| | - Harold J Bell
- Central Michigan University College of Medicine, Mt. Pleasant, Michigan
| |
Collapse
|
11
|
Wojciechowski P, Kleczkowska P, Mollica A, Stefanucci A, Kaczyńska K. Vagal apnea and hypotension evoked by systemic injection of an antinociceptive analogue of endomorphin-2. Eur J Pharmacol 2020; 885:173514. [PMID: 32860810 DOI: 10.1016/j.ejphar.2020.173514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/03/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
Abstract
PK20M (Dmt-D-Lys-Phe-Phe-OH) is a novel modified endomorphin-2 (EM-2) peptide producing strong dose- and time-dependent antinociceptive activity. Yet its prototype, endogenous EM-2, has been reported to trigger respiratory and vascular effects such as apnea and hypotension. The purpose of this study was to investigate the potency of the PK20M to evoke respiratory and cardiovascular responses in comparison to endogenous endomorphins. The engagement of the vagal pathway and μ opioid receptors in mediation of these responses was investigated. The effects of intravenous injections of PK20M, EM-1, and EM-2 were studied in anaesthetized, spontaneously breathing rats. The main dose-dependent effect of all endomorphins in the intact rats was immediate apnea, blood pressure and heart rate decrease. PK20M produced apnea in at least half of the intact animals in a much smaller dose than EM-1 and EM-2. The effects of all compounds were abrogated by pre-treatment with MNLX, a peripherally acting μ receptor antagonist. Cervical vagotomy eliminated arrest of breathing in the case of each tested compound. Hypotension was reduced by vagi section only after EM-1 and EM-2 administration. Our results demonstrated that apnea and bradycardia caused by systemic injection of all endomorphins were mediated via activation of μ vagal opioid receptors. The hypotension depended on intact vagi nerves only in the case of EM-1 and EM-2, whereas PK20M decreased blood pressure via other mechanisms outside vagal innervation. Modified opioid agonist is more potent in evoking extended hypotension; at the same time, it produces an arrest of breathing less frequently than its prototype EM-2.
Collapse
Affiliation(s)
- Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Kleczkowska
- Department of Pharmacodynamics, The Centre for Preclinical Research (CBP), Medical University of Warsaw, Poland
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
12
|
Breathing under Anesthesia: A Key Role for the Retrotrapezoid Nucleus Revealed by Conditional Phox2b Mutant Mice. Anesthesiology 2020; 130:995-1006. [PMID: 31091200 DOI: 10.1097/aln.0000000000002675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Optimal management of anesthesia-induced respiratory depression requires identification of the neural pathways that are most effective in maintaining breathing during anesthesia. Lesion studies point to the brainstem retrotrapezoid nucleus. We therefore examined the respiratory effects of common anesthetic/analgesic agents in mice with selective genetic loss of retrotrapezoid nucleus neurons (Phox2b mice, hereafter designated "mutants"). METHODS All mice received intraperitoneal ketamine doses ranging from 100 mg/kg at postnatal day (P) 8 to 250 mg/kg at P60 to P62. Anesthesia effects in P8 and P14 to P16 mice were then analyzed by administering propofol (100 and 150 mg/kg at P8 and P14 to P16, respectively) and fentanyl at an anesthetic dose (1 mg/kg at P8 and P14 to P16). RESULTS Most mutant mice died of respiratory arrest within 13 min of ketamine injection at P8 (12 of 13, 92% vs. 0 of 8, 0% wild type; Fisher exact test, P < 0.001) and P14 to P16 (32 of 42, 76% vs. 0 of 59, 0% wild type; P < 0.001). Cardiac activity continued after terminal apnea, and mortality was prevented by mechanical ventilation, supporting respiratory arrest as the cause of death in the mutants. Ketamine-induced mortality in mutants compared to wild types was confirmed at P29 to P31 (24 of 36, 67% vs. 9 of 45, 20%; P < 0.001) and P60 to P62 (8 of 19, 42% vs. 0 of 12, 0%; P = 0.011). Anesthesia-induced mortality in mutants compared to wild types was also observed with propofol at P8 (7 of 7, 100% vs. 0 of 17,7/7, 100% vs. 0/17, 0%; P < 0.001) and P14 to P16 (8 of 10, 80% vs. 0 of 10, 0%; P < 0.001) and with fentanyl at P8 (15 of 16, 94% vs. 0 of 13, 0%; P < 0.001) and P14 to P16 (5 of 7, 71% vs. 0 of 11, 0%; P = 0.002). CONCLUSIONS Ketamine, propofol, and fentanyl caused death by respiratory arrest in most mice with selective loss of retrotrapezoid nucleus neurons, in doses that were safe in their wild type littermates. The retrotrapezoid nucleus is critical to sustain breathing during deep anesthesia and may prove to be a pharmacologic target for this purpose.
Collapse
|
13
|
O'Connor KM, Lucking EF, Golubeva AV, Strain CR, Fouhy F, Cenit MC, Dhaliwal P, Bastiaanssen TFS, Burns DP, Stanton C, Clarke G, Cryan JF, O'Halloran KD. Manipulation of gut microbiota blunts the ventilatory response to hypercapnia in adult rats. EBioMedicine 2019; 44:618-638. [PMID: 30898652 PMCID: PMC6606895 DOI: 10.1016/j.ebiom.2019.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It is increasingly evident that perturbations to the diversity and composition of the gut microbiota have significant consequences for the regulation of integrative physiological systems. There is growing interest in the potential contribution of microbiota-gut-brain signalling to cardiorespiratory control in health and disease. METHODS In adult male rats, we sought to determine the cardiorespiratory effects of manipulation of the gut microbiota following a 4-week administration of a cocktail of antibiotics. We subsequently explored the effects of administration of faecal microbiota from pooled control (vehicle) rat faeces, given by gavage to vehicle- and antibiotic-treated rats. FINDINGS Antibiotic intervention depressed the ventilatory response to hypercapnic stress in conscious animals, owing to a reduction in the respiratory frequency response to carbon dioxide. Baseline frequency, respiratory timing variability, and the expression of apnoeas and sighs were normal. Microbiota-depleted rats had decreased systolic blood pressure. Faecal microbiota transfer to vehicle- and antibiotic-treated animals also disrupted the gut microbiota composition, associated with depressed ventilatory responsiveness to hypercapnia. Chronic antibiotic intervention or faecal microbiota transfer both caused significant disruptions to brainstem monoamine neurochemistry, with increased homovanillic acid:dopamine ratio indicative of increased dopamine turnover, which correlated with the abundance of several bacteria of six different phyla. INTERPRETATION Chronic antibiotic administration and faecal microbiota transfer disrupt gut microbiota, brainstem monoamine concentrations and the ventilatory response to hypercapnia. We suggest that aberrant microbiota-gut-brain axis signalling has a modulatory influence on respiratory behaviour during hypercapnic stress. FUND: Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland.
Collapse
Affiliation(s)
- Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Conall R Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - María C Cenit
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Institute of Agrochemistry and Food Technology (IATA), National Council for Scientific Research (CSIC), Valencia, Spain
| | - Pardeep Dhaliwal
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
14
|
Lumb AB. Why do patients need extra oxygen during a general anaesthetic? BJA Educ 2018; 19:37-39. [PMID: 33456867 DOI: 10.1016/j.bjae.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- A B Lumb
- St James's University Hospital Leeds and University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Bezdudnaya T, Hormigo KM, Marchenko V, Lane MA. Spontaneous respiratory plasticity following unilateral high cervical spinal cord injury in behaving rats. Exp Neurol 2018; 305:56-65. [PMID: 29596845 DOI: 10.1016/j.expneurol.2018.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/23/2018] [Accepted: 03/23/2018] [Indexed: 01/25/2023]
Abstract
Unilateral cervical C2 hemisection (C2Hx) is a classic model of spinal cord injury (SCI) for studying respiratory dysfunction and plasticity. However, most previous studies were performed under anesthesia, which significantly alters respiratory network. Therefore, the goal of this work was to assess spontaneous diaphragm recovery post-C2Hx in awake, freely behaving animals. Adult rats were chronically implanted with diaphragm EMG electrodes and recorded during 8 weeks post-C2Hx. Our results reveal that ipsilateral diaphragm activity partially recovers within days post-injury and reaches pre-injury amplitude in a few weeks. However, the full extent of spontaneous ipsilateral recovery is significantly attenuated by anesthesia (ketamine/xylazine, isoflurane, and urethane). This suggests that the observed recovery may be attributed in part to activation of NMDA receptors which are suppressed by anesthesia. Despite spontaneous recovery in awake animals, ipsilateral hemidiaphragm dysfunction still persists: i) Inspiratory bursts during basal (slow) breathing exhibit an altered pattern, ii) the amplitude of sighs - or augmented breaths - is significantly decreased, and iii) the injured hemidiaphragm exhibits spontaneous events of hyperexcitation. The results from this study offer an under-appreciated insight into spontaneous diaphragm activity and recovery following high cervical spinal cord injury in awake animals.
Collapse
Affiliation(s)
- Tatiana Bezdudnaya
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA 19129, USA.
| | - Kristiina M Hormigo
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA 19129, USA
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA 19129, USA
| | - Michael A Lane
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA 19129, USA
| |
Collapse
|
16
|
Jimenez-Ruiz F, Khurram OU, Zhan WZ, Gransee HM, Sieck GC, Mantilla CB. Diaphragm muscle activity across respiratory motor behaviors in awake and lightly anesthetized rats. J Appl Physiol (1985) 2018; 124:915-922. [PMID: 29357493 DOI: 10.1152/japplphysiol.01004.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory muscles such as the diaphragm are active across a range of behaviors including ventilation and higher-force behaviors necessary for maintenance of airway patency, and minimal information is available regarding anesthetic effects on the capacity of respiratory muscles to generate higher forces. The purpose of the present study was to determine whether diaphragm EMG activity during lower-force behaviors, such as eupnea and hypoxia-hypercapnia, is differentially affected compared with higher-force behaviors, such as a sigh, in lightly anesthetized animals. In adult male rats, chronically implanted diaphragm EMG electrodes were used to measure the effects of low-dose ketamine (30 mg/kg) and xylazine (3 mg/kg) on root mean square (RMS) EMG amplitude across a range of motor behaviors. A mixed linear model was used to evaluate the effects of ketamine-xylazine anesthesia on peak RMS EMG and ventilatory parameters, with condition (awake vs. anesthetized), behavior (eupnea, hypoxia-hypercapnia, sigh), side (left or right hemidiaphragm), and their interactions as fixed effects and animal as a random effect. Compared with the awake recordings, there was an overall reduction of peak diaphragm RMS EMG across behaviors during anesthesia, but this reduction was more pronounced during spontaneous sighs (which require ~60% of maximal diaphragm force). Respiratory rates and duty cycle during eupnea and hypoxia-hypercapnia were higher in awake compared with anesthetized conditions. These results highlight the importance of identifying anesthetic effects on a range of respiratory motor behaviors, including sighs necessary for maintaining airway patency. NEW & NOTEWORTHY Respiratory muscles accomplish a range of motor behaviors, with forces generated for ventilatory behaviors comprising only a small fraction of their maximal force generating capacity. Induction of anesthesia exerts more robust effects on the higher-force diaphragm motor behaviors such as sighs compared with eupnea. This novel information on effects of low, sedative doses of a commonly used anesthetic combination (ketamine-xylazine) highlights the importance of identifying anesthetic effects on a range of respiratory motor behaviors.
Collapse
Affiliation(s)
- Federico Jimenez-Ruiz
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
17
|
|
18
|
Krause A, Nowak Z, Srbu R, Bell H. Respiratory autoresuscitation following severe acute hypoxemia in anesthetized adult rats. Respir Physiol Neurobiol 2016; 232:43-53. [DOI: 10.1016/j.resp.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/16/2023]
|
19
|
Lucking EF, O'Halloran KD, Jones JFX. Increased cardiac output contributes to the development of chronic intermittent hypoxia-induced hypertension. Exp Physiol 2014; 99:1312-24. [DOI: 10.1113/expphysiol.2014.080556] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Eric F. Lucking
- UCD School of Medicine and Medical Science; University College Dublin; Dublin 4 Ireland
| | - Ken D. O'Halloran
- Department of Physiology; School of Medicine; University College Cork; Cork Ireland
| | - James F. X. Jones
- UCD School of Medicine and Medical Science; University College Dublin; Dublin 4 Ireland
| |
Collapse
|
20
|
From the Journal archives: Assessing the effect of anesthetic agents on the respiratory chemoreflex control of breathing. Can J Anaesth 2014; 61:664-70. [DOI: 10.1007/s12630-014-0110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022] Open
|
21
|
Marinov V, Valic M, Pecotic R, Karanovic N, Dodig IP, Carev M, Valic Z, Dogas Z. Sevoflurane and isoflurane monoanesthesia abolished the phrenic long-term facilitation in rats. Respir Physiol Neurobiol 2013; 189:607-13. [DOI: 10.1016/j.resp.2013.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
|
22
|
Breathing and brain state: Urethane anesthesia as a model for natural sleep. Respir Physiol Neurobiol 2013; 188:324-32. [DOI: 10.1016/j.resp.2013.05.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/06/2013] [Accepted: 05/28/2013] [Indexed: 01/26/2023]
|
23
|
Voscopoulos C, Brayanov J, Ladd D, Lalli M, Panasyuk A, Freeman J. Evaluation of a Novel Noninvasive Respiration Monitor Providing Continuous Measurement of Minute Ventilation in Ambulatory Subjects in a Variety of Clinical Scenarios. Anesth Analg 2013; 117:91-100. [DOI: 10.1213/ane.0b013e3182918098] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Chung A, Fishman M, Dasenbrook EC, Loparo KA, Dick TE, Jacono FJ. Isoflurane and ketamine anesthesia have different effects on ventilatory pattern variability in rats. Respir Physiol Neurobiol 2012; 185:659-64. [PMID: 23246800 DOI: 10.1016/j.resp.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/16/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022]
Abstract
We hypothesize that isoflurane and ketamine impact ventilatory pattern variability (VPV) differently. Adult Sprague-Dawley rats were recorded in a whole-body plethysmograph before, during and after deep anesthesia. VPV was quantified from 60-s epochs using a complementary set of analytic techniques that included constructing surrogate data sets that preserved the linear structure but disrupted nonlinear deterministic properties of the original data. Even though isoflurane decreased and ketamine increased respiratory rate, VPV as quantified by the coefficient of variation decreased for both anesthetics. Further, mutual information increased and sample entropy decreased and the nonlinear complexity index (NLCI) increased during anesthesia despite qualitative differences in the shape and period of the waveform. Surprisingly mutual information and sample entropy did not change in the surrogate sets constructed from isoflurane data, but in those constructed from ketamine data, mutual information increased and sample entropy decreased significantly in the surrogate segments constructed from anesthetized relative to unanesthetized epochs. These data suggest that separate mechanisms modulate linear and nonlinear variability of breathing.
Collapse
Affiliation(s)
- Augustine Chung
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Respiratory activity is most fragile during sleep, in particular during paradoxical [or rapid eye movement (REM)] sleep and sleep state transitions. Rats are commonly used to study respiratory neuromodulation, but rodent sleep is characterized by a highly fragmented sleep pattern, thus making it very challenging to examine different sleep states and potential pharmacological manipulations within them. Sleep-like brain-state alternations occur in rats under urethane anesthesia and may be an effective and efficient model for sleep itself. The present study assessed state-dependent changes in breathing and respiratory muscle modulation under urethane anesthesia to determine their similarity to those occurring during natural sleep. Rats were anesthetized with urethane and respiratory airflow, as well as electromyographic activity in respiratory muscles were recorded in combination with local field potentials in neocortex and hippocampus to determine how breathing pattern and muscle activity are modulated with brain state. Measurements were made in normoxic, hypoxic, and hypercapnic conditions. Results were compared with recordings made from rats during natural sleep. Brain-state alternations under urethane anesthesia were closely correlated with changes in breathing rate and variability and with modulation of respiratory muscle tone. These changes closely mimicked those observed in natural sleep. Of great interest was that, during both REM and REM-like states, genioglossus muscle activity was strongly depressed and abdominal muscle activity showed potent expiratory modulation. We demonstrate that, in urethane-anesthetized rats, respiratory airflow and muscle activity are closely correlated with brain-state transitions and parallel those shown in natural sleep, providing a useful model to systematically study sleep-related changes in respiratory control.
Collapse
|
26
|
Masneuf S, Buetler J, Koester C, Crestani F. Role of α1- and α2-GABA(A) receptors in mediating the respiratory changes associated with benzodiazepine sedation. Br J Pharmacol 2012; 166:339-48. [PMID: 22044283 DOI: 10.1111/j.1476-5381.2011.01763.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The molecular substrates underlying the respiratory changes associated with benzodiazepine sedation are unknown. We examined the effects of different doses of diazepam and alprazolam on resting breathing in wild-type (WT) mice and clarified the contribution of α1- and α2-GABA(A) receptors, which mediate the sedative and muscle relaxant action of diazepam, respectively, to these drug effects using point-mutated mice possessing either α1H101R- or α2H101R-GABA(A) receptors insensitive to benzodiazepine. EXPERIMENTAL APPROACH Room air breathing was monitored using whole-body plethysmography. Different groups of WT mice were injected i.p. with diazepam (1-100 mg·kg(-1) ), alprazolam (0.3, 1 or 3 mg·kg(-1) ) or vehicle. α1H101R and α2H101R mice received 1 or 10 mg·kg(-1) diazepam or 0.3 or 3 mg·kg(-1) alprazolam. Respiratory frequency, tidal volume, time of expiration and time of inspiration before and 20 min after drug injection were analysed. KEY RESULTS Diazepam (10 mg·kg(-1) ) decreased the time of expiration, thereby increasing the resting respiratory frequency, in WT and α2H101R mice, but not in α1H101R mice. The time of inspiration was shortened in WT and α1H101R mice, but not in α2H101R mice. Alprazolam (1-3 mg·kg(-1) ) stimulated the respiratory frequency by shortening expiration and inspiration duration in WT mice. This tachypnoeic effect was partially conserved in α1H101R mice while absent in α2H101R mice. CONCLUSIONS AND IMPLICATIONS These results identify a specific role for α1-GABA(A) receptors and α2-GABA(A) receptors in mediating the shortening by benzodiazepines of the expiratory and inspiratory phase of resting breathing respectively.
Collapse
Affiliation(s)
- S Masneuf
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
27
|
Kantor C, Panaitescu B, Kuribayashi J, Ruangkittisakul A, Jovanovic I, Leung V, Lee TF, MacTavish D, Jhamandas JH, Cheung PY, Ballanyi K. Spontaneous Neural Network Oscillations in Hippocampus, Cortex, and Locus Coeruleus of Newborn Rat and Piglet Brain Slices. ISOLATED CENTRAL NERVOUS SYSTEM CIRCUITS 2012. [DOI: 10.1007/978-1-62703-020-5_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Moore J, Haouzi P, Van de Louw A, Bell HJ. Hypocapnia-dependent facilitation of augmented breaths: observations in awake vs. anesthetized rats. Respir Physiol Neurobiol 2011; 180:105-11. [PMID: 22063924 DOI: 10.1016/j.resp.2011.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/14/2011] [Accepted: 10/24/2011] [Indexed: 12/31/2022]
Abstract
We investigated whether commonly used injectable laboratory anesthetics alter the regulation of augmented breaths (ABs) in different respiratory backgrounds. Male rats were studied on three separate experimental days, receiving one of three injections in randomized order: ethyl carbamate ('urethane'; 1.2mgkg(-1)), ketamine/xylazine (ket/xyl; 80/10mgkg(-1)), or normal saline. Following each of the three interventions, breathing was monitored during 15min exposures to normoxia (room air), hypoxia (10% O(2)) and hypoxia+CO(2) (10% O(2), 5% CO(2)). Urethane anesthesia completely eliminated ABs from the breathing rhythm in room air conditions (p<0.001), and decreased the hypocapnia-dependent component of this response (p<0.001). ket/xyl left the normal incidence of ABs in room air breathing intact but significantly suppressed the hypoxia-induced facilitation of ABs (p=0.0015). These results provide the first clear evidence that laboratory anesthesia can profoundly alter the regulation of ABs including the hypocapnia-dependent component of their facilitation.
Collapse
Affiliation(s)
- J Moore
- Division of Pulmonary and Critical Care, Department of Medicine, Penn State University College of Medicine, Hershey, PA, USA
| | | | | | | |
Collapse
|