1
|
Molgat-Seon Y, Sawatzky MAT, Dominelli PB, Kirby M, Guenette JA, Bourbeau J, Tan WC, Sheel AW. Dysanapsis is not associated with exertional dyspnoea in healthy male and female never-smokers aged 40 years and older. Appl Physiol Nutr Metab 2024; 49:223-235. [PMID: 37847929 DOI: 10.1139/apnm-2023-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
In healthy adults, airway-to-lung (i.e., dysanapsis) ratio is lower and dyspnoea during exercise at a given minute ventilation (V̇E) is higher in females than in males. We investigated the relationship between dysanapsis and sex on exertional dyspnoea in healthy adults. We hypothesized that females would have a smaller airway-to-lung ratio than males and that exertional dyspnoea would be associated with airway-to-lung ratio in males and females. We analyzed data from n = 100 healthy never-smokers aged ≥40 years enrolled in the Canadian Cohort Obstructive Lung Disease (CanCOLD) study who underwent pulmonary function testing, a chest computed tomography scan, and cardiopulmonary exercise testing. The luminal area of the trachea, right main bronchus, left main bronchus, right upper lobe, bronchus intermedius, left upper lobe, and left lower lobe were 22%-37% smaller (all p < 0.001) and the airway-to-lung ratio (i.e., average large conducting airway diameter relative to total lung capacity) was lower in females than in males (0.609 ± 0.070 vs. 0.674 ± 0.082; p < 0.001). During exercise, there was a significant effect of V̇E, sex, and their interaction on dyspnoea (all p < 0.05), indicating that dyspnoea increased as a function of V̇E to a greater extent in females than in males. However, after adjusting for age and total lung capacity, there were no significant associations between airway-to-lung ratio and measures of exertional dyspnoea, regardless of sex (all r < 0.34; all p > 0.05). Our findings suggest that sex differences in airway size do not contribute to sex differences in exertional dyspnoea.
Collapse
Affiliation(s)
- Yannick Molgat-Seon
- Department of Kinesiology and Applied Health, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
- Centre for Heart and Lung Innovation, The University of British Columbia and St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Mathieu A T Sawatzky
- Department of Kinesiology and Applied Health, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Paolo B Dominelli
- Department of KinesiologyUniversity of Waterloo, Waterloo, ON N2 L3G1, Canada
| | - Miranda Kirby
- Department of PhysicsToronto Metropolitan University, Toronto, ON M5 B2K3, Canada
| | - Jordan A Guenette
- Centre for Heart and Lung Innovation, The University of British Columbia and St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Physical TherapyThe University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- School of Kinesiology, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jean Bourbeau
- Department of MedicineMcGill University, Montreal, QC H4A 3J1, Canada
| | - Wan C Tan
- Centre for Heart and Lung Innovation, The University of British Columbia and St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - A William Sheel
- Centre for Heart and Lung Innovation, The University of British Columbia and St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- School of Kinesiology, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
2
|
Gill PK, Kipp S, Beck ON, Kram R. It is time to abandon single-value oxygen uptake energy equivalents. J Appl Physiol (1985) 2023; 134:887-890. [PMID: 36825641 DOI: 10.1152/japplphysiol.00353.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Physiologists commonly use single-value energy equivalents (e.g., 20.1 kJ/LO2 and 20.9 kJ/LO2) to convert oxygen uptake (V̇o2) to energy, but doing so ignores how the substrate oxidation ratio (carbohydrate:fat) changes across aerobic intensities. Using either 20.1 kJ/LO2 or 20.9 kJ/LO2 can incur systematic errors of up to 7%. In most circumstances, the best approach for estimating energy expenditure is to measure both V̇o2 and V̇co2 and use accurate, species-appropriate stoichiometry. However, there are circumstances when V̇co2 measurements may be unreliable. In those circumstances, we recommend that the research report or compare only V̇o2.NEW & NOTEWORTHY We quantify that the common practice of using single-value oxygen uptake energy equivalents for exercising subjects can incur systematic errors of up to 7%. We argue that such errors can be greatly reduced if researchers measure both V̇o2 and V̇co2 and adopt appropriate stoichiometry equations.
Collapse
Affiliation(s)
- Pavreet K Gill
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Shalaya Kipp
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Owen N Beck
- Department of Kinesiology and Health Education, University of Texas, Austin, Texas, United States
| | - Rodger Kram
- Integrative Physiology Department, University of Colorado, Boulder, Colorado, United States
| |
Collapse
|
3
|
Milne KM, James MD, Smyth RM, Vincent SG, Singh N, D'Arsigny CL, de-Torres JP, de Wit K, Johri A, Neder JA, O'Donnell DE, Phillips DB. Neurophysiological mechanisms of exertional dyspnea in post-pulmonary embolism syndrome. J Appl Physiol (1985) 2023; 134:667-677. [PMID: 36701483 DOI: 10.1152/japplphysiol.00677.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Following pulmonary embolism (PE), a third of patients develop persistent dyspnea, which is commonly termed the post-PE syndrome. The neurophysiological underpinnings of exertional dyspnea in patients with post-PE syndrome without pulmonary hypertension (PH) are unclear. Thus, the current study determined if abnormally high inspiratory neural drive (IND) due, in part, to residual pulmonary gas-exchange abnormalities, was linked to heightened exertional dyspnea and exercise limitation, in such patients. Fourteen participants with post-PE syndrome (without resting PH) and 14 age-, sex-, and body mass index-matched healthy controls undertook pulmonary function testing and a symptom-limited cycle cardiopulmonary exercise test with measurements of IND (diaphragmatic electromyography), ventilatory requirements for CO2 (V̇e/V̇co2), and perceived dyspnea intensity (modified Borg 0-10 scale). Post-PE (vs. control) had a reduced resting transfer coefficient for carbon monoxide (KCO: 84 ± 15 vs. 104 ± 14%pred, P < 0.001) and peak oxygen uptake (V̇o2peak) (76 ± 14 vs. 124 ± 28%pred, P < 0.001). IND and V̇e/V̇co2 were higher in post-PE than controls at standardized submaximal work rates (P < 0.05). Dyspnea increased similarly in both groups as a function of increasing IND but was higher in post-PE at standardized submaximal work rates (P < 0.05). High IND was associated with low KCO (r = -0.484, P < 0.001), high V̇e/V̇co2 nadir (r = 0.453, P < 0.001), and low V̇o2peak (r = -0.523, P < 0.001). In patients with post-PE syndrome, exercise IND was higher than controls and was associated with greater dyspnea intensity. The heightened IND and dyspnea in post-PE, in turn, were strongly associated with low resting KCO and high exercise V̇e/V̇co2, which suggest important pulmonary gas-exchange abnormalities in this patient population.NEW & NOTEWORTHY This study is the first to show that increased exertional dyspnea in patients with post-pulmonary embolism (PE) syndrome, without overt pulmonary hypertension, was strongly associated with elevated inspiratory neural drive (IND) to the diaphragm during exercise, compared with healthy controls. The greater IND was associated with impairments in pulmonary gas exchange and significant deconditioning. Our results help to explain why many patients with post-PE syndrome report significant dyspnea at relatively low levels of physical activity.
Collapse
Affiliation(s)
- Kathryn M Milne
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada.,Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia St. Paul's Hospital, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew D James
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada
| | - Reginald M Smyth
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada
| | - Sandra G Vincent
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada
| | - Namisha Singh
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada
| | - Christine L D'Arsigny
- Department of Critical Care Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada
| | - Juan P de-Torres
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada
| | - Kerstin de Wit
- Department of Emergency Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada
| | - Amer Johri
- Division of Cardiology, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada
| | - J Alberto Neder
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada
| | - Devin B Phillips
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital Campus, Kingston, Ontario, Canada.,School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Nicolò A, Sacchetti M. Differential control of respiratory frequency and tidal volume during exercise. Eur J Appl Physiol 2023; 123:215-242. [PMID: 36326866 DOI: 10.1007/s00421-022-05077-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
The lack of a testable model explaining how ventilation is regulated in different exercise conditions has been repeatedly acknowledged in the field of exercise physiology. Yet, this issue contrasts with the abundance of insightful findings produced over the last century and calls for the adoption of new integrative perspectives. In this review, we provide a methodological approach supporting the importance of producing a set of evidence by evaluating different studies together-especially those conducted in 'real' exercise conditions-instead of single studies separately. We show how the collective assessment of findings from three domains and three levels of observation support the development of a simple model of ventilatory control which proves to be effective in different exercise protocols, populations and experimental interventions. The main feature of the model is the differential control of respiratory frequency (fR) and tidal volume (VT); fR is primarily modulated by central command (especially during high-intensity exercise) and muscle afferent feedback (especially during moderate exercise) whereas VT by metabolic inputs. Furthermore, VT appears to be fine-tuned based on fR levels to match alveolar ventilation with metabolic requirements in different intensity domains, and even at a breath-by-breath level. This model reconciles the classical neuro-humoral theory with apparently contrasting findings by leveraging on the emerging control properties of the behavioural (i.e. fR) and metabolic (i.e. VT) components of minute ventilation. The integrative approach presented is expected to help in the design and interpretation of future studies on the control of fR and VT during exercise.
Collapse
Affiliation(s)
- Andrea Nicolò
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| |
Collapse
|
5
|
The effects of cloth face masks on cardiorespiratory responses and VO 2 during maximal incremental running protocol among apparently healthy men. Sci Rep 2022; 12:22292. [PMID: 36566337 PMCID: PMC9789509 DOI: 10.1038/s41598-022-26857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
We aimed to determine the effects of wearing a cloth face mask on cardiorespiratory response, peak oxygen uptake (Vo2), respiratory muscle effort, and exercise tolerance during incremental exercise. The study had a randomized crossover design: 11 apparently healthy young men performed the Bruce protocol treadmill test in two conditions, wearing a cloth face mask (CFM) and without CFM (CON), in random order. Minute ventilation and oxygen uptake were measured using a mass spectrometry metabolic analyzer; cardiac output (CO) was measured using an impedance CO monitor; and mouth pressure (Pm) was measured and calculated as an integral Pm to assess respiratory muscle effort. Maximal minute ventilation was 13.4 ± 10.7% lower in the CFM condition than in the CON condition (P < 0.001). The peak Vo2 (52.4 ± 5.6 and 55.0 ± 5.1 mL/kg/min in CFM and CON, respectively) and CO were not significantly different between the two conditions. However, the integral value of Pm was significantly higher (P = 0.02), and the running time to exhaustion was 2.6 ± 3.2% lower (P = 0.02) in the CFM condition than in the CON condition. Our results suggest that wearing a cloth face mask increased respiratory muscle effort and decreased ventilatory volume in healthy young men; however, Vo2 remained unchanged. Exercise tolerance also decreased slightly.
Collapse
|
6
|
López-Pérez ME, Romero-Arenas S, Giráldez-García MA, Colomer-Poveda D, Márquez G. Acute psychophysiological responses during exercise while using resistive respiratory devices: A systematic review. Physiol Behav 2022; 256:113968. [PMID: 36155205 DOI: 10.1016/j.physbeh.2022.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Different studies have observed that respiratory muscle training (RMT) improve the endurance and strength of the respiratory muscles, having a positive impact on performance of endurance sports. Nevertheless, it remains to be clarified how to improve the efficiency of such training. The objective of this systematic review was to evaluate the acute physiological responses produced by training the respiratory muscles during exercise with flow resistive devices because such information may support us improve the efficiency of this type of training. A search in the Medline, Science Direct, Web of Science and Scopus databases was conducted, following the PRISMA guidelines. The methodological quality of the articles was assessed using the PEDro scale. Nineteen studies met the inclusion criteria and a total of 212 subjects were included in the studies. The RMT method used in all studies was flow resistive loading, whereas the constant load exercise was the most common type of exercise among the studies. The results obtained seem to indicate that the use of this type of training during exercise reduces the performance, the lactate (La-) values and the ventilation, whereas the end - tidal partial pressure of carbon dioxide (PCO2) is increased.
Collapse
Affiliation(s)
- María E López-Pérez
- Department of Physical Education, IES El Palmeral, Hermano Lázaro s/n, Vera, Almería 04620, Spain.
| | | | - Manuel A Giráldez-García
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| |
Collapse
|
7
|
James MD, Phillips DB, Vincent SG, Abdallah SJ, Donovan AA, de-Torres JP, Neder JA, Smith BM, Jensen D, O'Donnell DE. Exertional dyspnoea in patients with mild-to-severe chronic obstructive pulmonary disease (COPD): Neuromechanical mechanisms. J Physiol 2022; 600:4227-4245. [PMID: 35861594 DOI: 10.1113/jp283252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Dyspnoea during exercise is a common and troublesome symptom reported by patients with chronic obstructive pulmonary disease (COPD) and is linked to an elevated inspiratory neural drive (IND). The precise mechanisms of elevated IND and dyspnoea across the continuum of airflow obstruction severity in COPD remains unclear. The present study sought to determine the mechanisms of elevated IND [by diaphragm EMG, EMGdi (%max)] and dyspnoea during cardiopulmonary exercise testing (CPET) across the continuum of COPD severity. There was a strong association between increasing dyspnoea intensity and EMGdi (%max) during CPET across the COPD continuum despite significant heterogeneity in underlying pulmonary gas exchange and respiratory mechanical impairments. Critical inspiratory constraints occurred at progressively lower ventilation during exercise with worsening severity of COPD. This was associated with the progressively lower resting inspiratory capacity with worsening disease severity. Earlier critical inspiratory constraint was associated with earlier neuromechanical dissociation and greater likelihood of reporting the sensation of 'unsatisfied inspiration'. ABSTRACT In patients with COPD, exertional dyspnoea generally arises when there is imbalance between ventilatory demand and capacity, but the neurophysiological mechanisms are unclear. We therefore determined if disparity between elevated inspiratory neural drive (IND) and tidal volume (VT ) responses (neuromechanical dissociation) impacted dyspnoea intensity and quality during exercise, across the COPD severity spectrum. In this two-centre, cross-sectional observational study, 89 participants with COPD divided into tertiles of FEV1 %predicted (Tertile 1 = FEV1 = 87 ± 9%, Tertile 2 = 60 ± 9%, Tertile 3 = 32 ± 8%) and 18 non-smoking controls, completed a symptom-limited cardiopulmonary exercise tests (CPET) with measurement of IND by diaphragm electromyography [EMGdi (%max)]. The association between increasing dyspnoea intensity and EMGdi (%max) during CPET was strong (r = 0.730, P < 0.001) and not different between the four groups who showed marked heterogeneity in pulmonary gas exchange and mechanical abnormalities. Significant inspiratory constraints (tidal volume/inspiratory capacity (VT /IC) ≥ 70%) and onset of neuromechanical dissociation (EMGdi (%max):VT /IC > 0.75) occurred at progressively lower V̇E from Control to Tertile 3. Lower resting IC meant earlier onset of neuromechanical dissociation, heightened dyspnoea intensity and greater propensity (93% in Tertile 3) to select qualitative descriptors of 'unsatisfied inspiration'. We concluded that, regardless of marked variation in mechanical and pulmonary gas exchange abnormalities in our study sample, exertional dyspnoea intensity was linked to the magnitude of EMGdi (%max). Moreover, onset of critical inspiratory constraints and attendant neuromechanical dissociation amplified dyspnoea intensity at higher exercise intensities. Simple measurements of IC and breathing pattern during CPET provide useful insights into mechanisms of dyspnoea and exercise intolerance in individuals with COPD. Abstract figure legend As chronic obstructive pulmonary disease severity increases, worsening gas exchange and respiratory mechanical impairment causes increased afferent receptor stimulation, increasing inspiratory neural drive at a given ventilation. The widening disparity between progressively greater inspiratory neural drive and reduced ventilatory output causes, 'neuromechanical dissociation'. This is strongly associated with a rapid increase in the intensity of dyspnea during exercise, and the onset of the sensation of 'unsatisfied inspiration'. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Matthew D James
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Devin B Phillips
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Sandra G Vincent
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Sara J Abdallah
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, Quebec, Canada.,Translational Research in Respiratory Diseases Program and Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Adamo A Donovan
- Division of Respiratory Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Juan P de-Torres
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - J Alberto Neder
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Benjamin M Smith
- Translational Research in Respiratory Diseases Program and Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada.,Division of Respiratory Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Dennis Jensen
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, Quebec, Canada.,Translational Research in Respiratory Diseases Program and Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | -
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| |
Collapse
|
8
|
Domnik NJ, Phillips DB, James MD, Ayoo GA, Taylor SM, Scheeren RE, Di Luch AT, Milne KM, Vincent SG, Elbehairy AF, Crinion SJ, Driver HS, Neder JA, O'Donnell DE. Compensatory responses to increased mechanical abnormalities in COPD during sleep. Eur J Appl Physiol 2022; 122:663-676. [PMID: 35034195 DOI: 10.1007/s00421-021-04869-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To assess whether night-time increases in mechanical loading negatively impact respiratory muscle function in COPD and whether compensatory increases in inspiratory neural drive (IND) are adequate to stabilize ventilatory output and arterial oxygen saturation, especially during sleep when wakefulness drive is withdrawn. METHODS 21 patients with moderate-to-severe COPD and 20 age-/sex-matched healthy controls (CTRL) participated in a prospective, cross-sectional, one-night study to assess the impact of COPD on serial awake, supine inspiratory capacity (IC) measurements and continuous dynamic respiratory muscle function (esophageal manometry) and IND (diaphragm electromyography, EMGdi) in supine sleep. RESULTS Supine inspiratory effort and EMGdi were consistently twice as high in COPD versus CTRL (p < 0.05). Despite overnight increases in awake total airways resistance and dynamic lung hyperinflation in COPD (p < 0.05; not in CTRL), elevated awake EMGdi and respiratory effort were unaltered in COPD overnight. At sleep onset (non-rapid eye movement sleep, N2), EMGdi was decreased versus wakefulness in COPD (- 43 ± 36%; p < 0.05) while unaffected in CTRL (p = 0.11); however, respiratory effort and arterial oxygen saturation (SpO2) were unchanged. Similarly, in rapid eye movement (stage R), sleep EMGdi was decreased (- 38 ± 32%, p < 0.05) versus wakefulness in COPD, with preserved respiratory effort and minor (2%) reduction in SpO2. CONCLUSIONS Despite progressive mechanical loading overnight and marked decreases in wakefulness drive, inspiratory effort and SpO2 were well maintained during sleep in COPD. Preserved high inspiratory effort during sleep, despite reduced EMGdi, suggests continued (or increased) efferent activation of extra-diaphragmatic muscles, even in stage R sleep. CLINICAL TRIAL INFORMATION The COPD data reported herein were secondary data (Placebo arm only) obtained through the following Clinical Trial: "Effect of Aclidinium/Formoterol on Nighttime Lung Function and Morning Symptoms in Chronic Obstructive Pulmonary Disease" ( https://clinicaltrials.gov/ct2/show/NCT02429765 ; NCT02429765).
Collapse
Affiliation(s)
- Nicolle J Domnik
- Department of Medicine, Queen's University, Kingston, Canada.,Department of Physiology and Pharmacology, Western University, London, Canada
| | | | - Matthew D James
- Department of Medicine, Queen's University, Kingston, Canada
| | - Grace A Ayoo
- Department of Medicine, Queen's University, Kingston, Canada
| | - Sarah M Taylor
- Department of Medicine, Queen's University, Kingston, Canada
| | | | | | - Kathryn M Milne
- Department of Medicine, Queen's University, Kingston, Canada
| | | | - Amany F Elbehairy
- Department of Medicine, Queen's University, Kingston, Canada.,Manchester University NHS Foundation Trust, Manchester, UK.,Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sophie J Crinion
- Department of Medicine, Queen's University, Kingston, Canada.,Sleep Disorders Laboratory, Kingston Health Sciences Centre, Kingston, Canada.,Division of Respiratory Medicine, Queen's University, Kingston, Canada
| | - Helen S Driver
- Department of Medicine, Queen's University, Kingston, Canada.,Sleep Disorders Laboratory, Kingston Health Sciences Centre, Kingston, Canada.,Division of Respiratory Medicine, Queen's University, Kingston, Canada
| | - J Alberto Neder
- Department of Medicine, Queen's University, Kingston, Canada.,Division of Respiratory Medicine, Queen's University, Kingston, Canada
| | - Denis E O'Donnell
- Department of Medicine, Queen's University, Kingston, Canada. .,Division of Respiratory Medicine, Queen's University, Kingston, Canada. .,Respiratory Investigation Unit, Kingston Health Sciences Centre, 102 Stuart St, Kingston, ON, K7L 2V7, Canada.
| |
Collapse
|
9
|
Niro F, Dubuc B, Gaynor-Sodeifi K, Jensen D. Effect of end-inspiratory lung volume and breathing pattern on neural activation of the diaphragm and extra-diaphragmatic inspiratory muscles in healthy adults. J Appl Physiol (1985) 2021; 131:1679-1690. [PMID: 34734781 DOI: 10.1152/japplphysiol.01118.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the effect of changes in end-inspiratory lung volume (EILV) and breathing pattern on neural activation of the crural diaphragm (EMGDIA) and of the sternocleidomastoid (EMGSCM), scalene (EMGSCA) and external intercostal muscles (EMGINT) at constant ventilation (V̇E). Twelve healthy adults performed a series of 30-sec breathing trials at a constant V̇E corresponding to 15% of their maximum voluntary ventilation while (i) altering EILV at a constant breathing pattern and (ii) altering breathing pattern at a constant EILV. Using a real-time visual display of each participant's spirogram, EILV was voluntarily targeted at 65% (EILV65%), 75% (EILV75%), 85% (EILV85%) and 95% (EILV95%) of each participant's inspired vital capacity, while breathing frequency (fR) was targeted at 15, 35 and 50 breaths/min using a metronome. The tidal volume needed for a participant to maintain V̇E constant across trials was achieved via changes in end-expiratory lung volume. A multipair esophageal electrode catheter was used to record EMGDIA, while surface electrodes were used to record EMGSCM, EMGSCA and EMGINT. On average, EMGDIA, EMGSCM, EMGSCA and EMGINT increased as a function of increasing EILV at constant V̇E, independent of changes in breathing pattern. The magnitudes of these increases were particularly notable in the transition from EILV85% to EILV95%, especially for EMGSCM and EMGSCA. In healthy adults, as EILV increases towards total lung capacity, progressive compensatory increases in neural activation of the diaphragm and extra-diaphragmatic inspiratory muscles are needed to support V̇E, independent of changes in breathing pattern.
Collapse
Affiliation(s)
- Frank Niro
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Benjamin Dubuc
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Kaveh Gaynor-Sodeifi
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Dennis Jensen
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program, Montreal, Quebec, Canada.,Research Centre for Physical Activity and Health, Faculty of Education, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
10
|
Acute Effects of Using Added Respiratory Dead Space Volume in a Cycling Sprint Interval Exercise Protocol: A Cross-Over Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249485. [PMID: 33352863 PMCID: PMC7766125 DOI: 10.3390/ijerph17249485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022]
Abstract
Background: The aim of the study was to compare acute physiological, biochemical, and perceptual responses during sprint interval exercise (SIE) with breathing through a device increasing added respiratory dead space volume (ARDSV) and without the device. Methods: The study involved 11 healthy, physically active men (mean maximal oxygen uptake: 52.6 ± 8.2 mL∙kg1∙min-1). During four visits to a laboratory with a minimum interval of 72 h, they participated in (1) an incremental test on a cycle ergometer; (2) a familiarization session; (3) and (4) cross-over SIE sessions. SIE consisted of 6 × 10-s all-out bouts with 4-min active recovery. During one of the sessions the participants breathed through a 1200-mL ARDSv (SIEARDS). Results: The work performed was significantly higher by 4.4% during SIEARDS, with no differences in the fatigue index. The mean respiratory ventilation was significantly higher by 13.2%, and the mean oxygen uptake was higher by 31.3% during SIEARDS. Respiratory muscle strength did not change after the two SIE sessions. In SIEARDS, the mean pH turned out significantly lower (7.26 vs. 7.29), and the mean HCO3- concentration was higher by 7.6%. Average La- and rating of perceived exertion (RPE) did not differ between the sessions. Conclusions: Using ARDSV during SIE provokes respiratory acidosis, causes stronger acute physiological responses, and does not increase RPE.
Collapse
|
11
|
Domnik NJ, Walsted ES, Langer D. Clinical Utility of Measuring Inspiratory Neural Drive During Cardiopulmonary Exercise Testing (CPET). Front Med (Lausanne) 2020; 7:483. [PMID: 33043023 PMCID: PMC7530180 DOI: 10.3389/fmed.2020.00483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiopulmonary exercise testing (CPET) has traditionally included ventilatory and metabolic measurements alongside electrocardiographic characterization; however, research increasingly acknowledges the utility of also measuring inspiratory neural drive (IND) through its surrogate measure of diaphragmatic electromyography (EMGdi). While true IND also encompasses the activation of non-diaphragmatic respiratory muscles, the current review focuses on diaphragmatic measurements, providing information about additional inspiratory muscle groups for context where appropriate. Evaluation of IND provides mechanistic insight into the origins of dyspnea and exercise limitation across pathologies; yields valuable information reflecting the integration of diverse mechanical, chemical, locomotor, and metabolic afferent signals; and can help assess the efficacy of therapeutic interventions. Further, IND measurement during the physiologic stress of exercise is uniquely poised to reveal the underpinnings of physiologic limitations masked during resting and unloaded breathing, with important information provided not only at peak exercise, but throughout exercise protocols. As our understanding of IND presentation across varying conditions continues to grow and methods for its measurement become more accessible, the translation of these principles into clinical settings is a logical next step in facilitating appropriate and nuanced management tailored to each individual's unique physiology. This review provides an overview of the current state of understanding of IND measurement during CPET: its origins, known patterns of behavior and links with dyspnea in health and major respiratory diseases, and the possibility of expanding this approach to applications beyond exercise.
Collapse
Affiliation(s)
| | - Emil S. Walsted
- Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Daniel Langer
- Research Group for Rehabilitation in Internal Disorders, Respiratory Rehabilitation and Respiratory Division, Department of Rehabilitation Sciences, University Hospital Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Domnik NJ, James MD, Scheeren RE, Ayoo GA, Taylor SM, Di Luch AT, Milne KM, Vincent SG, Phillips DB, Elbehairy AF, Crinion SJ, Driver HS, Neder JA, O'Donnell DE. Deterioration of Nighttime Respiratory Mechanics in COPD: Impact of Bronchodilator Therapy. Chest 2020; 159:116-127. [PMID: 32603714 DOI: 10.1016/j.chest.2020.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND COPD is associated with nighttime respiratory symptoms, poor sleep quality, and increased risk of nocturnal death. Overnight deterioration of inspiratory capacity (IC) and FEV1 have been documented previously. However, the precise nature of this deterioration and mechanisms by which evening bronchodilation may mitigate this occurrence have not been studied. RESEARCH QUESTION What is the effect of evening dosing of dual, long-acting bronchodilation on detailed nocturnal respiratory mechanics and inspiratory neural drive (IND)? STUDY DESIGN AND METHODS A double-blind, randomized, placebo-controlled crossover study assessed the effects of evening long-acting bronchodilation (aclidinium bromide/formoterol fumarate dihydrate: 400/12 μg) or placebo on morning trough IC (12 h after the dose; primary outcome) and serial overnight measurements of spirometry, dynamic respiratory mechanics, and IND (secondary outcomes). Twenty participants with COPD (moderate/severe airway obstruction and lung hyperinflation) underwent serial measurements of IC, spirometry, breathing pattern, esophageal and transdiaphragmatic pressures, and diaphragm electromyography (diaphragmatic electromyography as a percentage of maximum; IND) at 6 time points from 0 to 12 h after the dose and compared with sleeping IND. RESULTS Compared with placebo, evening bronchodilation was not associated with increased morning trough IC 12 h after the dose (P = .48); however, nadir IC (lowest IC, independent of time), peak IC, area under the curve for 12 h after the dose, and IC for 10 h after the dose were improved (P < .05). During placebo, total airways resistance, lung hyperinflation, IND, and tidal esophageal and transdiaphragmatic pressure swings all increased significantly overnight compared with baseline evening values; however, each of these parameters improved with bronchodilator treatment (P < .05) with no change in ventilation or breathing pattern. INTERPRETATION Respiratory mechanics significantly deteriorated at night during placebo. Although the morning trough IC was unchanged, evening bronchodilator treatment was associated consistently with sustained overnight improvements in dynamic respiratory mechanics and inspiratory neural drive compared with placebo CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT02429765.
Collapse
Affiliation(s)
| | - Matthew D James
- Department of Medicine, Queen's University, Kingston, Canada
| | | | - Grace A Ayoo
- Department of Medicine, Queen's University, Kingston, Canada
| | - Sarah M Taylor
- Department of Medicine, Queen's University, Kingston, Canada
| | | | - Kathryn M Milne
- Department of Medicine, Queen's University, Kingston, Canada
| | | | | | - Amany F Elbehairy
- Department of Medicine, Queen's University, Kingston, Canada; Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sophie J Crinion
- Department of Medicine, Queen's University, Kingston, Canada; Division of Respiratory Medicine, Queen's University, Kingston, Canada; Sleep Disorders Laboratory, Kingston Health Sciences Centre, Kingston, Canada
| | - Helen S Driver
- Department of Medicine, Queen's University, Kingston, Canada; Division of Respiratory Medicine, Queen's University, Kingston, Canada; Sleep Disorders Laboratory, Kingston Health Sciences Centre, Kingston, Canada
| | - J Alberto Neder
- Department of Medicine, Queen's University, Kingston, Canada; Division of Respiratory Medicine, Queen's University, Kingston, Canada
| | - Denis E O'Donnell
- Department of Medicine, Queen's University, Kingston, Canada; Division of Respiratory Medicine, Queen's University, Kingston, Canada.
| |
Collapse
|
13
|
Molgat-Seon Y, Ramsook AH, Peters CM, Schaeffer MR, Dominelli PB, Romer LM, Road JD, Guenette JA, Sheel AW. Manipulation of mechanical ventilatory constraint during moderate intensity exercise does not influence dyspnoea in healthy older men and women. J Physiol 2019; 597:1383-1399. [PMID: 30578651 DOI: 10.1113/jp277476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The perceived intensity of exertional breathlessness (i.e. dyspnoea) is higher in older women than in older men, possibly as a result of sex-differences in respiratory system morphology. During exercise at a given absolute intensity or minute ventilation, older women have a greater degree of mechanical ventilatory constraint (i.e. work of breathing and expiratory flow limitation) than their male counterparts, which may lead to a greater perceived intensity of dyspnoea. Using a single-blind randomized study design, we experimentally manipulated the magnitude of mechanical ventilatory constraint during moderate-intensity exercise at ventilatory threshold in healthy older men and women. We found that changes in the magnitude of mechanical ventilatory constraint within the physiological range had no effect on dyspnoea in healthy older adults. When older men and women perform moderate intensity exercise, mechanical ventilatory constraint does not contribute significantly to the sensation of dyspnoea. ABSTRACT We aimed to determine the effect of manipulating mechanical ventilatory constraint during submaximal exercise on dyspnoea in older men and women. Eighteen healthy subjects (aged 60-80 years; nine men and nine women) completed two days of testing. On day 1, subjects were assessed for pulmonary function and performed a maximal incremental cycle exercise test. On day 2, subjects performed three 6-min bouts of cycling at ventilatory threshold, in a single-blind randomized manner, while breathing: (i) normoxic helium-oxygen (HEL) to reduce the work of breathing (Wb ) and alleviate expiratory flow limitation (EFL); (ii) through an inspiratory resistance (RES) of ∼5 cmH2 O L-1 s-1 to increase Wb ; and (iii) ambient air as a control (CON). Oesophageal pressure, diaphragm electromyography, and sensory responses (category-ratio 10 Borg scale) were monitored throughout exercise. During the HEL condition, there was a significant decrease in Wb (men: -21 ± 6%, women: -17 ± 10%) relative to CON (both P < 0.01). Moreover, if EFL was present during CON (four men and five women), it was alleviated during HEL. Conversely, during the RES condition, Wb (men: 42 ± 19%, women: 50 ± 16%) significantly increased relative to CON (both P < 0.01). There was no main effect of sex on Wb (P = 0.59). Across conditions, women reported significantly higher dyspnoea intensity than men (2.9 ± 0.9 vs. 1.9 ± 0.8 Borg scale units, P < 0.05). Despite significant differences in the degree of mechanical ventilatory constraint between conditions, the intensity of dyspnoea was unaffected, independent of sex (P = 0.46). When older men and women perform moderate intensity exercise, mechanical ventilatory constraint does not contribute significantly to the sensation of dyspnoea.
Collapse
Affiliation(s)
- Yannick Molgat-Seon
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, Canada.,Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| | - Andrew H Ramsook
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Carli M Peters
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, Canada
| | - Michele R Schaeffer
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Paolo B Dominelli
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, Canada.,Mayo Clinic, Rochester, MN, USA
| | - Lee M Romer
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Jeremy D Road
- Division of Respiratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Jordan A Guenette
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, Canada.,Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - A William Sheel
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Lin L, Guan L, Wu W, Chen R. Correlation of surface respiratory electromyography with esophageal diaphragm electromyography. Respir Physiol Neurobiol 2019; 259:45-52. [DOI: 10.1016/j.resp.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/08/2022]
|
15
|
Abdallah SJ, Smith BM, Wilkinson-Maitland C, Li PZ, Bourbeau J, Jensen D. Effect of Abdominal Binding on Diaphragmatic Neuromuscular Efficiency, Exertional Breathlessness, and Exercise Endurance in Chronic Obstructive Pulmonary Disease. Front Physiol 2018; 9:1618. [PMID: 30487757 PMCID: PMC6246714 DOI: 10.3389/fphys.2018.01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
We tested the hypothesis that abdominal binding (AB) would reduce breathlessness and improve exercise tolerance by enhancing neuromuscular efficiency of the diaphragm during exercise in adults with chronic obstructive pulmonary disease (COPD). In a randomized, controlled, crossover trial, 20 adults with COPD (mean ± SD FEV1, 60 ± 16% predicted) completed a symptom-limited constant-load cycle endurance exercise test at 75% of their peak incremental power output with concomitant measures of the diaphragm electromyogram (EMGdi) and respiratory pressures without (CTRL) vs. with AB sufficient to increase end-expiratory gastric pressure (Pga,ee) by 6.7 ± 0.3 cmH2O at rest. Compared to CTRL, AB enhanced diaphragmatic neuromuscular efficiency during exercise (p < 0.05), as evidenced by a 25% increase in the quotient of EMGdi to tidal transdiaphragmatic pressure swing. By contrast, AB had no demonstrable effect on exertional breathlessness and exercise tolerance; spirometry and plethysmography-derived pulmonary function test parameters at rest; and cardiac, metabolic, breathing pattern, inspiratory reserve volume and EMGdi responses during exercise (all p > 0.05 vs. CTRL). In conclusion, enhanced neuromuscular efficiency of the diaphragm during exercise with AB was not associated with relief of exertional breathlessness and improved exercise tolerance in adults with COPD. Clinical Trial Registration: ClinicalTrials.gov Identifier: NCT01852006.
Collapse
Affiliation(s)
- Sara J Abdallah
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Benjamin M Smith
- Respiratory Epidemiology & Clinical Research Unit, Division of Respiratory Medicine, Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Courtney Wilkinson-Maitland
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Pei Zhi Li
- Respiratory Epidemiology & Clinical Research Unit, Division of Respiratory Medicine, Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Jean Bourbeau
- Respiratory Epidemiology & Clinical Research Unit, Division of Respiratory Medicine, Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Dennis Jensen
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.,Respiratory Epidemiology & Clinical Research Unit, Division of Respiratory Medicine, Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,McGill Research Centre for Physical Activity and Health, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Langer D, Ciavaglia C, Faisal A, Webb KA, Neder JA, Gosselink R, Dacha S, Topalovic M, Ivanova A, O'Donnell DE. Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. J Appl Physiol (1985) 2018. [PMID: 29543134 DOI: 10.1152/japplphysiol.01078.2017] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Among patients with chronic obstructive pulmonary disease (COPD), those with the lowest maximal inspiratory pressures experience greater breathing discomfort (dyspnea) during exercise. In such individuals, inspiratory muscle training (IMT) may be associated with improvement of dyspnea, but the mechanisms for this are poorly understood. Therefore, we aimed to identify physiological mechanisms of improvement in dyspnea and exercise endurance following inspiratory muscle training (IMT) in patients with COPD and low maximal inspiratory pressure (Pimax). The effects of 8 wk of controlled IMT on respiratory muscle function, dyspnea, respiratory mechanics, and diaphragm electromyography (EMGdi) during constant work rate cycle exercise were evaluated in patients with activity-related dyspnea (baseline dyspnea index <9). Subjects were randomized to either IMT or a sham training control group ( n = 10 each). Twenty subjects (FEV1 = 47 ± 19% predicted; Pimax = -59 ± 14 cmH2O; cycle ergometer peak work rate = 47 ± 21% predicted) completed the study; groups had comparable baseline lung function, respiratory muscle strength, activity-related dyspnea, and exercise capacity. IMT, compared with control, was associated with greater increases in inspiratory muscle strength and endurance, with attendant improvements in exertional dyspnea and exercise endurance time (all P < 0.05). After IMT, EMGdi expressed relative to its maximum (EMGdi/EMGdimax) decreased ( P < 0.05) with no significant change in ventilation, tidal inspiratory pressures, breathing pattern, or operating lung volumes during exercise. In conclusion, IMT improved inspiratory muscle strength and endurance in mechanically compromised patients with COPD and low Pimax. The attendant reduction in EMGdi/EMGdimax helped explain the decrease in perceived respiratory discomfort despite sustained high ventilation and intrinsic mechanical loading over a longer exercise duration. NEW & NOTEWORTHY In patients with COPD and low maximal inspiratory pressures, inspiratory muscle training (IMT) may be associated with improvement of dyspnea, but the mechanisms for this are poorly understood. This study showed that 8 wk of home-based, partially supervised IMT improved respiratory muscle strength and endurance, dyspnea, and exercise endurance. Dyspnea relief occurred in conjunction with a reduced activation of the diaphragm relative to maximum in the absence of significant changes in ventilation, breathing pattern, and operating lung volumes.
Collapse
Affiliation(s)
- Daniel Langer
- Respiratory Investigation Unit, Queen's University and Kingston Health Sciences Centre , Kingston, Ontario , Canada.,Faculty of Kinesiology and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Cardiovascular and Respiratory Rehabilitation, KU Leuven-University of Leuven, and Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven , Leuven , Belgium
| | - Casey Ciavaglia
- Respiratory Investigation Unit, Queen's University and Kingston Health Sciences Centre , Kingston, Ontario , Canada
| | - Azmy Faisal
- Respiratory Investigation Unit, Queen's University and Kingston Health Sciences Centre , Kingston, Ontario , Canada.,Faculty of Physical Education for Men, Alexandria University , Alexandria , Egypt
| | - Katherine A Webb
- Respiratory Investigation Unit, Queen's University and Kingston Health Sciences Centre , Kingston, Ontario , Canada
| | - J Alberto Neder
- Respiratory Investigation Unit, Queen's University and Kingston Health Sciences Centre , Kingston, Ontario , Canada
| | - Rik Gosselink
- Faculty of Kinesiology and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Cardiovascular and Respiratory Rehabilitation, KU Leuven-University of Leuven, and Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven , Leuven , Belgium
| | - Sauwaluk Dacha
- Faculty of Kinesiology and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Cardiovascular and Respiratory Rehabilitation, KU Leuven-University of Leuven, and Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven , Leuven , Belgium.,Department of Physiotherapy, Chiang Mai University, Changwat Chiang Mai, Thailand
| | - Marko Topalovic
- Department of Clinical and Experimental Medicine, KU Leuven-University of Leuven, Leuven , Belgium
| | - Anna Ivanova
- Leuven Statistics Research Centre, KU Leuven-University of Leuven, Leuven , Belgium
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Queen's University and Kingston Health Sciences Centre , Kingston, Ontario , Canada
| |
Collapse
|
17
|
[Effect of a surgical mask on six minute walking distance]. Rev Mal Respir 2018; 35:264-268. [PMID: 29395560 DOI: 10.1016/j.rmr.2017.01.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/07/2017] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Six minutes walking test (6MWT) is regularly used in pulmonology. To minimize the risk of cross-infection, some patients must wear surgical mask at rest and sometimes during exercise. AIM OF THE STUDY To evaluate the effect of wearing a surgical mask during 6MWT in healthy subjects. MATERIAL AND METHOD It is a prospective study on 44 healthy subjects. After a first 6MWT for training, they performed randomly two 6MWT: with or without a surgical mask. Distance and dyspnea, heart rate and saturation variations were recorded. RESULTS Distance was not modified by the mask (P=0.99). Dyspnea variation was significantly higher with surgical mask (+5.6 vs. +4.6; P<0.001) and the difference was clinically relevant. No difference was found for the variation of other parameters. CONCLUSION Wearing a surgical mask modifies significantly and clinically dyspnea without influencing walked distance.
Collapse
|
18
|
O'Donnell DE, Elbehairy AF, Faisal A, Neder JA, Webb KA. Sensory-mechanical effects of a dual bronchodilator and its anticholinergic component in COPD. Respir Physiol Neurobiol 2017; 247:116-125. [PMID: 28993264 DOI: 10.1016/j.resp.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/27/2023]
Abstract
This randomized, double-blind, crossover study examined the physiological rationale for using a dual long-acting bronchodilator (umeclidinium/vilanterol (UME/VIL)) versus its muscarinic-antagonist component (UME) as treatment for dyspnea and exercise intolerance in moderate COPD. After each 4-week treatment period, subjects performed pulmonary function and symptom-limited constant-work rate cycling tests with diaphragm electromyogram (EMGdi), esophageal (Pes), gastric (Pga) and transdiaphragmatic (Pdi) pressure measurements. Fourteen subjects completed the study. Both treatments improved spirometry and airway resistance. UME/VIL had larger increases in FEV1 (+0.14±0.23L, p<0.05) but no added reduction in lung hyperinflation compared with UME. Isotime during exercise after UME/VIL versus UME (p<0.05): "unpleasantness of breathing" fell 0.8±1.3 Borg units; mean expiratory flow and ventilation increased; Pdi and Pga decreased. There were no treatment differences in endurance time, breathing pattern, operating lung volumes, inspiratory neural drive (EMGdi) or respiratory muscle effort (Pes swings) during exercise. UME/VIL compared with UME was associated with reduced breathing unpleasantness reflecting improved airway and respiratory muscle function during exercise.
Collapse
Affiliation(s)
- Denis E O'Donnell
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada.
| | - Amany F Elbehairy
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada; Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Azmy Faisal
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada; Faculty of Physical Education for Men, Alexandria University, Alexandria, Egypt
| | - J Alberto Neder
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada
| | - Katherine A Webb
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada
| | | |
Collapse
|
19
|
Garske LA, Lal R, Stewart IB, Morris NR, Cross TJ, Adams L. Exertional dyspnea associated with chest wall strapping is reduced when external dead space substitutes for part of the exercise stimulus to ventilation. J Appl Physiol (1985) 2017; 122:1179-1187. [DOI: 10.1152/japplphysiol.00051.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 11/22/2022] Open
Abstract
Chest wall strapping has been used to assess mechanisms of dyspnea with restrictive lung disease. This study examined the hypothesis that dyspnea with restriction depends principally on the degree of reflex ventilatory stimulation. We compared dyspnea at the same (iso)ventilation when added dead space provided a component of the ventilatory stimulus during exercise. Eleven healthy men undertook a randomized controlled crossover trial that compared four constant work exercise conditions: 1) control (CTRL): unrestricted breathing at 90% gas exchange threshold (GET); 2) CTRL+dead space (DS): unrestricted breathing with 0.6-l dead space, at isoventilation to CTRL due to reduced exercise intensity; 3) CWS: chest wall strapping at 90% GET; and 4) CWS+DS: chest strapping with 0.6-l dead space, at isoventilation to CWS with reduced exercise intensity. Chest strapping reduced forced vital capacity by 30.4 ± 2.2% (mean ± SE). Dyspnea at isoventilation was unchanged with CTRL+DS compared with CTRL (1.93 ± 0.49 and 2.17 ± 0.43, 0–10 numeric rating scale, respectively; P = 0.244). Dyspnea was lower with CWS+DS compared with CWS (3.40 ± 0.52 and 4.51 ± 0.53, respectively; P = 0.003). Perceived leg fatigue was reduced with CTRL+DS compared with CTRL (2.36 ± 0.48 and 2.86 ± 0.59, respectively; P = 0.049) and lower with CWS+DS compared with CWS (1.86 ± 0.30 and 4.00 ± 0.79, respectively; P = 0.006). With unrestricted breathing, dead space did not change dyspnea at isoventilation, suggesting that dyspnea does not depend on the mode of reflex ventilatory stimulation in healthy individuals. With chest strapping, dead space presented a less potent stimulus to dyspnea, raising the possibility that leg muscle work contributes to dyspnea perception independent of the ventilatory stimulus. NEW & NOTEWORTHY Chest wall strapping was applied to healthy humans to simulate restrictive lung disease. With chest wall strapping, dyspnea was reduced when dead space substituted for part of a constant exercise stimulus to ventilation. Dyspnea associated with chest wall strapping depended on the contribution of leg muscle work to ventilatory stimulation. Chest wall strapping might not be a clinically relevant model to determine whether an alternative reflex ventilatory stimulus mimics the intensity of exertional dyspnea.
Collapse
Affiliation(s)
- Luke A. Garske
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Respiratory and Sleep Medicine, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ravin Lal
- Allied Health Sciences and Menzies Health Institute of Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Ian B. Stewart
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Norman R. Morris
- Allied Health Sciences and Menzies Health Institute of Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Troy J. Cross
- Allied Health Sciences and Menzies Health Institute of Queensland, Griffith University, Gold Coast, Queensland, Australia
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota; and
| | - Lewis Adams
- Allied Health Sciences and Menzies Health Institute of Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
20
|
Reilly CC, Jolley CJ, Elston C, Moxham J, Rafferty GF. Blunted perception of neural respiratory drive and breathlessness in patients with cystic fibrosis. ERJ Open Res 2016; 2:00057-2015. [PMID: 27730171 PMCID: PMC5005154 DOI: 10.1183/23120541.00057-2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/17/2016] [Indexed: 12/16/2022] Open
Abstract
The electromyogram recorded from the diaphragm (EMGdi) and parasternal intercostal muscle using surface electrodes (sEMGpara) provides a measure of neural respiratory drive (NRD), the magnitude of which reflects lung disease severity in stable cystic fibrosis. The aim of this study was to explore perception of NRD and breathlessness in both healthy individuals and patients with cystic fibrosis. Given chronic respiratory loading and increased NRD in cystic fibrosis, often in the absence of breathlessness at rest, we hypothesised that patients with cystic fibrosis would be able to tolerate higher levels of NRD for a given level of breathlessness compared to healthy individuals during exercise. 15 cystic fibrosis patients (mean forced expiratory volume in 1 s (FEV1) 53.5% predicted) and 15 age-matched, healthy controls were studied. Spirometry was measured in all subjects and lung volumes measured in the cystic fibrosis patients. EMGdi and sEMGpara were recorded at rest and during incremental cycle exercise to exhaustion and expressed as a percentage of maximum (% max) obtained from maximum respiratory manoeuvres. Borg breathlessness scores were recorded at rest and during each minute of exercise. EMGdi % max and sEMGpara % max and associated Borg breathlessness scores differed significantly between healthy subjects and cystic fibrosis patients at rest and during exercise. The relationship between EMGdi % max and sEMGpara % max and Borg score was shifted to the right in the cystic fibrosis patients, such that at comparable levels of EMGdi % max and sEMGpara % max the cystic fibrosis patients reported significantly lower Borg breathlessness scores compared to the healthy individuals. At Borg score 1 (clinically significant increase in breathlessness from baseline) corresponding levels of EMGdi % max (20.2±12% versus 32.15±15%, p=0.02) and sEMGpara % max (18.9±8% versus 29.2±15%, p=0.04) were lower in the healthy individuals compared to the cystic fibrosis patients. In the cystic fibrosis patients EMGdi % max at Borg score 1 was related to the degree of airways obstruction (FEV1) (r=−0.664, p=0.007) and hyperinflation (residual volume/total lung capacity) (r=0.710, p=0.03). This relationship was not observed for sEMGpara % max. These data suggest that compared to healthy individuals, patients with cystic fibrosis can tolerate much higher levels of NRD before increases in breathlessness from baseline become clinically significant. EMGdi % max and sEMGpara % max provide physiological tools with which to elucidate factors underlying inter-individual differences in breathlessness perception. Patients with CF can tolerate higher levels of NRD before breathlessness becomes clinically significanthttp://ow.ly/Xp2q3
Collapse
Affiliation(s)
- Charles C Reilly
- King's College London, Faculty of Life Sciences and Medicine, London, UK; King's College Hospital, Physiotherapy, London, UK
| | - Caroline J Jolley
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | | | - John Moxham
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Gerrard F Rafferty
- King's College London, Faculty of Life Sciences and Medicine, London, UK
| |
Collapse
|
21
|
Qiu ZH, Guo HX, Lu G, Zhang N, He BT, Zhou L, Luo Y, Polkey M. Physiological responses to Tai Chi in stable patients with COPD. Respir Physiol Neurobiol 2016; 221:30-4. [DOI: 10.1016/j.resp.2015.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022]
|
22
|
Muscat KM, Kotrach HG, Wilkinson-Maitland CA, Schaeffer MR, Mendonca CT, Jensen D. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality. Appl Physiol Nutr Metab 2015; 40:1199-209. [DOI: 10.1139/apnm-2015-0179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a randomized cross-over study of 15 healthy men aged 20–30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate — the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.
Collapse
Affiliation(s)
- Kristina M. Muscat
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| | - Houssam G. Kotrach
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| | - Courtney A. Wilkinson-Maitland
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| | - Michele R. Schaeffer
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| | - Cassandra T. Mendonca
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| | - Dennis Jensen
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
- Respiratory Epidemiology and Clinical Research Unit, Montréal Chest Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Research Centre for Physical Activity and Health, McGill University, Montréal, QC H2W 1S4, Canada
| |
Collapse
|
23
|
Sun R, Xu F, Wang C, Dong E. NSFC spurs significant basic research progress of respiratory medicine in China. CLINICAL RESPIRATORY JOURNAL 2015; 11:271-284. [PMID: 26176299 PMCID: PMC7159156 DOI: 10.1111/crj.12351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022]
Abstract
Over the years, research in respiratory medicine has progressed rapidly in China. This commentary narrates the role of the National Natural Science Foundation of China (NSFC) in supporting the basic research of respiratory medicine, summarizes the major progress of respiratory medicine in China, and addresses the main future research directions sponsored by the NSFC.
Collapse
Affiliation(s)
- Ruijuan Sun
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Feng Xu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China.,Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Erdan Dong
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
24
|
Poon CS, Tin C, Song G. Submissive hypercapnia: Why COPD patients are more prone to CO2 retention than heart failure patients. Respir Physiol Neurobiol 2015; 216:86-93. [PMID: 25891787 DOI: 10.1016/j.resp.2015.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 01/08/2023]
Abstract
Patients with late-stage chronic obstructive pulmonary disease (COPD) are prone to CO2 retention, a condition which has been often attributed to increased ventilation-perfusion mismatch particularly during oxygen therapy. However, patients with mild-to-moderate COPD or chronic heart failure (CHF) also suffer similar ventilatory inefficiency but they remain near-normocapnic at rest and during exercise with an augmented respiratory effort to compensate for the wasted dead space ventilation. In severe COPD, the augmented exercise ventilation progressively reverses as the disease advances, resulting in hypercapnia at peak exercise as ventilatory limitation due to increasing expiratory flow limitation and dynamic lung hyperinflation sets in. Submissive hypercapnia is an emerging paradigm for understanding optimal ventilatory control and cost/benefit decision-making under prohibitive respiratory chemical-mechanical constraints, where the need to maintain normocapnia gives way to the mounting need to conserve the work of breathing. In severe/very severe COPD, submissive hypercapnia epitomizes the respiratory controller's 'can't breathe, so won't breathe' say-uncle policy when faced with insurmountable ventilatory limitation. Even in health, submissive hypercapnia ensues during CO2 breathing/rebreathing when the inhaled CO2 renders normocapnia difficult to restore even with maximal respiratory effort, hence the respiratory controller's 'ain't fresh, so won't breathe' modus operandi. This 'wisdom of the body' with a principled decision to tolerate hypercapnia when faced with prohibitive ventilatory or gas exchange limitations rather than striving for untenable normocapnia at all costs is analogous to the notion of permissive hypercapnia in critical care, a clinical strategy to minimize the risks of ventilator-induced lung injury in patients receiving mechanical ventilation.
Collapse
Affiliation(s)
- Chi-Sang Poon
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Chung Tin
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Gang Song
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
25
|
Faisal A, Webb KA, Guenette JA, Jensen D, Neder JA, O’Donnell DE. Effect of age-related ventilatory inefficiency on respiratory sensation during exercise. Respir Physiol Neurobiol 2015; 205:129-39. [DOI: 10.1016/j.resp.2014.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/19/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
|
26
|
Ciavaglia CE, Guenette JA, Langer D, Webb KA, Alberto Neder J, O'Donnell DE. Differences in respiratory muscle activity during cycling and walking do not influence dyspnea perception in obese patients with COPD. J Appl Physiol (1985) 2014; 117:1292-301. [DOI: 10.1152/japplphysiol.00502.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In patients with combined obesity and chronic obstructive pulmonary disease (COPD), dyspnea intensity at matched work rates during weight-supported cycling and weight-bearing walking is similar, despite consistent metabolic differences between test modalities. The present study examined the influence of differences in activity of the diaphragm and abdominal muscles during cycling and walking on intensity and quality of dyspnea at matched ventilation in obese patients with COPD. We compared respiratory muscle activity patterns and dyspnea ratings during incremental cycle and treadmill exercise tests, where work rate was matched, in 12 obese (body mass index 36.6 ± 5.4 kg/m2; mean ± SD) patients with moderate COPD. We used a multipair electrode-balloon catheter to compare electromyography of the diaphragm and esophageal, gastric, and transdiaphragmatic pressures during the two exercise tests. Ventilation, breathing pattern, operating lung volumes, global respiratory effort, and electrical activation of the diaphragm were similar across exercise modalities for a given work rate. The cycling position was associated with greater neuromuscular efficiency of the diaphragm ( P < 0.01), greater diaphragm use ( P < 0.01) measured by the ventilatory muscle recruitment index, and less expiratory muscle activity compared ( P < 0.01) with treadmill walking. However, intensity and quality of dyspnea were similar between exercise modalities. In obese patients with COPD, altered respiratory muscle activity due to body position differences between cycling and walking did not modulate perceived dyspnea when indirect measures of respiratory neural drive were unchanged.
Collapse
Affiliation(s)
- Casey E. Ciavaglia
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada
| | - Jordan A. Guenette
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada
- Department of Physical Therapy and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Daniel Langer
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada
- Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Katherine A. Webb
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada
| | - J. Alberto Neder
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada
| | - Denis E. O'Donnell
- Respiratory Investigation Unit, Department of Medicine, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada
| |
Collapse
|
27
|
Neder JA, Arbex FF, Alencar MCN, O’Donnell CD, Cory J, Webb KA, O’Donnell DE. Exercise ventilatory inefficiency in mild to end-stage COPD. Eur Respir J 2014; 45:377-87. [DOI: 10.1183/09031936.00135514] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ventilatory inefficiency during exercise is a key pathophysiological feature of chronic obstructive pulmonary disease. Currently, it is unknown how this physiological marker relates to clinically relevant outcomes as resting ventilatory impairment progresses across disease stages.Slope and intercept of the linear region of the ventilation–carbon dioxide output relationship and the ratio between these variables, at the lowest point (nadir), were contrasted in 316 patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages 1–4 (forced expiratory volume in 1 s, ranging from 148% pred to 12% pred) and 69 aged- and gender-matched controls,Compared to controls, slope and intercept were higher in GOLD stages 1 and 2, leading to higher nadirs (p<0.05). Despite even larger intercepts in GOLD stages 3 and 4, slopes diminished as disease evolved (from mean±sd35±6 in GOLD stage 1 to 24±5 in GOLD stage 3, p<0.05). As a result, there were no significant differences in nadirs among patient groups. Higher intercepts, across all stages (p<0.01), and to a lesser extent lower slopes in GOLD stages 2–4 (p<0.05), were related to greater mechanical constraints, worsening pulmonary gas exchange, higher dyspnoea scores, and poorer exercise capacity.Increases in the ventilation intercept best indicate the progression of exercise ventilatory inefficiency across the whole spectrum of chronic obstructive pulmonary disease severity.
Collapse
|
28
|
Guenette JA, Chin RC, Cheng S, Dominelli PB, Raghavan N, Webb KA, Neder JA, O'Donnell DE. Mechanisms of exercise intolerance in global initiative for chronic obstructive lung disease grade 1 COPD. Eur Respir J 2014; 44:1177-87. [PMID: 25142487 DOI: 10.1183/09031936.00034714] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this study was to determine if a dissociation existed between respiratory drive, as estimated by diaphragmatic electromyography (EMGdi), and its pressure-generating capacity during exercise in mild chronic obstructive pulmonary disease (COPD) and whether this, if present, had negative sensory consequences. Subjects meeting spirometric criteria for mild COPD (n=16) and age and sex-matched controls (n=16) underwent detailed pulmonary function testing and a symptom limited cycle test while detailed ventilatory, sensory and respiratory mechanical responses were measured. Compared with controls, subjects with mild COPD had greater ventilatory requirements throughout submaximal exercise. At the highest equivalent work rate of 60 W, they had a significantly higher: total work of breathing (32±17 versus 16±7 J·min(-1); p<0.01); EMGdi (37.3±17.3 versus 17.9±11.7% of maximum; p<0.001); and EMGdi to transdiaphragmatic pressure ratio (0.87±0.38 versus 0.52±0.27; p<0.01). Dyspnoea-ventilation slopes were significantly higher in mild COPD than controls (0.17±0.12 versus 0.10±0.05; p<0.05). However, absolute dyspnoea ratings reached significant levels only at high levels of ventilation. Increased respiratory effort and work of breathing, and a wider dissociation between diaphragmatic activation and pressure-generating capacity were found at standardised work rates in subjects with mild COPD compared with controls. Despite these mechanical and neuromuscular abnormalities, significant dyspnoea was only experienced at higher work rates.
Collapse
Affiliation(s)
- Jordan A Guenette
- Respiratory Investigation Unit, Queen's University and Kingston General Hospital, Kingston, ON, Canada Dept of Physical Therapy, University of British Columbia, Vancouver, BC, Canada Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, St. Paul's Hospital, Vancouver, BC, Canada
| | - Roberto C Chin
- Respiratory Investigation Unit, Queen's University and Kingston General Hospital, Kingston, ON, Canada
| | - Sicheng Cheng
- Respiratory Investigation Unit, Queen's University and Kingston General Hospital, Kingston, ON, Canada
| | - Paolo B Dominelli
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Natya Raghavan
- Respiratory Investigation Unit, Queen's University and Kingston General Hospital, Kingston, ON, Canada
| | - Katherine A Webb
- Respiratory Investigation Unit, Queen's University and Kingston General Hospital, Kingston, ON, Canada
| | - J Alberto Neder
- Division of Respiratory and Critical Care Medicine, Queen's University and Kingston General Hospital, Kingston, ON, Canada
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Queen's University and Kingston General Hospital, Kingston, ON, Canada Division of Respiratory and Critical Care Medicine, Queen's University and Kingston General Hospital, Kingston, ON, Canada
| |
Collapse
|
29
|
LIN SHYANLUNG, GUO NAIREN, CHEN TSUNGCHI. OPTIMAL RESPIRATORY CONTROL SIMULATION AND COMPARATIVE STUDY OF HYPERCAPNIC VENTILATORY RESPONSES TO EXTERNAL DEAD SPACE LOADING. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There has been considerable research effort regarding ventilatory responses to breathing with an imposed external dead space, and inhalation of fixed levels of CO 2 by human subjects. A human respiratory control model incorporating the optimality hypothesis can successfully demonstrate ventilatory responses to both chemical stimuli and muscular exercise. In this study, to verify the model behavior of the optimal chemical–mechanical respiratory control model, we simulated the ventilatory control under dead space loading and CO 2 inhalation. The simulation was provided by a LabVIEW® based human respiratory control simulator and signal monitoring system. The dead space measurement was described with two distinct models, derived from Gray and Coon, and predicted behaviors with corresponding ventilatory responses were investigated and compared with experimental findings. While both dead space models produced satisfactory predictions on simulated optimal [Formula: see text] versus Pa CO 2, [Formula: see text] versus Pa CO 2, F versus PI CO 2, VT versus PI CO 2, VD-total versus VT, VD- total /VT versus VT, [Formula: see text] versus VT and [Formula: see text] versus VT relationships, Gray's model provided better correlation and more consistent results throughout most of the ventilatory responses. The study of relative behavior of respiratory signals and comparative relationship of the ventilator responses between dead space loading during rest and CO 2 inhalation will certainly provide valuable understanding of increases in central respiratory motor command output of human respiratory control, which is also associated with Dyspnea on exertion, and give potential clinical perspective to realize the impaired ability to excrete CO 2 in patients diagnosed with acute respiratory distress syndrome.
Collapse
Affiliation(s)
- SHYAN-LUNG LIN
- Department of Automatic Control Engineering, Feng Chia University, 100 Wenhwa Rd, Seatween, Taichung, 40724, Taiwan
| | - NAI-REN GUO
- Department of Electrical Engineering, Tung Fang Design University, 110 Dongfan Rd, Hunei Dist., Kaohsiung 829, Taiwan
| | - TSUNG-CHI CHEN
- Department of Automatic Control Engineering, Feng Chia University, 100 Wenhwa Rd, Seatween, Taichung, 40724, Taiwan
| |
Collapse
|
30
|
Mendonca CT, Schaeffer MR, Riley P, Jensen D. Physiological mechanisms of dyspnea during exercise with external thoracic restriction: role of increased neural respiratory drive. J Appl Physiol (1985) 2013; 116:570-81. [PMID: 24356524 DOI: 10.1152/japplphysiol.00950.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that neuromechanical uncoupling of the respiratory system forms the mechanistic basis of dyspnea during exercise in the setting of "abnormal" restrictive constraints on ventilation (VE). To this end, we examined the effect of chest wall strapping (CWS) sufficient to mimic a "mild" restrictive lung deficit on the interrelationships between VE, breathing pattern, dynamic operating lung volumes, esophageal electrode-balloon catheter-derived measures of the diaphragm electromyogram (EMGdi) and the transdiaphragmatic pressure time product (PTPdi), and sensory intensity and unpleasantness ratings of dyspnea during exercise. Twenty healthy men aged 25.7 ± 1.1 years (means ± SE) completed symptom-limited incremental cycle exercise tests under two randomized conditions: unrestricted control and CWS to reduce vital capacity (VC) by 21.6 ± 0.5%. Compared with control, exercise with CWS was associated with 1) an exaggerated EMGdi and PTPdi response; 2) no change in the relationship between EMGdi and each of tidal volume (expressed as a percentage of VC), inspiratory reserve volume, and PTPdi, thus indicating relative preservation of neuromechanical coupling; 3) increased sensory intensity and unpleasantness ratings of dyspnea; and 4) no change in the relationship between increasing EMGdi and each of the intensity and unpleasantness of dyspnea. In conclusion, the increased intensity and unpleasantness of dyspnea during exercise with CWS could not be readily explained by increased neuromechanical uncoupling but likely reflected the awareness of increased neural respiratory drive (EMGdi) needed to achieve any given VE during exercise in the setting of "abnormal" restrictive constraints on tidal volume expansion.
Collapse
Affiliation(s)
- Cassandra T Mendonca
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
31
|
Schaeffer MR, Mendonca CT, Levangie MC, Andersen RE, Taivassalo T, Jensen D. Physiological mechanisms of sex differences in exertional dyspnoea: role of neural respiratory motor drive. Exp Physiol 2013; 99:427-41. [DOI: 10.1113/expphysiol.2013.074880] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michele R. Schaeffer
- Clinical Exercise & Respiratory Physiology Laboratory; Department of Kinesiology & Physical Education; McGill University; Montreal Quebec Canada
| | - Cassandra T. Mendonca
- Clinical Exercise & Respiratory Physiology Laboratory; Department of Kinesiology & Physical Education; McGill University; Montreal Quebec Canada
| | - Marc C. Levangie
- Clinical Exercise & Respiratory Physiology Laboratory; Department of Kinesiology & Physical Education; McGill University; Montreal Quebec Canada
| | - Ross E. Andersen
- Clinical Exercise & Respiratory Physiology Laboratory; Department of Kinesiology & Physical Education; McGill University; Montreal Quebec Canada
| | - Tanja Taivassalo
- Clinical Exercise & Respiratory Physiology Laboratory; Department of Kinesiology & Physical Education; McGill University; Montreal Quebec Canada
| | - Dennis Jensen
- Clinical Exercise & Respiratory Physiology Laboratory; Department of Kinesiology & Physical Education; McGill University; Montreal Quebec Canada
| |
Collapse
|
32
|
Chin RC, Guenette JA, Cheng S, Raghavan N, Amornputtisathaporn N, Cortés-Télles A, Webb KA, O'Donnell DE. Does the respiratory system limit exercise in mild chronic obstructive pulmonary disease? Am J Respir Crit Care Med 2013; 187:1315-23. [PMID: 23590271 DOI: 10.1164/rccm.201211-1970oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE It is not known if abnormal dynamic respiratory mechanics actually limit exercise in patients with mild chronic obstructive pulmonary disease (COPD). We reasoned that failure to increase peak ventilation and Vt in response to dead space (DS) loading during exercise would indicate true ventilatory limitation to exercise in mild COPD. OBJECTIVES To compare the effects of DS loading during exercise on ventilation, breathing pattern, operating lung volumes, and dyspnea intensity in subjects with mild symptomatic COPD and age- and sex-matched healthy control subjects. METHODS Twenty subjects with Global Initiative for Chronic Obstructive Lung Disease stage I COPD and 20 healthy subjects completed two symptom-limited incremental cycle exercise tests, in randomized order: unloaded control and added DS of 0.6 L. MEASUREMENTS AND MAIN RESULTS Peak oxygen uptake and ventilation were significantly lower in COPD than in health by 36% and 41%, respectively. With added DS compared with control, both groups had small decreases in peak work rate and no significant increase in peak ventilation. In health, peak Vt and end-inspiratory lung volume increased significantly with DS. In contrast, the COPD group failed to increase peak end-inspiratory lung volume and had a significantly smaller increase in peak Vt during DS. At 60 W, a 50% smaller increase in Vt (P < 0.001) in response to added DS in COPD compared with health was associated with a greater increase in dyspnea intensity (P = 0.0005). CONCLUSIONS These results show that the respiratory system reached or approached its physiologic limit in mild COPD at a lower peak work rate and ventilation than in healthy participants. Clinical trial registered with www.clinicaltrials.gov (NCT 00975403).
Collapse
Affiliation(s)
- Roberto C Chin
- Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston General Hospital, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Reilly CC, Jolley CJ, Ward K, MacBean V, Moxham J, Rafferty GF. Neural respiratory drive measured during inspiratory threshold loading and acute hypercapnia in healthy individuals. Exp Physiol 2013; 98:1190-8. [PMID: 23504646 DOI: 10.1113/expphysiol.2012.071415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding the effects of respiratory load on neural respiratory drive and respiratory pattern are key to understanding the regulation of load compensation in respiratory disease. The aim of the study was to examine and compare the recruitment pattern of the diaphragm and parasternal intercostal muscles when the respiratory system was loaded using two methods. Twelve subjects performed incremental inspiratory threshold loading up to 50% of their maximal inspiratory pressure, and 10 subjects underwent incremental, steady-state hypercapnia to a maximal inspired CO2 of 5%. The diaphragmatic electromyogram (EMGdi) was measured using a multipair oesophageal catheter, and the parasternal intercostal muscle EMG (sEMGpara) was recorded from bipolar surface electrodes positioned in the second intercostal space. The EMGdi and sEMGpara were analysed over the last minute of each increment of both protocols, normalized using the peak EMG recorded during maximal respiratory manoeuvres and expressed as EMG%max. The EMGdi%max and sEMGpara%max increased in parallel during the two loading methods, although EMGdi%max was consistently greater than sEMGpara%max in both conditions, inspiratory threshold loading [bias (SD) 9 (3)%, 95% limits of agreement 4-15%] and hypercapnia [bias (SD) 6 (3)%, 95% limits of agreement -0.05 to 12%]. Inspiratory threshold loading resulted in more pronounced increases in mean (SD) EMGdi%max [10 (7)-45 (28)%] and sEMGpara%max [5.3 (3.1)-40 (28)%] from baseline compared with EMGdi%max [7 (4)-21 (8)%] and sEMGpara%max [4.7 (2.3)-10 (4)%] during hypercapnia, despite comparable levels of ventilation. These data support the use of sEMGpara%max, as a non-invasive alternative to EMGdi%max recorded with an invasive oesophageal electrode catheter, for the quantification of neural respiratory drive. This technique should make evaluation of respiratory muscle function easier to undertake and therefore more readily acceptable in patients with respiratory disease, in whom transduction of neural respiratory drive to pressure generation can be compromised.
Collapse
Affiliation(s)
- Charles C Reilly
- Department of Asthma, Allergy and Respiratory Science, King's College London School of Medicine, London, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Poon CS, Tin C. Mechanism of augmented exercise hyperpnea in chronic heart failure and dead space loading. Respir Physiol Neurobiol 2012; 186:114-30. [PMID: 23274121 DOI: 10.1016/j.resp.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
Abstract
Patients with chronic heart failure (CHF) suffer increased alveolar VD/VT (dead-space-to-tidal-volume ratio), yet they demonstrate augmented pulmonary ventilation such that arterial [Formula: see text] ( [Formula: see text] ) remains remarkably normal from rest to moderate exercise. This paradoxical effect suggests that the control law governing exercise hyperpnea is not merely determined by metabolic CO2 production ( [Formula: see text] ) per se but is responsive to an apparent (real-feel) metabolic CO2 load ( [Formula: see text] ) that also incorporates the adverse effect of physiological VD/VT on pulmonary CO2 elimination. By contrast, healthy individuals subjected to dead space loading also experience augmented ventilation at rest and during exercise as with increased alveolar VD/VT in CHF, but the resultant response is hypercapnic instead of eucapnic, as with CO2 breathing. The ventilatory effects of dead space loading are therefore similar to those of increased alveolar VD/VT and CO2 breathing combined. These observations are consistent with the hypothesis that the increased series VD/VT in dead space loading adds to [Formula: see text] as with increased alveolar VD/VT in CHF, but this is through rebreathing of CO2 in dead space gas thus creating a virtual (illusory) airway CO2 load within each inspiration, as opposed to a true airway CO2 load during CO2 breathing that clogs the mechanism for CO2 elimination through pulmonary ventilation. Thus, the chemosensing mechanism at the respiratory controller may be responsive to putative drive signals mediated by within-breath [Formula: see text] oscillations independent of breath-to-breath fluctuations of the mean [Formula: see text] level. Skeletal muscle afferents feedback, while important for early-phase exercise cardioventilatory dynamics, appears inconsequential for late-phase exercise hyperpnea.
Collapse
Affiliation(s)
- Chi-Sang Poon
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|