1
|
Boucher M, Henry C, Bossé Y. Force adaptation through the intravenous route in naïve mice. Exp Lung Res 2023; 49:131-141. [PMID: 37477352 DOI: 10.1080/01902148.2023.2237127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Aim of the study: Force adaptation is a process whereby the contractile capacity of the airway smooth muscle increases during a sustained contraction (aka tone). Tone also increases the response to a nebulized challenge with methacholine in vivo, presumably through force adaptation. Yet, due to its patchy pattern of deposition, nebulized methacholine often spurs small airway narrowing heterogeneity and closure, two important enhancers of the methacholine response. This raises the possibility that the potentiating effect of tone on the methacholine response is not due to force adaptation but by furthering heterogeneity and closure. Herein, methacholine was delivered homogenously through the intravenous (i.v.) route. Materials and Methods: Female and male BALB/c mice were subjected to one of two i.v. methacholine challenges, each of the same cumulative dose but starting by a 20-min period either with or without tone induced by serial i.v. boluses. Changes in respiratory mechanics were monitored throughout by oscillometry, and the response after the final dose was compared between the two challenges to assess the effect of tone. Results: For the elastance of the respiratory system (Ers), tone potentiated the methacholine response by 64 and 405% in females (37.4 ± 10.7 vs. 61.5 ± 15.1 cmH2O/mL; p = 0.01) and males (33.0 ± 14.3 vs. 166.7 ± 60.6 cmH2O/mL; p = 0.0004), respectively. For the resistance of the respiratory system (Rrs), tone potentiated the methacholine response by 129 and 225% in females (9.7 ± 3.5 vs. 22.2 ± 4.3 cmH2O·s/mL; p = 0.0003) and males (10.7 ± 3.1 vs. 34.7 ± 7.9 cmH2O·s/mL; p < 0.0001), respectively. Conclusions: As previously reported with nebulized challenges, tone increases the response to i.v. methacholine in both sexes; albeit sexual dimorphisms were obvious regarding the relative resistive versus elastic nature of this potentiation. This represents further support that tone increases the lung response to methacholine through force adaptation.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| |
Collapse
|
2
|
Boucher M, Dufour-Mailhot A, Tremblay-Pitre S, Khadangi F, Rojas-Ruiz A, Henry C, Bossé Y. In mice of both sexes, repeated contractions of smooth muscle in vivo greatly enhance the response of peripheral airways to methacholine. Respir Physiol Neurobiol 2022; 304:103938. [PMID: 35716869 DOI: 10.1016/j.resp.2022.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
BALB/c mice from both sexes underwent one of two nebulized methacholine challenges that were preceded by a period of 20 min either with or without tone induced by repeated contractions of the airway smooth muscle. Impedance was monitored throughout and the constant phase model was used to dissociate the impact of tone on conducting airways (RN - Newtonian resistance) versus the lung periphery (G and H - tissue resistance and elastance). The effect of tone on smooth muscle contractility was also tested on excised tracheas. While tone markedly potentiated the methacholine-induced gains in H and G in both sexes, the gain in RN was only potentiated in males. The contractility of female and male tracheas was also potentiated by tone. Inversely, the methacholine-induced gain in hysteresivity (G/H) was mitigated by tone in both sexes. Therefore, the tone-induced muscle hypercontractility impacts predominantly the lung periphery in vivo, but also promotes further airway narrowing in males while protecting against narrowing heterogeneity in both sexes.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Sophie Tremblay-Pitre
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Andrés Rojas-Ruiz
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada.
| |
Collapse
|
3
|
Jamieson RR, Stasiak SE, Polio SR, Augspurg RD, McCormick CA, Ruberti JW, Parameswaran H. Stiffening of the extracellular matrix is a sufficient condition for airway hyperreactivity. J Appl Physiol (1985) 2021; 130:1635-1645. [PMID: 33792403 DOI: 10.1152/japplphysiol.00554.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The current therapeutic approach to asthma focuses exclusively on targeting inflammation and reducing airway smooth muscle force to prevent the recurrence of symptoms. However, even when inflammation is brought under control, airways in an asthmatic can still hyperconstrict when exposed to a low dose of agonist. This suggests that there are mechanisms at play that are likely triggered by inflammation and eventually become self-sustaining so that even when airway inflammation is brought back under control, these alternative mechanisms continue to drive airway hyperreactivity in asthmatics. In this study, we hypothesized that stiffening of the airway extracellular matrix is a core pathological change sufficient to support excessive bronchoconstriction even in the absence of inflammation. To test this hypothesis, we increased the stiffness of the airway extracellular matrix by photo-crosslinking collagen fibers within the airway wall of freshly dissected bovine rings using riboflavin (vitamin B2) and Ultraviolet-A radiation. In our experiments, collagen crosslinking led to a twofold increase in the stiffness of the airway extracellular matrix. This change was sufficient to cause airways to constrict to a greater degree, and at a faster rate when they were exposed to 10-5 M acetylcholine for 5 min. Our results show that stiffening of the extracellular matrix is sufficient to drive excessive airway constriction even in the absence of inflammatory signals.NEW & NOTEWORTHY Targeting inflammation is the central dogma on which current asthma therapy is based. Here, we show that a healthy airway can be made to constrict excessively and at a faster rate in response to the same stimulus by increasing the stiffness of the extracellular matrix, without the use of inflammatory agents. Our results provide an independent mechanism by which airway remodeling in asthma can sustain airway hyperreactivity even in the absence of inflammatory signals.
Collapse
Affiliation(s)
- Ryan R Jamieson
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Suzanne E Stasiak
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Samuel R Polio
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Ralston D Augspurg
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | | | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | | |
Collapse
|
4
|
van den Bosch WB, James AL, Tiddens HA. Structure and function of small airways in asthma patients revisited. Eur Respir Rev 2021; 30:200186. [PMID: 33472958 PMCID: PMC9488985 DOI: 10.1183/16000617.0186-2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Small airways (<2 mm in diameter) are probably involved across almost all asthma severities and they show proportionally more structural and functional abnormalities with increasing asthma severity. The structural and functional alterations of the epithelium, extracellular matrix and airway smooth muscle in small airways of people with asthma have been described over many years using in vitro studies, animal models or imaging and modelling methods. The purpose of this review was to provide an overview of these observations and to outline several potential pathophysiological mechanisms regarding the role of small airways in asthma.
Collapse
Affiliation(s)
- Wytse B. van den Bosch
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alan L. James
- Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Harm A.W.M. Tiddens
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Abstract
This article will discuss in detail the pathophysiology of asthma from the point of view of lung mechanics. In particular, we will explain how asthma is more than just airflow limitation resulting from airway narrowing but in fact involves multiple consequences of airway narrowing, including ventilation heterogeneity, airway closure, and airway hyperresponsiveness. In addition, the relationship between the airway and surrounding lung parenchyma is thought to be critically important in asthma, especially as related to the response to deep inspiration. Furthermore, dynamic changes in lung mechanics over time may yield important information about asthma stability, as well as potentially provide a window into future disease control. All of these features of mechanical properties of the lung in asthma will be explained by providing evidence from multiple investigative methods, including not only traditional pulmonary function testing but also more sophisticated techniques such as forced oscillation, multiple breath nitrogen washout, and different imaging modalities. Throughout the article, we will link the lung mechanical features of asthma to clinical manifestations of asthma symptoms, severity, and control. © 2020 American Physiological Society. Compr Physiol 10:975-1007, 2020.
Collapse
Affiliation(s)
- David A Kaminsky
- University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Wang L, Chitano P, Seow CY. Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and potential new therapy for asthma. Pharmacol Res 2020; 159:104995. [PMID: 32534100 DOI: 10.1016/j.phrs.2020.104995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
The principle of mechanopharmacology of airway smooth muscle (ASM) is based on the premise that physical agitation, such as pressure oscillation applied to an airway, is able to induce bronchodilation by reducing contractility and softening the cytoskeleton of ASM. Although the underlying mechanism is not entirely clear, there is evidence to suggest that large-amplitude stretches are able to disrupt the actomyosin interaction in the crossbridge cycle and weaken the cytoskeleton in ASM cells. Rho-kinase is known to enhance force generation and strengthen structural integrity of the cytoskeleton during smooth muscle activation and plays a key role in the maintenance of force during prolonged muscle contractions. Synergy in relaxation has been observed when the muscle is subject to oscillatory length change while Rho-kinase is pharmacologically inhibited. In this review, inhibition of Rho-kinase coupled to therapeutic pressure oscillation applied to the airways is explored as a combination treatment for asthma.
Collapse
Affiliation(s)
- Lu Wang
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada.
| | - Pasquale Chitano
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| | - Chun Y Seow
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| |
Collapse
|
7
|
Gazzola M, Henry C, Lortie K, Khadangi F, Park CY, Fredberg JJ, Bossé Y. Airway smooth muscle tone increases actin filamentogenesis and contractile capacity. Am J Physiol Lung Cell Mol Physiol 2020; 318:L442-L451. [PMID: 31850799 DOI: 10.1152/ajplung.00205.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Force adaptation of airway smooth muscle (ASM) is a process whereby the presence of tone (i.e., a sustained contraction) increases the contractile capacity. For example, tone has been shown to increase airway responsiveness in both healthy mice and humans. The goal of the present study is to elucidate the underlying molecular mechanisms. The maximal force generated by mouse tracheas was measured in response to 10-4 M of methacholine following a 30-min period with or without tone elicited by the EC30 of methacholine. To confirm the occurrence of force adaptation at the cellular level, traction force generated by cultured human ASM cells was also measured following a similar protocol. Different pharmacological inhibitors were used to investigate the role of Rho-associated coiled-coil containing protein kinase (ROCK), protein kinase C (PKC), myosin light chain kinase (MLCK), and actin polymerization in force adaptation. The phosphorylation level of the regulatory light chain (RLC) of myosin, the amount of actin filaments, and the activation level of the actin-severing protein cofilin were also quantified. Although ROCK, PKC, MLCK, and RLC phosphorylation was not implicated, force adaptation was prevented by inhibiting actin polymerization. Interestingly, the presence of tone blocked the activation of cofilin in addition to increasing the amount of actin filaments to a maximal level. We conclude that actin filamentogenesis induced by tone, resulting from both actin polymerization and the prevention of cofilin-mediated actin cleavage, is the main molecular mechanism underlying force adaptation.
Collapse
Affiliation(s)
- Morgan Gazzola
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Chan Young Park
- Harvard School of Public Health, Harvard University, Boston, Massachusetts
| | - Jeffrey J Fredberg
- Harvard School of Public Health, Harvard University, Boston, Massachusetts
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Polio SR, Stasiak SE, Jamieson RR, Balestrini JL, Krishnan R, Parameswaran H. Extracellular matrix stiffness regulates human airway smooth muscle contraction by altering the cell-cell coupling. Sci Rep 2019; 9:9564. [PMID: 31267003 PMCID: PMC6606622 DOI: 10.1038/s41598-019-45716-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 06/13/2019] [Indexed: 12/31/2022] Open
Abstract
For an airway or a blood vessel to narrow, there must be a connected path that links the smooth muscle (SM) cells with each other, and transmits forces around the organ, causing it to constrict. Currently, we know very little about the mechanisms that regulate force transmission pathways in a multicellular SM ensemble. Here, we used extracellular matrix (ECM) micropatterning to study force transmission in a two-cell ensemble of SM cells. Using the two-SM cell ensemble, we demonstrate (a) that ECM stiffness acts as a switch that regulates whether SM force is transmitted through the ECM or through cell-cell connections. (b) Fluorescent imaging for adherens junctions and focal adhesions show the progressive loss of cell-cell borders and the appearance of focal adhesions with the increase in ECM stiffness (confirming our mechanical measurements). (c) At the same ECM stiffness, we show that the presence of a cell-cell border substantially decreases the overall contractility of the SM cell ensemble. Our results demonstrate that connectivity among SM cells is a critical factor to consider in the development of diseases such as asthma and hypertension.
Collapse
Affiliation(s)
- Samuel R Polio
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Suzanne E Stasiak
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Ryan R Jamieson
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Jenna L Balestrini
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | | |
Collapse
|
9
|
Lutchen KR, Paré PD, Seow CY. Hyperresponsiveness: Relating the Intact Airway to the Whole Lung. Physiology (Bethesda) 2018; 32:322-331. [PMID: 28615315 DOI: 10.1152/physiol.00008.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
Abstract
We relate changes of the airway wall to the response of the intact airway and the whole lung. We address how mechanical conditions and specific structural changes for an airway contribute to hyperresponsiveness resistant to deep inspiration. This review conveys that the origins of hyperresponsiveness do not devolve into an abnormality at single structural level but require examination of the complex interplay of all the parts.
Collapse
Affiliation(s)
- Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Peter D Paré
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation-St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Chun Y Seow
- Centre for Heart Lung Innovation-St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Lortie K, Maheux C, Gendron D, Langlois A, Beaulieu MJ, Marsolais D, Bossé Y, Blanchet MR. CD34 Differentially Regulates Contractile and Noncontractile Elements of Airway Reactivity. Am J Respir Cell Mol Biol 2018; 58:79-88. [PMID: 28850257 DOI: 10.1165/rcmb.2017-0008oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Airway hyperresponsiveness (AHR), a major hallmark of asthma, results from alterations of contractile and noncontractile elements of airway reactivity. CD34 is a sialomucin that is expressed on various cells involved in asthma, such as eosinophils and airway smooth muscle precursors, highlighting its potential influence in AHR. To study the role of CD34 in regulating the contractile and noncontractile elements of AHR, AHR was induced by chronic exposure to house dust mite (HDM) antigen. To assess the role of CD34 on the contractile elements of AHR, airway reactivity and airway smooth muscle contractility in response to methacholine were measured. To assess CD34's role in regulating the noncontractile elements of AHR, a chimeric mouse model was used to determine the impact of CD34 expression on inflammatory versus microenvironmental cells in AHR development. Extracellular matrix production, mucus production, and mast cell degranulation were also measured. Whereas wild-type mice developed AHR in response to HDM, a loss of airway reactivity was observed in Cd34-/- mice 24 hours after the last exposure to HDM compared with naive controls. This was reversed when airway reactivity was measured 1 week after the last HDM exposure. Additionally, mast cell degranulation and mucus production were altered in the absence of CD34 expression. Importantly, simultaneous expression of CD34 on cells originating from the hematopoietic compartment and the microenvironment was needed for expression of this phenotype. These results provide evidence that CD34 is required for AHR and airway reactivity maintenance in the early days after an inflammatory episode in asthma.
Collapse
Affiliation(s)
- Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Catherine Maheux
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - David Gendron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Anick Langlois
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Marie-Josée Beaulieu
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Marie-Renée Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
11
|
King GG, James A, Harkness L, Wark PAB. Pathophysiology of severe asthma: We've only just started. Respirology 2018; 23:262-271. [PMID: 29316003 DOI: 10.1111/resp.13251] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/14/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Severe asthma is defined by the high treatment requirements to partly or fully control the clinical manifestations of disease. It remains a problem worldwide with a large burden for individuals and health services. The key to improving targeted treatments, reducing disease burden and improving patient outcomes is a better understanding of the pathophysiology and mechanisms of severe disease. The heterogeneity, complexity and difficulties in undertaking clinical studies in severe asthma remain challenges to achieving better understanding and better outcomes. In this review, we focus on the structural, mechanical and inflammatory abnormalities that are relevant in severe asthma.
Collapse
Affiliation(s)
- Gregory G King
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, NSW, Australia.,The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Alan James
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia.,School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Louise Harkness
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Peter A B Wark
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
12
|
Ioan I, Tatopoulos A, Metche S, Coutier L, Houriez E, Kiefer S, Blondé A, Bonabel C, Marchal F, Derelle J, Schweitzer CE, Demoulin-Alexikova S. More Relaxation by Deep Breath on Methacholine- Than on Exercise-Induced bronchoconstriction during the Routine Testing of Asthmatic Children. Front Physiol 2017; 8:768. [PMID: 29046644 PMCID: PMC5632680 DOI: 10.3389/fphys.2017.00768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/20/2017] [Indexed: 01/11/2023] Open
Abstract
Deep inspiration (DI) dilates normal airway precontracted with methacholine. The fact that this effect is diminished or absent in asthma could be explained by the presence of bronchial inflammation. The hypothesis was tested that DI induces more relaxation in methacholine induced bronchoconstriction—solely determined by the smooth muscle contraction—than in exercise induced bronchoconstriction, which is contributed to by both smooth muscle contraction and airway wall inflammation. The respiratory conductance (Grs) response to DI was monitored in asthmatic children presenting a moderately positive airway response to challenge by methacholine (n = 36) or exercise (n = 37), and expressed as the post- to pre-DI Grs ratio (GrsDI). Both groups showed similar change in FEV1 after challenge and performed a DI of similar amplitude. GrsDI however was significantly larger in methacholine than in exercise induced bronchoconstriction (p < 0.02). The bronchodilatory effect of DI is thus less during exercise- than methacholine-induced bronchoconstriction. The observation is consistent with airway wall inflammation—that characterizes exercise induced bronchoconstriction—rendering the airways less responsive to DI. More generally, it is surmised that less relief of bronchoconstriction by DI is to be expected during indirect than direct airway challenge. The current suggestion that airway smooth muscle constriction and airway wall inflammation may result in opposing effects on the bronchomotor action of DI opens important perspective to the routine testing of asthmatic children. New crossover research protocols comparing the mechanical consequences of the DI maneuver are warranted during direct and indirect bronchial challenges.
Collapse
Affiliation(s)
- Iulia Ioan
- Service d'explorations Fonctionnelles Pédiatriques, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,EA 3450 DevAH, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Aurélie Tatopoulos
- Service de Pédiatrie, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Stéphanie Metche
- Service d'explorations Fonctionnelles Pédiatriques, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Laurianne Coutier
- Service d'explorations Fonctionnelles Pédiatriques, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Emmanuelle Houriez
- Service de Pédiatrie, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Sébastien Kiefer
- Service de Pédiatrie, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Aurore Blondé
- Service de Pédiatrie, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Claude Bonabel
- Service d'explorations Fonctionnelles Pédiatriques, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,EA 3450 DevAH, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - François Marchal
- Service d'explorations Fonctionnelles Pédiatriques, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,EA 3450 DevAH, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jocelyne Derelle
- Service de Pédiatrie, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Cyril E Schweitzer
- Service d'explorations Fonctionnelles Pédiatriques, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,EA 3450 DevAH, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Service de Pédiatrie, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Silvia Demoulin-Alexikova
- Service d'explorations Fonctionnelles Pédiatriques, Hôpital d'enfants, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,EA 3450 DevAH, Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
13
|
Gazzola M, Lortie K, Henry C, Mailhot-Larouche S, Chapman DG, Couture C, Seow CY, Paré PD, King GG, Boulet LP, Bossé Y. Airway smooth muscle tone increases airway responsiveness in healthy young adults. Am J Physiol Lung Cell Mol Physiol 2016; 312:L348-L357. [PMID: 27941076 DOI: 10.1152/ajplung.00400.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/22/2022] Open
Abstract
Force adaptation, a process whereby sustained spasmogenic activation (viz., tone) of airway smooth muscle (ASM) increases its contractile capacity, has been reported in isolated ASM tissues in vitro, as well as in mice in vivo. The objective of the present study was to assess the effect of tone on airway responsiveness in humans. Ten healthy volunteers underwent methacholine challenge on two occasions. One challenge consisted of six serial doses of saline followed by a single high dose of methacholine. The other consisted of six low doses of methacholine 5 min apart followed by a higher dose. The cumulative dose was identical for both challenges. After both methacholine challenges, subjects took a deep inspiration (DI) to total lung capacity as another way to probe ASM mechanics. Responses to methacholine and the DI were measured using a multifrequency forced oscillation technique. Compared with a single high dose, the challenge preceded by tone led to an elevated response measured by respiratory system resistance (Rrs) and reactance at 5 Hz. However, there was no difference in the increase in Rrs at 19 Hz, suggesting a predominant effect on smaller airways. Increased tone also reduced the efficacy of DI, measured by an attenuated maximal dilation during the DI and an increased renarrowing post-DI. We conclude that ASM tone increases small airway responsiveness to inhaled methacholine and reduces the effectiveness of DI in healthy humans. This suggests that force adaptation may contribute to airway hyperresponsiveness and the reduced bronchodilatory effect of DI in asthma.
Collapse
Affiliation(s)
- Morgan Gazzola
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Samuel Mailhot-Larouche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - David G Chapman
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Christian Couture
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Chun Y Seow
- University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Peter D Paré
- University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Gregory G King
- Woolcock Institute of Medical Research, Sydney, Australia.,University of Sydney, Sydney, Australia; and.,Cooperative Research Centre for Asthma, Sydney, Australia
| | - Louis-Philippe Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada;
| |
Collapse
|
14
|
Targeting Single Molecules in Asthma Benefits Few. Trends Mol Med 2016; 22:935-945. [PMID: 27692867 DOI: 10.1016/j.molmed.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/05/2023]
Abstract
Asthma is a lung disorder triggered by various airborne factors in susceptible individuals. Although generally controlled, asthma can be severe and difficult to treat. Presently, increasing numbers of pharmaceuticals capable of blocking or mimicking specific endogenous molecules are undergoing clinical trials in asthmatic individuals whose symptoms are poorly controlled despite adherence to guideline therapies. Unfortunately, only a few, meticulously selected patients have been found to minimally benefit. These findings not only confirm that the molecular pathogenesis of severe asthma is variable between patients but also suggest that each molecular defect is likely to contribute little on its own in each patient. We opine that therapies targeting a specific molecular defect are predestined to yield marginal effects in the treatment of severe asthma.
Collapse
|
15
|
Hiorns JE, Bidan CM, Jensen OE, Gosens R, Kistemaker LEM, Fredberg JJ, Butler JP, Krishnan R, Brook BS. Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice. Front Physiol 2016; 7:309. [PMID: 27559314 PMCID: PMC4989902 DOI: 10.3389/fphys.2016.00309] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/07/2016] [Indexed: 01/25/2023] Open
Abstract
The precision-cut lung slice (PCLS) is a powerful tool for studying airway reactivity, but biomechanical measurements to date have largely focused on changes in airway caliber. Here we describe an image processing tool that reveals the associated spatio-temporal changes in airway and parenchymal strains. Displacements of sub-regions within the PCLS are tracked in phase-contrast movies acquired after addition of contractile and relaxing drugs. From displacement maps, strains are determined across the entire PCLS or along user-specified directions. In a representative mouse PCLS challenged with 10(-4)M methacholine, as lumen area decreased, compressive circumferential strains were highest in the 50 μm closest to the airway lumen while expansive radial strains were highest in the region 50-100 μm from the lumen. However, at any given distance from the airway the strain distribution varied substantially in the vicinity of neighboring small airways and blood vessels. Upon challenge with the relaxant agonist chloroquine, although most strains disappeared, residual positive strains remained a long time after addition of chloroquine, predominantly in the radial direction. Taken together, these findings establish strain mapping as a new tool to elucidate local dynamic mechanical events within the constricting airway and its supporting parenchyma.
Collapse
Affiliation(s)
- Jonathan E Hiorns
- School of Mathematical Sciences, University of Nottingham Nottingham, UK
| | - Cécile M Bidan
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique, Université Grenoble AlpesGrenoble, France; Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Oliver E Jensen
- School of Mathematics, University of Manchester Manchester, UK
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard School of Public Health Boston, MA, USA
| | - Jim P Butler
- Department of Environmental Health, Harvard School of Public Health Boston, MA, USA
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham Nottingham, UK
| |
Collapse
|
16
|
Chapman DG, Irvin CG. Mechanisms of airway hyper-responsiveness in asthma: the past, present and yet to come. Clin Exp Allergy 2015; 45:706-19. [PMID: 25651937 DOI: 10.1111/cea.12506] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Airway hyper-responsiveness (AHR) has long been considered a cardinal feature of asthma. The development of the measurement of AHR 40 years ago initiated many important contributions to our understanding of asthma and other airway diseases. However, our understanding of AHR in asthma remains complicated by the multitude of potential underlying mechanisms which in reality are likely to have different contributions amongst individual patients. Therefore, the present review will discuss the current state of understanding of the major mechanisms proposed to contribute to AHR and highlight the way in which AHR testing is beginning to highlight distinct abnormalities associated with clinically relevant patient populations. In doing so we aim to provide a foundation by which future research can begin to ascribe certain mechanisms to specific patterns of bronchoconstriction and subsequently match phenotypes of bronchoconstriction with clinical phenotypes. We believe that this approach is not only within our grasp but will lead to improved mechanistic understanding of asthma phenotypes and we hoped to better inform the development of phenotype-targeted therapy.
Collapse
Affiliation(s)
- D G Chapman
- Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | | |
Collapse
|
17
|
Auger L, Mailhot-Larouche S, Tremblay F, Poirier M, Farah C, Bossé Y. The contractile lability of smooth muscle in asthmatic airway hyperresponsiveness. Expert Rev Respir Med 2015; 10:19-27. [PMID: 26561333 DOI: 10.1586/17476348.2016.1111764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The contractile capacity of airway smooth muscle is not fixed but modulated by an impressive number of extracellular inflammatory mediators. Targeting the transient component of airway hyperresponsiveness ascribed to this contractile lability of ASM is a quest of great promises in order to alleviate asthma symptoms during inflammatory flares. However, owing to the plethora of mediators putatively involved and the molecular heterogeneity of asthma, it is more likely that many mediators conspire to increase the contractile capacity of ASM, each of which contributing to a various extent and in a time-varying fashion in individuals suffering from asthma. The task of identifying a common mend for a tissue rendered hypercontractile by imponderable assortments of inflammatory mediators is puzzling.
Collapse
Affiliation(s)
- Laurence Auger
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Samuel Mailhot-Larouche
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Francis Tremblay
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Mathilde Poirier
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Claude Farah
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Ynuk Bossé
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| |
Collapse
|
18
|
Harvey BC, Parameswaran H, Lutchen KR. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways? J Appl Physiol (1985) 2015; 119:47-54. [PMID: 25953836 DOI: 10.1152/japplphysiol.01100.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/01/2015] [Indexed: 01/20/2023] Open
Abstract
Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction.
Collapse
Affiliation(s)
- Brian C Harvey
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
19
|
Bougault V, Blouin E, Turmel J, Boulet LP. Airway response to methacholine following eucapnic voluntary hyperpnea in athletes. PLoS One 2015; 10:e0121781. [PMID: 25789614 PMCID: PMC4366214 DOI: 10.1371/journal.pone.0121781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022] Open
Abstract
Aim To evaluate the changes in airway responsiveness to methacholine inhalation test (MIT) when performed after an eucapnic voluntary hyperpnea challenge (EVH) in athletes. Methods Two MIT preceded (visit 1) or not (visit 2) by an EVH, were performed in 28 athletes and 24 non-athletes. Twelve athletes and 13 non-athletes had airway hyperresponsiveness (AHR) to methacholine, and 11 athletes and 11 non-athletes had AHR to EVH (EVH+). Results The MIT PC20 post-EVH was significantly lower compared to baseline MIT PC20 by 1.3±0.7 doubling-concentrations in EVH+ athletes only (p<0.0001). No significant change was observed in EVH- athletes and EVH+/EVH- non-athletes. A significant correlation between the change in MIT PC20 post-EVH and EVH+/EVH- status and athlete/nonathlete status was found (Adjusted R2=0.26 and p<0.001). Three (11%) athletes and one (4%) non-athlete had a change in the diagnosis of AHR when MIT was performed consecutively to EVH. Conclusion The responsiveness to methacholine was increased by a previous indirect challenge in EVH+ athletes only. The mechanisms for such increase remain to be determined. MIT and EVH should ideally be performed on separate occasions as there is a small but possible risk to obtain a false-positive response to methacholine when performed immediately after the EVH. Trial Registration ClinicalTrials.gov NCT00686491
Collapse
Affiliation(s)
- Valérie Bougault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Université de Lille, EA4488 « Activité physique, muscle, santé », Lille, France
| | - Evelyne Blouin
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Julie Turmel
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Louis-Philippe Boulet
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- * E-mail:
| |
Collapse
|
20
|
Lee-Gosselin A, Gendron D, Blanchet MR, Marsolais D, Bossé Y. The gain of smooth muscle's contractile capacity induced by tone on in vivo airway responsiveness in mice. J Appl Physiol (1985) 2015; 118:692-8. [PMID: 25571989 DOI: 10.1152/japplphysiol.00645.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Airway hyperresponsiveness to a spasmogenic challenge such as methacholine, and an increased baseline tone measured by the reversibility of airway obstruction with a bronchodilator, are two common features of asthma. However, whether the increased tone influences the degree of airway responsiveness to a spasmogen is unclear. Herein, we hypothesized that increased tone augments airway responsiveness in vivo by increasing the contractile capacity of airway smooth muscle (ASM). Anesthetized, tracheotomized, paralyzed, and mechanically ventilated mice were either exposed (experimental group) or not (control group) to tone for 20 min, which was elicited by nebulizing serial small doses of methacholine. Respiratory system resistance was monitored during this period and the peak response to a large cumulative dose of methacholine was then measured at the end of 20 min to assess and compare the level of airway responsiveness between groups. To confirm direct ASM involvement, the contractile capacity of excised murine tracheas was measured with and without preexposure to tone elicited by either methacholine or a thromboxane A2 mimetic (U46619). Distinct spasmogens were tested because the spasmogens liable for increased tone in asthma are likely to differ. The results indicate that preexposure to tone increases airway responsiveness in vivo by 126 ± 37% and increases the contractile capacity of excised tracheas ex vivo by 23 ± 4% for methacholine and 160 ± 63% for U46619. We conclude that an increased tone, regardless of whether it is elicited by a muscarinic agonist or a thromboxane A2 mimetic, may contribute to airway hyperresponsiveness by increasing the contractile capacity of ASM.
Collapse
Affiliation(s)
- Audrey Lee-Gosselin
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - David Gendron
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Marie-Renée Blanchet
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - David Marsolais
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Ynuk Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
21
|
Lutchen KR. Airway smooth muscle stretch and airway hyperresponsiveness in asthma: have we chased the wrong horse? J Appl Physiol (1985) 2013; 116:1113-5. [PMID: 24265278 DOI: 10.1152/japplphysiol.00968.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Perpiñá Tordera M, García Río F, Álvarez Gutierrez FJ, Cisneros Serrano C, Compte Torrero L, Entrenas Costa LM, Melero Moreno C, Rodríguez Nieto MJ, Torrego Fernández A. Guidelines for the Study of Nonspecific Bronchial Hyperresponsiveness in Asthma. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.arbr.2013.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Perpiñá Tordera M, García Río F, Álvarez Gutierrez FJ, Cisneros Serrano C, Compte Torrero L, Entrenas Costa LM, Melero Moreno C, Rodríguez Nieto MJ, Torrego Fernández A. Guidelines for the study of nonspecific bronchial hyperresponsiveness in asthma. Spanish Society of Pulmonology and Thoracic Surgery (SEPAR). Arch Bronconeumol 2013; 49:432-46. [PMID: 23896599 DOI: 10.1016/j.arbres.2013.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 11/20/2022]
|
24
|
Paré PD, Mitzner W. Counterpoint: alterations in airway smooth muscle phenotype do not cause airway hyperresponsiveness in asthma. J Appl Physiol (1985) 2013; 113:839-42. [PMID: 22942220 DOI: 10.1152/japplphysiol.00483.2012a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Peter D Paré
- Department of Laboratory Medicine and Pathology University of British Columbia
| | | |
Collapse
|
25
|
Pascoe CD, Seow CY, Paré PD, Bossé Y. Decrease of airway smooth muscle contractility induced by simulated breathing maneuvers is not simply proportional to strain. J Appl Physiol (1985) 2013. [DOI: 10.1152/japplphysiol.00870.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lung is a dynamic organ and the oscillating stress applied to the airway wall during breathing maneuvers can decrease airway smooth muscle (ASM) contractility. However, it is unclear whether it is the stress or the attendant strain that is responsible for the decline of ASM force associated with breathing maneuvers, and whether tone can prevent the decline of force by attenuating the strain. To investigate these questions, ovine tracheal strips were subjected to oscillating stress that simulates breathing maneuvers, and the resulting strain and decline of force were measured in the absence or presence of different levels of tone elicited by acetylcholine. In relaxed ASM, high stress simulating 20 cm H2O-transpulmonary pressure excursions strained ASM strips by 20.7% and decreased force by 17.1%. When stress oscillations were initiated during measurement of ACh concentration-response curves, tone almost abrogated strain at an ACh concentration of 10−6 M (1.1%) but the decline of force was not affected (18.9%). When stress oscillations were initiated after ACh-induced contraction had reached its maximal force, strain was almost abrogated at an ACh concentration of 10−6 M (0.9%) and the decline of force was attenuated (10.1%). However, even at the highest ACh concentration (10−4 M), substantial decline of force (6.1%) was still observed despite very small strain (0.7%). As expected, the results indicate that tone attenuated the strain experienced by ASM during breathing maneuver simulations. More surprisingly, the reduction of strain induced by tone was not proportional to its effect on the decline of force induced by simulated breathing maneuvers.
Collapse
Affiliation(s)
- Chris D. Pascoe
- University of British Columbia, James Hogg Research Center, St. Paul's Hospital Vancouver, British Columbia, Canada
| | - Chun Y. Seow
- University of British Columbia, James Hogg Research Center, St. Paul's Hospital Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter D. Paré
- University of British Columbia, James Hogg Research Center, St. Paul's Hospital Vancouver, British Columbia, Canada
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ynuk Bossé
- University of British Columbia, James Hogg Research Center, St. Paul's Hospital Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
A Brief History of Airway Smooth Muscle's Role in Airway Hyperresponsiveness. J Allergy (Cairo) 2012; 2012:768982. [PMID: 23118776 PMCID: PMC3483821 DOI: 10.1155/2012/768982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
A link between airway smooth muscle (ASM) and airway hyperresponsiveness (AHR) in asthma was first postulated in the midnineteenth century, and the suspected link has garnered ever increasing interest over the years. AHR is characterized by excessive narrowing of airways in response to nonspecific stimuli, and it is the ASM that drives this narrowing. The stimuli that can be used to demonstrate AHR vary widely, as do the potential mechanisms by which phenotypic changes in ASM or nonmuscle factors can contribute to AHR. In this paper, we review the history of research on airway smooth muscle's role in airway hyperresponsiveness. This research has ranged from analyzing the quantity of ASM in the airways to testing for alterations in the plastic behavior of smooth muscle, which distinguishes it from skeletal and cardiac muscles. This long history of research and the continued interest in this topic mean that the precise role of ASM in airway responsiveness remains elusive, which makes it a pertinent topic for this collection of articles.
Collapse
|
27
|
Pascoe C, Jiao Y, Seow CY, Paré PD, Bossé Y. Force oscillations simulating breathing maneuvers do not prevent force adaptation. Am J Respir Cell Mol Biol 2012; 47:44-9. [PMID: 22323367 DOI: 10.1165/rcmb.2011-0429oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway inflammation in patients with asthma exposes the airway smooth muscle (ASM) to a variety of spasmogens. These spasmogens increase ASM tone, which can lead to force adaptation. Length oscillations of ASM, which occur in vivo due to breathing maneuvers, can attenuate force adaptation. However, in the presence of tone, the force oscillations required to achieve these length oscillations may be unphysiologic (i.e., magnitude greater than the ones achieved due to the swings in transpulmonary pressure required for breathing). In the present study, we applied force oscillations simulating the tension oscillations experienced by the wall of a fourth-generation airway during tidal breathing with or without deep inspirations (DI) to ASM. The goal was to investigate whether force adaptation occurs in conditions mimicking breathing maneuvers. Tone was induced by carbachol (average, 20 nM), and the force-generating capacity of the ASM was assessed at 5-minute intervals before and after carbachol administration using electrical field stimulations (EFS). The results show that force oscillations applied before the introduction of tone had a small effect on the force produced by EFS (declined to 96.8% [P > 0.05] and 92.3% [P < 0.05] with and without DI, respectively). The tone induced by carbachol transiently decreased after a DI and declined significantly (P < 0.05) due to tidal breathing oscillations (25%). These force oscillations did not prevent force adaptation (gain of force of 11.2 ± 2.2 versus 13.5 ± 2.7 and 11.2 ± 3.0% in static versus dynamic conditions with or without DI, respectively). The lack of effect of simulated breathing maneuvers on force adaptation suggests that this gain in ASM force may occur in vivo and could contribute to the development of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Chris Pascoe
- University of British Columbia, James Hogg Research Center, St. Paul’s Hospital Vancouver, Canada
| | | | | | | | | |
Collapse
|