1
|
Simera M, Berikova D, Hovengen OJ, Laheye M, Veternik M, Martvon L, Kotmanova Z, Cibulkova L, Poliacek I. Role of the pontine respiratory group in the suppression of cough by codeine in cats. Respir Physiol Neurobiol 2024; 330:104326. [PMID: 39209015 DOI: 10.1016/j.resp.2024.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Codeine was microinjected into the area of the Kölliker-Fuse nucleus and the adjacent lateral parabrachial nucleus, within the pontine respiratory group in 8 anesthetized cats. Electromyograms (EMGs) of the diaphragm (DIA) and abdominal muscles (ABD), esophageal pressures (EP), and blood pressure were recorded and analyzed during mechanically induced tracheobronchial cough. Unilateral microinjections of 3.3 mM codeine (3 injections, each 37 ± 1.2 nl) had no significant effect on the cough number. However, the amplitudes of the cough ABD EMG, expiratory EP and, to a lesser extent, DIA EMG were significantly reduced. There were no significant changes in the temporal parameters of the cough. Control microinjections of artificial cerebrospinal fluid in 6 cats did not show a significant effect on cough data compared to those after codeine microinjections. Codeine-sensitive neurons in the rostral dorsolateral pons contribute to controlling cough motor output, likely through the central pattern generator of cough.
Collapse
Affiliation(s)
- Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Denisa Berikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia.
| | - Ole-Jacob Hovengen
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Marek Laheye
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Lukas Martvon
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Lucia Cibulkova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| |
Collapse
|
2
|
Olsen WL, Rose M, Golder FJ, Wang C, Hammond JC, Bolser DC. Intra-Arterial, but Not Intrathecal, Baclofen and Codeine Attenuates Cough in the Cat. Front Physiol 2021; 12:640682. [PMID: 33746778 PMCID: PMC7973226 DOI: 10.3389/fphys.2021.640682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022] Open
Abstract
Centrally-acting antitussive drugs are thought to act solely in the brainstem. However, the role of the spinal cord in the mechanism of action of these drugs is unknown. The purpose of this study was to determine if antitussive drugs act in the spinal cord to reduce the magnitude of tracheobronchial (TB) cough-related expiratory activity. Experiments were conducted in anesthetized, spontaneously breathing cats (n = 22). Electromyograms (EMG) were recorded from the parasternal (PS) and transversus abdominis (TA) or rectus abdominis muscles. Mechanical stimulation of the trachea or larynx was used to elicit TB cough. Baclofen (10 and 100 μg/kg, GABA-B receptor agonist) or codeine (30 μg/kg, opioid receptor agonist) was administered into the intrathecal (i.t.) space and also into brainstem circulation via the vertebral artery. Cumulative doses of i.t. baclofen or codeine had no effect on PS, abdominal muscle EMGs or cough number during the TB cough. Subsequent intra-arterial (i.a.) administration of baclofen or codeine significantly reduced magnitude of abdominal and PS muscles during TB cough. Furthermore, TB cough number was significantly suppressed by i.a. baclofen. The influence of these drugs on other behaviors that activate abdominal motor pathways was also assessed. The abdominal EMG response to noxious pinch of the tail was suppressed by i.t. baclofen, suggesting that the doses of baclofen that were employed were sufficient to affect spinal pathways. However, the abdominal EMG response to expiratory threshold loading was unaffected by i.t. administration of either baclofen or codeine. These results indicate that neither baclofen nor codeine suppress cough via a spinal action and support the concept that the antitussive effect of these drugs is restricted to the brainstem.
Collapse
Affiliation(s)
- Wendy L. Olsen
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | | | | | | | | | | |
Collapse
|
3
|
Martvon L, Kotmanova Z, Dobrolubov B, Babalova L, Simera M, Veternik M, Pitts T, Jakus J, Poliacek I. Modulation of Cough Reflex by Gaba-Ergic Inhibition in Medullary Raphé of the Cat. Physiol Res 2020; 69:S151-S161. [PMID: 32228021 DOI: 10.33549/physiolres.934401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We studied the effects of GABA receptor agonists microinjections in medullary raphé on the mechanically induced tracheobronchial cough response in anesthetized, unparalyzed, spontaneously breathing cats. The results suggest that GABA-ergic inhibition significantly contributes to the regulation of cough reflex by action of both GABA(A) and GABA(B) receptors. The data are consistent with inhomogeneous occurrence of GABA-ergic neurons in medullary raphé and their different involvement in the cough reflex control. Cells within rostral nucleus raphéobscurus with dominant role of GABA(A) receptors and neurons of rostral nucleus raphépallidus and caudal nucleus raphémagnus with dominant role of GABA(B) receptors participate in regulation of cough expiratory efforts. These cough control elements are distinct from cough gating mechanism. GABA-ergic inhibition in the raphé caudal to obex had insignificant effect on cough. Contradictory findings for GABA, muscimol and baclofen administration in medullary raphé suggest involvement of coordinated activity of GABA on multiple receptors affecting raphé neurons and/or the local neuronal circuits in the raphé modulating cough motor drive.
Collapse
Affiliation(s)
- L Martvon
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin,
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Poliacek I, Simera M, Veternik M, Kotmanova Z, Bolser DC, Machac P, Jakus J. Role of the dorsomedial medulla in suppression of cough by codeine in cats. Respir Physiol Neurobiol 2017; 246:59-66. [PMID: 28778649 DOI: 10.1016/j.resp.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/23/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
Abstract
The modulation of cough by microinjections of codeine in 3 medullary regions, the solitary tract nucleus rostral to the obex (rNTS), caudal to the obex (cNTS) and the lateral tegmental field (FTL) was studied. Experiments were performed on 27 anesthetized spontaneously breathing cats. Electromyograms (EMG) were recorded from the sternal diaphragm and expiratory muscles (transversus abdominis and/or obliquus externus; ABD). Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. Bilateral microinjections of codeine (3.3 or 33mM, 54±16nl per injection) in the cNTS had no effect on cough, while those in the rNTS and in the FTL reduced coughing. Bilateral microinjections into the rNTS (3.3mM codeine, 34±1 nl per injection) reduced the number of cough responses by 24% (P<0.05), amplitudes of diaphragm EMG by 19% (P<0.01), of ABD EMG by 49% (P<0.001) and of expiratory esophageal pressure by 56% (P<0.001). Bilateral microinjections into the FTL (33mM codeine, 33±3 nl per injection) induced reductions in cough expiratory as well as inspiratory EMG amplitudes (ABD by 60% and diaphragm by 34%; P<0.01) and esophageal pressure amplitudes (expiratory by 55% and inspiratory by 26%; P<0.001 and 0.01, respectively). Microinjections of vehicle did not significantly alter coughing. Breathing was not affected by microinjections of codeine. These results suggest that: 1) codeine acts within the rNTS and the FTL to reduce cough in the cat, 2) the neuronal circuits in these target areas have unequal sensitivity to codeine and/or they have differential effects on spatiotemporal control of cough, 3) the cNTS has a limited role in the cough suppression induced by codeine in cats.
Collapse
Affiliation(s)
- Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Donald C Bolser
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Peter Machac
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Jan Jakus
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| |
Collapse
|
5
|
Changes in vagal afferent drive alter tracheobronchial coughing in anesthetized cats. Respir Physiol Neurobiol 2016; 230:36-43. [DOI: 10.1016/j.resp.2016.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/24/2022]
|
6
|
Poliacek I, Jakus J, Simera M, Veternik M, Plevkova J. Control of coughing by medullary raphé. PROGRESS IN BRAIN RESEARCH 2014; 212:277-95. [DOI: 10.1016/b978-0-444-63488-7.00014-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Differential Effects of Kainic Acid Lesions in Medullary Raphe on Cough and Sneeze in Anesthetized Rabbits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-94-007-6627-3_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|