1
|
Orcioli-Silva D, Beretta VS, Santos PCR, Rasteiro FM, Marostegan AB, Vitório R, Gobatto CA, Manchado-Gobatto FB. Cerebral and muscle tissue oxygenation during exercise in healthy adults: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:459-471. [PMID: 38462172 PMCID: PMC11184313 DOI: 10.1016/j.jshs.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 02/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Near-infrared spectroscopy (NIRS) technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise. Since this technology has been growing and is now successfully used in laboratory and sports settings, this systematic review aimed to synthesize the evidence and enhance an integrative understanding of blood flow adjustments and oxygen (O2) changes (i.e., the balance between O2 delivery and O2 consumption) within the cerebral and muscle systems during exercise. METHODS A systematic review was conducted using PubMed, Embase, Scopus, and Web of Science databases to search for relevant studies that simultaneously investigated cerebral and muscle hemodynamic changes using the near-infrared spectroscopy system during exercise. This review considered manuscripts written in English and available before February 9, 2023. Each step of screening involved evaluation by 2 independent authors, with disagreements resolved by a third author. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodological quality of the studies. RESULTS Twenty studies were included, of which 80% had good methodological quality, and involved 290 young or middle-aged adults. Different types of exercises were used to assess cerebral and muscle hemodynamic changes, such as cycling (n = 11), treadmill (n = 1), knee extension (n = 5), isometric contraction of biceps brachii (n = 3), and duet swim routines (n = 1). The cerebral hemodynamics analysis was focused on the frontal cortex (n = 20), while in the muscle, the analysis involved vastus lateralis (n = 18), gastrocnemius (n = 3), biceps brachii (n = 5), deltoid (n = 1), and intercostal muscle (n = 1). Overall, muscle deoxygenation increases during exercise, reaching a plateau in voluntary exhaustion, while in the brain, oxyhemoglobin concentration increases with exercise intensity, reaching a plateau or declining at the exhaustion point. CONCLUSION Muscle and cerebral oxygenation respond differently to exercise, with muscle increasing O2 utilization and cerebral tissue increasing O2 delivery during exercise. However, at the exhaustion point, both muscle and cerebral oxygenation become compromised. This is characterized by a reduction in blood flow and a decrease in O2 extraction in the muscle, while in the brain, oxygenation reaches a plateau or decline, potentially resulting in motor failure during exercise.
Collapse
Affiliation(s)
- Diego Orcioli-Silva
- Laboratory of Applied Sport Physiology (LAFAE), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil; Posture and Gait Studies Laboratory (LEPLO), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, Brazil.
| | - Victor Spiandor Beretta
- Physical Education Department, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil
| | - Paulo Cezar Rocha Santos
- Department of Computer Science & Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel; Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan 5265601, Israel
| | - Felipe Marroni Rasteiro
- Laboratory of Applied Sport Physiology (LAFAE), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil
| | - Anita Brum Marostegan
- Laboratory of Applied Sport Physiology (LAFAE), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil
| | - Rodrigo Vitório
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology (LAFAE), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil
| | - Fúlvia Barros Manchado-Gobatto
- Laboratory of Applied Sport Physiology (LAFAE), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil
| |
Collapse
|
2
|
Rissanen APE, Mikkola T, Gagnon DD, Lehtonen E, Lukkarinen S, Peltonen JE. Wagner diagram for modeling O 2pathway-calculation and graphical display by the Helsinki O 2Pathway Tool. Physiol Meas 2024; 45:055028. [PMID: 38749432 DOI: 10.1088/1361-6579/ad4c36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Objective.Maximal O2uptake (V˙O2max) reflects the individual's maximal rate of O2transport and utilization through the integrated whole-body pathway composed of the lungs, heart, blood, circulation, and metabolically active tissues. As such,V˙O2maxis strongly associated with physical capacity as well as overall health and thus acts as one predictor of physical performance and as a vital sign in determination of status and progress of numerous clinical conditions. Quantifying the contribution of single parts of the multistep O2pathway toV˙O2maxprovides mechanistic insights into exercise (in)tolerance and into therapy-, training-, or disuse-induced adaptations at individual or group levels. We developed a desktop application (Helsinki O2Pathway Tool-HO2PT) to model numerical and graphical display of the O2pathway based on the 'Wagner diagram' originally formulated by Peter D. Wagner and his colleagues.Approach.The HO2PT was developed and programmed in Python to integrate the Fick principle and Fick's law of diffusion into a computational system to import, calculate, graphically display, and export variables of the Wagner diagram.Main results.The HO2PT models O2pathway both numerically and graphically according to the Wagner diagram and pertains to conditions under which the mitochondrial oxidative capacity of metabolically active tissues exceeds the capacity of the O2transport system to deliver O2to the mitochondria. The tool is based on the Python open source code and libraries and freely and publicly available online for Windows, macOS, and Linux operating systems.Significance.The HO2PT offers a novel functional and demonstrative platform for those interested in examiningV˙O2maxand its determinants by using the Wagner diagram. It will improve access to and usability of Wagner's and his colleagues' integrated physiological model and thereby benefit users across the wide spectrum of contexts such as scientific research, education, exercise testing, sports coaching, and clinical medicine.
Collapse
Affiliation(s)
- Antti-Pekka E Rissanen
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Mikkola
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- School of Information and Communication Technology, Metropolia University of Applied Sciences, Helsinki, Finland
| | - Dominique D Gagnon
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- School of Kinesiology and Health Sciences, Laurentian University, Sudbury, ON, Canada
| | - Elias Lehtonen
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sakari Lukkarinen
- School of Information and Communication Technology, Metropolia University of Applied Sciences, Helsinki, Finland
| | - Juha E Peltonen
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Huiberts RO, Wüst RCI, van der Zwaard S. Concurrent Strength and Endurance Training: A Systematic Review and Meta-Analysis on the Impact of Sex and Training Status. Sports Med 2024; 54:485-503. [PMID: 37847373 PMCID: PMC10933151 DOI: 10.1007/s40279-023-01943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Many sports require maximal strength and endurance performance. Concurrent strength and endurance training can lead to suboptimal training adaptations. However, how adaptations differ between males and females is currently unknown. Additionally, current training status may affect training adaptations. OBJECTIVE We aimed to assess sex-specific differences in adaptations in strength, power, muscle hypertrophy, and maximal oxygen consumption ( V ˙ O2max) to concurrent strength and endurance training in healthy adults. Second, we investigated how training adaptations are influenced by strength and endurance training status. METHODS A systematic review and meta-analysis was conducted according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, and a Cochrane risk of bias was evaluated. ISI Web of science, PubMed/MEDLINE, and SPORTDiscus databases were searched using the following inclusion criteria: healthy adults aged 18-50 years, intervention period of ≥ 4 weeks, and outcome measures were defined as upper- and lower-body strength, power, hypertrophy, and/or V ˙ O2max. A meta-analysis was performed using a random-effects model and reported in standardized mean differences. RESULTS In total, 59 studies with 1346 participants were included. Concurrent training showed blunted lower-body strength adaptations in males, but not in females (male: - 0.43, 95% confidence interval [- 0.64 to - 0.22], female: 0.08 [- 0.34 to 0.49], group difference: P = 0.03). No sex differences were observed for changes in upper-body strength (P = 0.67), power (P = 0.37), or V ˙ O2max (P = 0.13). Data on muscle hypertrophy were insufficient to draw any conclusions. For training status, untrained but not trained or highly trained endurance athletes displayed lower V ˙ O2max gains with concurrent training (P = 0.04). For other outcomes, no differences were found between untrained and trained individuals, both for strength and endurance training status. CONCLUSIONS Concurrent training results in small interference for lower-body strength adaptations in males, but not in females. Untrained, but not trained or highly trained endurance athletes demonstrated impaired improvements in V ˙ O2max following concurrent training. More studies on females and highly strength-trained and endurance-trained athletes are warranted. CLINICAL TRIAL REGISTRATION PROSPERO: CRD42022370894.
Collapse
Affiliation(s)
- Raven O Huiberts
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
- Department of Cardiology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Sendra-Pérez C, Priego-Quesada JI, Salvador-Palmer R, Murias JM, Encarnacion-Martinez A. Sex-related differences in profiles of muscle oxygen saturation of different muscles in trained cyclists during graded cycling exercise. J Appl Physiol (1985) 2023; 135:1092-1101. [PMID: 37732376 DOI: 10.1152/japplphysiol.00420.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/22/2023] Open
Abstract
Although in recent years near-infrared spectroscopy has been used in many sports to monitor muscle oxygen saturation (SmO2), there is a lack of knowledge about the sex differences in SmO2 during exercise in different muscles. Our study aimed to examine SmO2 differences in muscles between female and male cyclists, during a graded cycling test and at the first and second lactate thresholds. Twenty-five trained cyclists and triathletes (15 males: 23 ± 7 yr, 1.78 ± 0.05 m, 70.2 ± 5.3 kg, and 10 females: 22 ± 5 yr, 1.64 ± 0.06 m, 58 ± 8 kg) performed a graded cycling test on the cycle ergometer. Power output and SmO2 in five muscles (dominant vastus lateralis, tibialis anterior, gastrocnemius medial, biceps femoris, and triceps brachii) were measured. Our mixed regression models showed that the interaction between power output and sex was significant for all the muscles analyzed (P < 0.001), indicating a greater decrease in SmO2 for males as power output increased. Moreover, the statistical parametric mapping analyses showed for females higher SmO2 in the middle of the test in biceps femoris (P = 0.03), gastrocnemius medial (P = 0.02), and tibialis anterior (P = 0.04). Finally, the males presented a lower SmO2 in all muscles where the second lactate threshold occurred, with greater evidence than in the first lactate threshold. In conclusion, females have higher SmO2 in all muscles, and these differences are more noticeable during the graded cycling test, such that males seem to have a greater reliance on oxygen extraction than females for a given relative intensity of exercise.NEW & NOTEWORTHY This study investigated the profiles of muscle oxygen saturation (SmO2) during incremental exercise in females and males. Females presented higher overall SmO2 than males during moderate and heavy intensity domain exercise in all muscles including muscles that are not mainly involved in pedaling (triceps brachii), from those that are stabilizers (medial gastrocnemius, tibialis anterior, and biceps femoris), to those that are related to power output production (vastus lateralis).
Collapse
Affiliation(s)
- Carlos Sendra-Pérez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain
| | - Jose I Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Madrid, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| | - Rosario Salvador-Palmer
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Madrid, Spain
- Biophysics and Medical Physics Group, Department of Physiology, Universitat de València, Valencia, Spain
| | - Juan M Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Alberto Encarnacion-Martinez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain
- Red Española de Investigación del Rendimiento Deportivo en Ciclismo y Mujer (REDICYM), Consejo Superior de Deportes (CSD), Madrid, Spain
| |
Collapse
|
5
|
Webb KL, Gorman EK, Morkeberg OH, Klassen SA, Regimbal RJ, Wiggins CC, Joyner MJ, Hammer SM, Senefeld JW. The relationship between hemoglobin and [Formula: see text]: A systematic review and meta-analysis. PLoS One 2023; 18:e0292835. [PMID: 37824583 PMCID: PMC10569622 DOI: 10.1371/journal.pone.0292835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE There is widespread agreement about the key role of hemoglobin for oxygen transport. Both observational and interventional studies have examined the relationship between hemoglobin levels and maximal oxygen uptake ([Formula: see text]) in humans. However, there exists considerable variability in the scientific literature regarding the potential relationship between hemoglobin and [Formula: see text]. Thus, we aimed to provide a comprehensive analysis of the diverse literature and examine the relationship between hemoglobin levels (hemoglobin concentration and mass) and [Formula: see text] (absolute and relative [Formula: see text]) among both observational and interventional studies. METHODS A systematic search was performed on December 6th, 2021. The study procedures and reporting of findings followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Article selection and data abstraction were performed in duplicate by two independent reviewers. Primary outcomes were hemoglobin levels and [Formula: see text] values (absolute and relative). For observational studies, meta-regression models were performed to examine the relationship between hemoglobin levels and [Formula: see text] values. For interventional studies, meta-analysis models were performed to determine the change in [Formula: see text] values (standard paired difference) associated with interventions designed to modify hemoglobin levels or [Formula: see text]. Meta-regression models were then performed to determine the relationship between a change in hemoglobin levels and the change in [Formula: see text] values. RESULTS Data from 384 studies (226 observational studies and 158 interventional studies) were examined. For observational data, there was a positive association between absolute [Formula: see text] and hemoglobin levels (hemoglobin concentration, hemoglobin mass, and hematocrit (P<0.001 for all)). Prespecified subgroup analyses demonstrated no apparent sex-related differences among these relationships. For interventional data, there was a positive association between the change of absolute [Formula: see text] (standard paired difference) and the change in hemoglobin levels (hemoglobin concentration (P<0.0001) and hemoglobin mass (P = 0.006)). CONCLUSION These findings suggest that [Formula: see text] values are closely associated with hemoglobin levels among both observational and interventional studies. Although our findings suggest a lack of sex differences in these relationships, there were limited studies incorporating females or stratifying results by biological sex.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Olaf H. Morkeberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Riley J. Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shane M. Hammer
- Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
6
|
Lehto T, Zetterman T, Markkula R, Arokoski J, Tikkanen H, Kalso E, Peltonen JE. Cardiac output and arteriovenous oxygen difference contribute to lower peak oxygen uptake in patients with fibromyalgia. BMC Musculoskelet Disord 2023; 24:541. [PMID: 37393269 DOI: 10.1186/s12891-023-06589-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/30/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Patients with fibromyalgia (FM) exhibit low peak oxygen uptake ([Formula: see text]O2peak). We aimed to detect the contribution of cardiac output to ([Formula: see text]) and arteriovenous oxygen difference [Formula: see text] to [Formula: see text] from rest to peak exercise in patients with FM. METHODS Thirty-five women with FM, aged 23 to 65 years, and 23 healthy controls performed a step incremental cycle ergometer test until volitional fatigue. Alveolar gas exchange and pulmonary ventilation were measured breath-by-breath and adjusted for fat-free body mass (FFM) where appropriate. [Formula: see text] (impedance cardiography) was monitored. [Formula: see text] was calculated using Fick's equation. Linear regression slopes for oxygen cost (∆[Formula: see text]O2/∆work rate) and [Formula: see text] to [Formula: see text]O2 (∆[Formula: see text]/∆[Formula: see text]O2) were calculated. Normally distributed data were reported as mean ± SD and non-normal data as median [interquartile range]. RESULTS [Formula: see text]O2peak was lower in FM patients than in controls (22.2 ± 5.1 vs. 31.1 ± 7.9 mL∙min-1∙kg-1, P < 0.001; 35.7 ± 7.1 vs. 44.0 ± 8.6 mL∙min-1∙kg FFM-1, P < 0.001). [Formula: see text] and C(a-v)O2 were similar between groups at submaximal work rates, but peak [Formula: see text] (14.17 [13.34-16.03] vs. 16.06 [15.24-16.99] L∙min-1, P = 0.005) and C(a-v)O2 (11.6 ± 2.7 vs. 13.3 ± 3.1 mL O2∙100 mL blood-1, P = 0.031) were lower in the FM group. No significant group differences emerged in ∆[Formula: see text]O2/∆work rate (11.1 vs. 10.8 mL∙min-1∙W-1, P = 0.248) or ∆[Formula: see text]/∆[Formula: see text]O2 (6.58 vs. 5.75, P = 0.122) slopes. CONCLUSIONS Both [Formula: see text] and C(a-v)O2 contribute to lower [Formula: see text]O2peak in FM. The exercise responses were normal and not suggestive of a muscle metabolism pathology. TRIAL REGISTRATION ClinicalTrials.gov, NCT03300635. Registered 3 October 2017-Retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT03300635 .
Collapse
Affiliation(s)
- Taneli Lehto
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Mäkelänkatu 47, Urhea-Hall, 00550, Helsinki, Finland.
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and Helsinki University, Helsinki, Finland.
| | - Teemu Zetterman
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Pain Clinic, Helsinki University and Helsinki University Hospital, Helsinki, Finland
- City of Vantaa Health Centre, Vantaa, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Ritva Markkula
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Pain Clinic, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Jari Arokoski
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Heikki Tikkanen
- Sports and Exercise Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Pain Clinic, Helsinki University and Helsinki University Hospital, Helsinki, Finland
- SLEEPWELL Research Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha E Peltonen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Mäkelänkatu 47, Urhea-Hall, 00550, Helsinki, Finland
- Foundation for Sports and Exercise Medicine, Helsinki Sports and Exercise Medicine Clinic, Helsinki, Finland
| |
Collapse
|
7
|
Massini DA, Almeida TAF, Vasconcelos CMT, Macedo AG, Espada MAC, Reis JF, Alves FJB, Fernandes RJP, Pessôa Filho DM. Are Young Swimmers Short and Middle Distances Energy Cost Sex-Specific? Front Physiol 2022; 12:796886. [PMID: 34970159 PMCID: PMC8712663 DOI: 10.3389/fphys.2021.796886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
This study assessed the energy cost in swimming (C) during short and middle distances to analyze the sex-specific responses of C during supramaximal velocity and whether body composition account to the expected differences. Twenty-six swimmers (13 men and 13 women: 16.7 ± 1.9 vs. 15.5 ± 2.8 years old and 70.8 ± 10.6 vs. 55.9 ± 7.0 kg of weight) performed maximal front crawl swimming trials in 50, 100, and 200 m. The oxygen uptake (V˙O2) was analyzed along with the tests (and post-exercise) through a portable gas analyser connected to a respiratory snorkel. Blood samples were collected before and after exercise (at the 1st, 3rd, 5th, and 7th min) to determine blood lactate concentration [La–]. The lean mass of the trunk (LMTrunk), upper limb (LMUL), and lower limb (LMLL) was assessed using dual X-ray energy absorptiometry. Anaerobic energy demand was calculated from the phosphagen and glycolytic components, with the first corresponding to the fast component of the V˙O2 bi-exponential recovery phase and the second from the 2.72 ml × kg–1 equivalent for each 1.0 mmol × L–1 [La–] variation above the baseline value. The aerobic demand was obtained from the integral value of the V˙O2 vs. swimming time curve. The C was estimated by the rate between total energy releasing (in Joules) and swimming velocity. The sex effect on C for each swimming trial was verified by the two-way ANOVA (Bonferroni post hoc test) and the relationships between LMTrunk, LMUL, and LMLL to C were tested by Pearson coefficient. The C was higher for men than women in 50 (1.8 ± 0.3 vs. 1.3 ± 0.3 kJ × m–1), 100 (1.4 ± 0.1 vs. 1.0 ± 0.2 kJ × m–1), and 200 m (1.0 ± 0.2 vs. 0.8 ± 0.1 kJ × m–1) with p < 0.01 for all comparisons. In addition, C differed between distances for each sex (p < 0.01). The regional LMTrunk (26.5 ± 3.6 vs. 20.1 ± 2.6 kg), LMUL (6.8 ± 1.0 vs. 4.3 ± 0.8 kg), and LMLL (20.4 ± 2.6 vs. 13.6 ± 2.5 kg) for men vs. women were significantly correlated to C in 50 (R2adj = 0.73), 100 (R2adj = 0.61), and 200 m (R2adj = 0.60, p < 0.01). Therefore, the increase in C with distance is higher for men than women and is determined by the lean mass in trunk and upper and lower limbs independent of the differences in body composition between sexes.
Collapse
Affiliation(s)
- Danilo A Massini
- Postgraduate Programme in Human Development and Technologies, São Paulo State University - UNESP, Rio Claro, Brazil
| | - Tiago A F Almeida
- São Paulo State University - UNESP, Bauru, Brazil.,CIPER, Faculdade de Motricidade Humana, University de Lisboa, Lisbon, Portugal
| | - Camila M T Vasconcelos
- Postgraduate Programme in Human Development and Technologies, São Paulo State University - UNESP, Rio Claro, Brazil
| | - Anderson G Macedo
- Postgraduate Programme in Human Development and Technologies, São Paulo State University - UNESP, Rio Claro, Brazil.,São Paulo State University - UNESP, Bauru, Brazil
| | - Mário A C Espada
- School of Education (CIEF - CDP2T), Polytechnic Institute of Setúbal, Setúbal, Portugal.,Quality of Life Research Centre (CIEQV - Politécnico de Leiria), Leiria, Portugal
| | - Joana F Reis
- CIPER, Faculdade de Motricidade Humana, University de Lisboa, Lisbon, Portugal.,Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco J B Alves
- CIPER, Faculdade de Motricidade Humana, University de Lisboa, Lisbon, Portugal.,Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo J P Fernandes
- Faculty of Sport, Centre of Research, Education, Innovation and Intervention in Sport, University of Porto, Porto, Portugal
| | - Dalton M Pessôa Filho
- Postgraduate Programme in Human Development and Technologies, São Paulo State University - UNESP, Rio Claro, Brazil.,São Paulo State University - UNESP, Bauru, Brazil
| |
Collapse
|
8
|
Buzza G, Lovell GP, Askew CD, Solomon C. The Effect of Short- and Long-Term Aerobic Training Years on Systemic O2 Utilization, and Muscle and Prefrontal Cortex Tissue Oxygen Extraction in Young Women. J Strength Cond Res 2019; 33:2128-2137. [DOI: 10.1519/jsc.0000000000002512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Quinn KM, Billaut F, Bulmer AC, Minahan CL. Cerebral oxygenation declines but does not impair peak oxygen uptake during incremental cycling in women using oral contraceptives. Eur J Appl Physiol 2018; 118:2417-2427. [PMID: 30167957 DOI: 10.1007/s00421-018-3968-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/11/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE To compare prefrontal cortex oxygenation in recreationally-active women using oral contraceptives (WomenOC; n = 8) to women with a natural menstrual cycle (WomenNC; n = 8) during incremental exercise to exhaustion. METHODS Participants performed incremental cycling to exhaustion to determine lactate threshold 1 (LT1) and 2 (LT2) and peak oxygen uptake (VO2peak). Prefrontal cortex oxygenation was monitored via near-infrared spectroscopy through concentration changes in oxy-haemoglobin (Δ[HbO2]), deoxy-haemoglobin (Δ[HHb]), total-haemoglobin (Δ[tHb]) and tissue saturation index (TSI). RESULTS 17β-oestradiol and progesterone were lower in WomenOC (35 ± 26; 318 ± 127 pmol·L-1, respectively) than WomenNC (261 ± 156; 858 ± 541 pmol·L-1, respectively). There were no differences in full blood examination results or serum nitric oxide (p > 0.05). However, WomenOC presented lower concentrations in ferric-reducing ability of plasma (- 8%; effect size; ES - 0.52 ± 0.61), bilirubin (- 32%; ES - 0.56 ± 0.62) and uric acid (- 17%; ES - 0.53 ± 0.61). Cardiopulmonary parameters were similar between groups during cycling, including VO2peak (p = 0.99). While there was a significant effect of time on all parameters measured by near-infrared spectroscopy during incremental cycling, there was no effect of OC at LT1, LT2 or exhaustion calculated as a change from baseline (TSI; p = 0.096, Δ[HbO2]; p = 0.143, Δ[HHb]; p = 0.085 and Δ[tHb]; p = 0.226). The change in TSI from LT1 to LT2 was significantly different between groups (WomenNC; mean difference + 2.06%, WomenOC; mean difference - 1.73%; p = 0.003). CONCLUSION Prefrontal tissue oxygenation declined at a lower relative exercise intensity in WomenOC as compared to WomenNC, however, this did not influence VO2peak. The results provide the first evidence for variance in the cerebral oxygenation response to exercise, which may be associated with female sex hormones.
Collapse
Affiliation(s)
- Karlee M Quinn
- Griffith Sports Physiology and Performance, Gold Coast campus, School of Allied Health Sciences, Griffith University, Gold Coast, QLD, 4222, Australia. .,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia. .,Queensland Academy of Sport, Nathan, QLD, Australia.
| | - François Billaut
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Andrew C Bulmer
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Clare L Minahan
- Griffith Sports Physiology and Performance, Gold Coast campus, School of Allied Health Sciences, Griffith University, Gold Coast, QLD, 4222, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
10
|
Beltrame T, Villar R, Hughson RL. Sex differences in the oxygen delivery, extraction, and uptake during moderate-walking exercise transition. Appl Physiol Nutr Metab 2017; 42:994-1000. [DOI: 10.1139/apnm-2017-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies in children and older adults demonstrated faster oxygen uptake (V̇O2) kinetics in males compared with females, but young healthy adults have not been studied. We hypothesized that young men would have faster aerobic system dynamics in response to the onset of exercise than women. Interactions between oxygen supply and utilization were characterized by the dynamics of V̇O2, deoxyhemoglobin (HHb), tissue saturation index (TSI), cardiac output (Q̇), and calculated arteriovenous O2 difference (a–vO2diff) in women and men. Eighteen healthy active young women and men (9 of each sex) with similar aerobic fitness levels volunteered for this study. Participants performed an incremental cardiopulmonary treadmill exercise test and 3 moderate-intensity treadmill exercise tests (at 80% V̇O2 of gas exchange threshold). Data related to the moderate exercise were submitted to exponential data modelling to obtain parameters related to the aerobic system dynamics. The time constants of V̇O2, a–vO2diff, HHb, and TSI (30 ± 6, 29 ± 1, 16 ± 1, and 15 ± 2 s, respectively) in women were statistically (p < 0.05) faster than the time constants in men (42 ± 10, 49 ± 21, 19 ± 3, and 20 ± 4 s, respectively). Although Q̇ dynamics were not statistically different (p = 0.06) between groups, there was a trend to slower Q̇ dynamics in men corresponding with the slower V̇O2 kinetics. These results indicated that the peripheral and pulmonary oxygen extraction dynamics were remarkably faster in women. Thus, contrary to the hypothesis, V̇O2 dynamics measured at the mouth at the onset of submaximal treadmill walking were faster in women compared with men.
Collapse
Affiliation(s)
- Thomas Beltrame
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasilia, Distrito Federal, CEP: 71605-001, Brazil
| | - Rodrigo Villar
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Faculty of Health Sciences, Division of Natural Sciences, Franklin Pierce University, Rindge, NH 03461, USA
| | - Richard L. Hughson
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON N2J 0E2, Canada
| |
Collapse
|
11
|
Ulrich S, Schneider SR, Bloch KE. Effect of hypoxia and hyperoxia on exercise performance in healthy individuals and in patients with pulmonary hypertension: a systematic review. J Appl Physiol (1985) 2017; 123:1657-1670. [PMID: 28775065 DOI: 10.1152/japplphysiol.00186.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Exercise performance is determined by oxygen supply to working muscles and vital organs. In healthy individuals, exercise performance is limited in the hypoxic environment at altitude, when oxygen delivery is diminished due to the reduced alveolar and arterial oxygen partial pressures. In patients with pulmonary hypertension (PH), exercise performance is already reduced near sea level due to impairments of the pulmonary circulation and gas exchange, and, presumably, these limitations are more pronounced at altitude. In studies performed near sea level in healthy subjects, as well as in patients with PH, maximal performance during progressive ramp exercise and endurance of submaximal constant-load exercise were substantially enhanced by breathing oxygen-enriched air. Both in healthy individuals and in PH patients, these improvements were mediated by a better arterial, muscular, and cerebral oxygenation, along with a reduced sympathetic excitation, as suggested by the reduced heart rate and alveolar ventilation at submaximal isoloads, and an improved pulmonary gas exchange efficiency, especially in patients with PH. In summary, in healthy individuals and in patients with PH, alterations in the inspiratory Po2 by exposure to hypobaric hypoxia or normobaric hyperoxia reduce or enhance exercise performance, respectively, by modifying oxygen delivery to the muscles and the brain, by effects on cardiovascular and respiratory control, and by alterations in pulmonary gas exchange. The understanding of these physiological mechanisms helps in counselling individuals planning altitude or air travel and prescribing oxygen therapy to patients with PH.
Collapse
Affiliation(s)
- Silvia Ulrich
- Pulmonary Division and Center for Human Integrative Physiology, University of Zurich , Zurich , Switzerland
| | - Simon R Schneider
- Pulmonary Division and Center for Human Integrative Physiology, University of Zurich , Zurich , Switzerland
| | - Konrad E Bloch
- Pulmonary Division and Center for Human Integrative Physiology, University of Zurich , Zurich , Switzerland
| |
Collapse
|
12
|
Niemeijer VM, Jansen JP, van Dijk T, Spee RF, Meijer EJ, Kemps HMC, Wijn PFF. The influence of adipose tissue on spatially resolved near-infrared spectroscopy derived skeletal muscle oxygenation: the extent of the problem. Physiol Meas 2017; 38:539-554. [PMID: 28151429 DOI: 10.1088/1361-6579/aa5dd5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Near-infrared spectroscopy (NIRS) measurements of tissue oxygen saturation (StO2) are useful for the assessment of skeletal muscle perfusion and function during exercise, however, they are influenced by overlying skin and adipose tissue. This study explored the extent and nature of the influence of adipose tissue thickness (ATT) on StO2. APPROACH NIR spatially resolved spectroscopy (SRS) derived oxygenation was measured on vastus lateralis in 56 patients with chronic heart failure (CHF) and 20 healthy control (HC) subjects during rest and moderate intensity exercise with simultaneous assessment of oxygen uptake kinetics (τ [Formula: see text]). In vitro measurements were performed on a flow cell with a blood mixture with full oxygen saturation (100%), which was gradually decreased to 0% by adding sodium metabisulfite. Experiments were repeated with 2 mm increments of porcine fat layer between the NIRS device and flow cell up to 14 mm. MAIN RESULTS Lower ATT, higher τ [Formula: see text], and CHF were independently associated with lower in vivo StO2 in multiple regression analysis, whereas age and gender showed no independent relationship. With greater ATT, in vitro StO2 was reduced from 100% to 74% for fully oxygenated blood and increased from 0% to 68% for deoxygenated blood. SIGNIFICANCE This study shows that ATT independently confounds NIR-SRS derived StO2 by overestimating actual skeletal muscle oxygenation and by decreasing its sensitivity for deoxygenation. Because physiological properties (e.g. presence of disease and slowing of τ [Formula: see text]) also influence NIR-SRS, a correction based on optical properties is needed to interpret calculated values as absolute StO2.
Collapse
Affiliation(s)
- Victor M Niemeijer
- Department of Cardiology, Máxima Medical Centre, PO Box 7777, 5500 MB Veldhoven, Netherlands. Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Buzza G, Lovell GP, Askew CD, Kerhervé H, Solomon C. The Effect of Short and Long Term Endurance Training on Systemic, and Muscle and Prefrontal Cortex Tissue Oxygen Utilisation in 40 - 60 Year Old Women. PLoS One 2016; 11:e0165433. [PMID: 27832088 PMCID: PMC5104477 DOI: 10.1371/journal.pone.0165433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/11/2016] [Indexed: 01/02/2023] Open
Abstract
Purpose Aerobic endurance training (ET) increases systemic and peripheral oxygen utilisation over time, the adaptation pattern not being linear. However, the timing and mechanisms of changes in oxygen utilisation, associated with training beyond one year are not known. This study tested the hypothesis that in women aged 40–60 years performing the same current training load; systemic O2 utilisation (VO2) and tissue deoxyhaemoglobin (HHb) in the Vastus Lateralis (VL) and Gastrocnemius (GAST) would be higher in long term trained (LTT; > 5 yr) compared to a short term trained (STT; 6–24 months) participants during ramp incremental (RI) cycling, but similar during square-wave constant load (SWCL) cycling performed at the same relative intensity (below ventilatory turn point [VTP]); and that pre-frontal cortex (PFC) HHb would be similar between participant groups in both exercise conditions. Methods Thirteen STT and 13 LTT participants performed RI and SWCL conditions on separate days. VO2, and VL, GAST, and PFC HHb were measured simultaneously. Results VO2peak was higher in LTT compared to STT, and VO2 was higher in LTT at each relative intensities of 25%, 80% and 90% of VTP in SWCL. HHb in the VL was significantly higher in LTT compared to STT at peak exercise (4.54 ± 3.82 vs 1.55 ± 2.33 μM), and at 25% (0.99 ± 1.43 vs 0.04 ± 0.96 μM), 80% (3.19 ± 2.93 vs 1.14 ± 1.82 μM) and 90% (4.62 ± 3.12 vs 2.07 ± 2.49 μM) of VTP in SWCL. Conclusions The additional (12.9 ± 9.3) years of ET in LTT, resulted in higher VO2, and HHb in the VL at peak exercise, and sub—VTP exercise. These results indicate that in women 40–60 years old, systemic and muscle O2 utilisation continues to improve with ET beyond two years.
Collapse
Affiliation(s)
- Gavin Buzza
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Australia
- * E-mail:
| | - Geoff P. Lovell
- School of Social Sciences, University of the Sunshine Coast, Sippy Downs, Australia
| | - Christopher D. Askew
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Australia
| | - Hugo Kerhervé
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Australia
| | - Colin Solomon
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
14
|
van der Zwaard S, Jaspers RT, Blokland IJ, Achterberg C, Visser JM, den Uil AR, Hofmijster MJ, Levels K, Noordhof DA, de Haan A, de Koning JJ, van der Laarse WJ, de Ruiter CJ. Oxygenation Threshold Derived from Near-Infrared Spectroscopy: Reliability and Its Relationship with the First Ventilatory Threshold. PLoS One 2016; 11:e0162914. [PMID: 27631607 PMCID: PMC5025121 DOI: 10.1371/journal.pone.0162914] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Near-infrared spectroscopy (NIRS) measurements of oxygenation reflect O2 delivery and utilization in exercising muscle and may improve detection of a critical exercise threshold. PURPOSE First, to detect an oxygenation breakpoint (Δ[O2HbMb-HHbMb]-BP) and compare this breakpoint to ventilatory thresholds during a maximal incremental test across sexes and training status. Second, to assess reproducibility of NIRS signals and exercise thresholds and investigate confounding effects of adipose tissue thickness on NIRS measurements. METHODS Forty subjects (10 trained male cyclists, 10 trained female cyclists, 11 endurance trained males and 9 recreationally trained males) performed maximal incremental cycling exercise to determine Δ[O2HbMb-HHbMb]-BP and ventilatory thresholds (VT1 and VT2). Muscle haemoglobin and myoglobin O2 oxygenation ([HHbMb], [O2HbMb], SmO2) was determined in m. vastus lateralis. Δ[O2HbMb-HHbMb]-BP was determined by double linear regression. Trained cyclists performed the maximal incremental test twice to assess reproducibility. Adipose tissue thickness (ATT) was determined by skinfold measurements. RESULTS Δ[O2HbMb-HHbMb]-BP was not different from VT1, but only moderately related (r = 0.58-0.63, p<0.001). VT1 was different across sexes and training status, whereas Δ[O2HbMb-HHbMb]-BP differed only across sexes. Reproducibility was high for SmO2 (ICC = 0.69-0.97), Δ[O2HbMb-HHbMb]-BP (ICC = 0.80-0.88) and ventilatory thresholds (ICC = 0.96-0.99). SmO2 at peak exercise and at occlusion were strongly related to adipose tissue thickness (r2 = 0.81, p<0.001; r2 = 0.79, p<0.001). Moreover, ATT was related to asymmetric changes in Δ[HHbMb] and Δ[O2HbMb] during incremental exercise (r = -0.64, p<0.001) and during occlusion (r = -0.50, p<0.05). CONCLUSION Although the oxygenation threshold is reproducible and potentially a suitable exercise threshold, VT1 discriminates better across sexes and training status during maximal stepwise incremental exercise. Continuous-wave NIRS measurements are reproducible, but strongly affected by adipose tissue thickness.
Collapse
Affiliation(s)
- Stephan van der Zwaard
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
- * E-mail:
| | - Richard T. Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Ilse J. Blokland
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Chantal Achterberg
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Jurrian M. Visser
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Anne R. den Uil
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Mathijs J. Hofmijster
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
- Faculty of Sports and Nutrition, Amsterdam University of Applied Sciences, Amsterdam, the Netherlands
| | - Koen Levels
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Dionne A. Noordhof
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Arnold de Haan
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Jos J. de Koning
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | | | - Cornelis J. de Ruiter
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| |
Collapse
|
15
|
Kujach S, Ziemann E, Grzywacz T, Luszczyk M, Smaruj M, Dzedzej A, Laskowski R. Muscle oxygenation in response to high intensity interval exercises among high trained judokas. ISOKINET EXERC SCI 2016. [DOI: 10.3233/ies-160631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sylwester Kujach
- Department of Physiology, Gdansk University of Physical Education and Sport ul. Kazimierza Gorskiego 1, Gdansk, Poland
| | - Ewa Ziemann
- Department of Physiology, Gdansk University of Physical Education and Sport ul. Kazimierza Gorskiego 1, Gdansk, Poland
| | - Tomasz Grzywacz
- Department of Physiology, Gdansk University of Physical Education and Sport ul. Kazimierza Gorskiego 1, Gdansk, Poland
| | - Marcin Luszczyk
- Department of Physiology, Gdansk University of Physical Education and Sport ul. Kazimierza Gorskiego 1, Gdansk, Poland
| | - Miroslaw Smaruj
- Department of Theory of Sport and Human Motorics, Gdansk University of Physical Education and Sport ul. Kazimierza Gorskiego 1, Gdansk, Poland
| | - Anna Dzedzej
- Department of Physiology, Gdansk University of Physical Education and Sport ul. Kazimierza Gorskiego 1, Gdansk, Poland
| | - Radoslaw Laskowski
- Department of Physiology, Gdansk University of Physical Education and Sport ul. Kazimierza Gorskiego 1, Gdansk, Poland
| |
Collapse
|
16
|
Skovereng K, Ettema G, van Beekvelt MCP. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: the effect of cadence at a constant external work rate. Eur J Appl Physiol 2016; 116:1207-17. [PMID: 27126859 PMCID: PMC4875052 DOI: 10.1007/s00421-016-3379-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/11/2016] [Indexed: 11/15/2022]
Abstract
Purpose The present study investigates the effect of cadence on joint specific power and oxygenation and local muscle oxygen consumption in the vastus lateralis and vastus medialis in addition to the relationship between joint specific power and local muscle oxygen consumption (mVO2). Methods Seventeen recreationally active cyclists performed 6 stages of constant load cycling using cadences of 60, 70, 80, 90, 100 and 110 rpm. Joint specific power was calculated using inverse dynamics and mVO2 and oxygenation were measured using near-infrared spectroscopy. Results Increasing cadence led to increased knee joint power and decreased hip joint power while the ankle joint was unaffected. Increasing cadence also led to an increased deoxygenation in both the vastus lateralis and vastus medialis. Vastus lateralis mVO2 increased when cadence was increased. No effect of cadence was found for vastus medialis mVO2. Conclusion This study demonstrates a different effect of cadence on the mVO2 of the vastus lateralis and vastus medialis. The combined mVO2 of the vastus lateralis and medialis showed a linear increase with increasing knee joint specific power, demonstrating that the muscles combined related to power generated over the joint.
Collapse
Affiliation(s)
- Knut Skovereng
- Department of Neuroscience, Centre for Elite Sports Research, NTNU, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
| | - Gertjan Ettema
- Department of Neuroscience, Centre for Elite Sports Research, NTNU, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Mireille C P van Beekvelt
- Department of Neuroscience, Centre for Elite Sports Research, NTNU, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| |
Collapse
|
17
|
Sex-Related Difference in Muscle Deoxygenation Responses Between Aerobic Capacity-Matched Elderly Men and Women. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3023-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
18
|
Skovereng K, Ettema G, van Beekvelt M. Local muscle oxygen consumption related to external and joint specific power. Hum Mov Sci 2015; 45:161-71. [PMID: 26650852 DOI: 10.1016/j.humov.2015.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
The purpose of the present study was to examine the effects of external work rate on joint specific power and the relationship between knee extension power and vastus lateralis muscle oxygen consumption (mVO2). We measured kinematics and pedal forces and used inverse dynamics to calculate joint power for the hip, knee and ankle joints during an incremental cycling protocol performed by 21 recreational cyclists. Vastus lateralis mVO2 was estimated using near-infrared spectroscopy with an arterial occlusion. The main finding was a non-linear relationship between vastus lateralis mVO2 and external work rate that was characterised by an increase followed by a tendency for a levelling off (R(2)=0.99 and 0.94 for the quadratic and linear models respectively, p<0.05). When comparing 100W and 225W, there was a ∼43W increase in knee extension but still a ∼9% decrease in relative contribution of knee extension to external work rate resulting from a ∼47W increase in hip extension. When vastus lateralis mVO2 was related to knee extension power, the relationship was still non-linear (R(2)=0.99 and 0.97 for the quadratic and linear models respectively, p<0.05). These results demonstrate a non-linear response in mVO2 relative to a change in external work rate. Relating vastus lateralis mVO2 to knee extension power showed a better fit to a linear equation compared to external work rate, but it is not a straight line.
Collapse
Affiliation(s)
- Knut Skovereng
- Centre for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Gertjan Ettema
- Centre for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mireille van Beekvelt
- Centre for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
19
|
Peltonen JE, Rissanen APE, Tikkanen HO. Letter to the Editor. Respir Physiol Neurobiol 2014; 195:60. [DOI: 10.1016/j.resp.2014.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
|
20
|
Murias JM, Keir DA, Spencer MD, Paterson DH. Sex-related differences in muscle deoxygenation during ramp incremental exercise: Response to Peltonen et al. Respir Physiol Neurobiol 2014; 195:61-2. [DOI: 10.1016/j.resp.2014.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
|