1
|
McPherson JI, Prakash Krishnan Muthaiah V, Kaliyappan K, Leddy JJ, Personius KE. Temporal expression of brainstem neurotrophic proteins following mild traumatic brain injury. Brain Res 2024; 1835:148908. [PMID: 38582416 DOI: 10.1016/j.brainres.2024.148908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
BDNF, a neurotrophic factor, and its receptors have been implicated in the pathophysiology of mild traumatic brain injury (mTBI). The brainstem houses many vital functions, that are also associated with signs and symptoms of mTBI, but has been understudied in mTBI animal models. We determined the extent to which neurotrophic protein and associated receptor expression is affected within the brainstem of adult rats following mTBI. Their behavioral function was assessed and temporal expression of the 'negative' regulators of neuronal function (p75, t-TrkB, and pro-BDNF) and 'positive' neuroprotective (FL-TrkB and m-BDNF) protein isoforms were determined via western blot and immunohistochemistry at 1, 3, 7, and 14 post-injury days (PID) following mTBI or sham (control) procedure. Within the brainstem, p75 expression increased at PID 1 vs. sham animals. t-TrkB and pro-BDNF expression increased at PID 7 and 14. The 'positive' protein isoforms of FL-TrkB and m-BDNF expression were increased only at PID 7. The ratio of t-TrkB:FL-TrkB (negative:positive) was substantial across groups and time points, suggesting a negative impact of neurotrophic signaling on neuronal function. Additional NeuN experiments revealed cell death occurring within a subset of neurons within the medulla. While behavioral measures improved by PID 7-14, negative neurotrophic biochemical responses persisted. Despite the assertion that mTBI produces "mild" injury, evidence of cell death was observed in the medulla. Ratios of TrkB and BDNF isoforms with conflicting functions suggest that future work should specifically measure each subtype since they induce opposing downstream effects on neuronal function.
Collapse
Affiliation(s)
- Jacob I McPherson
- Department of Rehabilitation Science, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States.
| | - Vijaya Prakash Krishnan Muthaiah
- Department of Rehabilitation Science, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Kathiravan Kaliyappan
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - John J Leddy
- Department of Orthopaedics and Sports Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Kirkwood E Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
2
|
Paek D, Kwon DI. A review on four different paths to respiratory arrest from brain injury in children; implications for child abuse. J Forensic Leg Med 2020; 71:101938. [PMID: 32342908 DOI: 10.1016/j.jflm.2020.101938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 11/23/2022]
Abstract
Child abuse was suspected in a case of out-of-hospital arrest with minor brain injuries. Confronted with continued disputes on pathophysiologic correlates even after autopsy, to assist the differentiation of potential causes of sudden cardiopulmonary arrest in children, we tried to identify the mechanism of cardiopulmonary arrest in brain injuries from different causes. Systematic review was carried out in two stages. First, major external causes of cardiopulmonary arrest among children and infants were identified from Pubmed and Google Scholar search, and then the exact sequence of cardiopulmonary arrest, and their pathophysiologic features were identified based on articles of animal models of brain injury. From the review, we have identified four major groups of external circumstances for rather sudden cardiopulmonary arrest from brain damage in children, after excluding congenital and other unrelated diseases; 1) impact brain apnea, 2) anoxic insults, 3) drug or other substance induced central nervous system depression, and 4) traumatic brain damage. Each group has different features in the course of cardiac and respiratory arrests. Based on this review of pathophysiologic features of cardio-respiratory responses from external causes, we have presented a suspected, but unlikely, child abuse case of respiratory arrest from brain injury. The social consequences of both unknowingly missing, and falsely incriminating the abuse can be grave, and the identification of the mechanisms of cardiopulmonary arrest from brain injury can be important for the differentiation of various potential causes.
Collapse
Affiliation(s)
- Domyung Paek
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea.
| | - Dae-Ik Kwon
- Sinpyung Yeonhap Clinic, Daegu, South Korea.
| |
Collapse
|
3
|
Studlack PE, Keledjian K, Farooq T, Akintola T, Gerzanich V, Simard JM, Keller A. Blast-induced brain injury in rats leads to transient vestibulomotor deficits and persistent orofacial pain. Brain Inj 2018; 32:1866-1878. [PMID: 30346868 PMCID: PMC6381394 DOI: 10.1080/02699052.2018.1536282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
Blast-induced traumatic brain injury (blast-TBI) is associated with vestibulomotor dysfunction, persistent post-traumatic headaches and post-traumatic stress disorder, requiring extensive treatments and reducing quality-of-life. Treatment and prevention of these devastating outcomes require an understanding of their underlying pathophysiology through studies that take advantage of animal models. Here, we report that cranium-directed blast-TBI in rats results in signs of pain that last at least 8 weeks after injury. These occur without significantly elevated behavioural markers of anxiety-like conditions and are not associated with glial up-regulation in sensory thalamic nuclei. These injuries also produce transient vestibulomotor abnormalities that resolve within 3 weeks of injury. Thus, blast-TBI in rats recapitulates aspects of the human condition.
Collapse
Affiliation(s)
- Paige E. Studlack
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., HSFII S251, Baltimore, MD 21201, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, 10 S. Pine St., MSTF 634B, Baltimore, MD 21201, USA
| | - Tayyiaba Farooq
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., HSFII S251, Baltimore, MD 21201, USA
| | - Titilola Akintola
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., HSFII S251, Baltimore, MD 21201, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, 10 S. Pine St., MSTF 634B, Baltimore, MD 21201, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 10 S. Pine St., MSTF 634B, Baltimore, MD 21201, USA
| | - Asaf Keller
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., HSFII S251, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Hayman E, Keledjian K, Stokum JA, Pampori A, Gerzanich V, Simard JM. Selective Vulnerability of the Foramen Magnum in a Rat Blast Traumatic Brain Injury Model. J Neurotrauma 2018; 35:2136-2142. [PMID: 29566593 DOI: 10.1089/neu.2017.5435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Primary blast traumatic brain injury (bTBI) accounts for a significant proportion of wartime trauma. Previous studies have demonstrated direct brain injury by blast waves, but the effect of the location of the blast epicenter on the skull with regard to brain injury remains poorly characterized. In order to investigate the role of the blast epicenter location, we modified a previously established rodent model of cranium-only bTBI to evaluate two specific blast foci: a rostrally focused blast centered on bregma (B-bTBI), which excluded the foramen magnum region, and a caudally focused blast centered on the occipital crest, which included the foramen magnum region (FM-bTBI). At all blast overpressures studied (668-1880 kPa), rats subjected to FM-bTBI demonstrated strikingly higher mortality, increased durations of both apnea and hypoxia, and increased severity of convexity subdural hematomas, than rats subjected to B-bTBI. Together, these data suggest a unique role for the foramen magnum region in mortality and brain injury following blast exposure, and emphasize the importance of the choice of blast focus location in experimental models of bTBI.
Collapse
Affiliation(s)
- Erik Hayman
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Kaspar Keledjian
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jesse A Stokum
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Adam Pampori
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Volodymyr Gerzanich
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - J Marc Simard
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Pathology, University of Maryland School of Medicine , Baltimore, Maryland.,3 Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
5
|
Fievisohn E, Bailey Z, Guettler A, VandeVord P. Primary Blast Brain Injury Mechanisms: Current Knowledge, Limitations, and Future Directions. J Biomech Eng 2018; 140:2666247. [DOI: 10.1115/1.4038710] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Indexed: 12/18/2022]
Abstract
Mild blast traumatic brain injury (bTBI) accounts for the majority of brain injury in United States service members and other military personnel worldwide. The mechanisms of primary blast brain injury continue to be disputed with little evidence to support one or a combination of theories. The main hypotheses addressed in this review are blast wave transmission through the skull orifices, direct cranial transmission, skull flexure dynamics, thoracic surge, acceleration, and cavitation. Each possible mechanism is discussed using available literature with the goal of focusing research efforts to address the limitations and challenges that exist in blast injury research. Multiple mechanisms may contribute to the pathology of bTBI and could be dependent on magnitudes and orientation to blast exposure. Further focused biomechanical investigation with cadaver, in vivo, and finite element models would advance our knowledge of bTBI mechanisms. In addition, this understanding could guide future research and contribute to the greater goal of developing relevant injury criteria and mandates to protect our soldiers on the battlefield.
Collapse
Affiliation(s)
- Elizabeth Fievisohn
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Zachary Bailey
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Allison Guettler
- Department of Mechanical Engineering, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 317 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061; Salem Veterans Affairs Medical Center, Salam, VA 24153 e-mail:
| |
Collapse
|
6
|
Elder GA, Gama Sosa MA, De Gasperi R, Stone JR, Dickstein DL, Haghighi F, Hof PR, Ahlers ST. Vascular and inflammatory factors in the pathophysiology of blast-induced brain injury. Front Neurol 2015; 6:48. [PMID: 25852632 PMCID: PMC4360816 DOI: 10.3389/fneur.2015.00048] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/23/2015] [Indexed: 11/13/2022] Open
Abstract
Blast-related traumatic brain injury (TBI) has received much recent attention because of its frequency in the conflicts in Iraq and Afghanistan. This renewed interest has led to a rapid expansion of clinical and animal studies related to blast. In humans, high-level blast exposure is associated with a prominent hemorrhagic component. In animal models, blast exerts a variety of effects on the nervous system including vascular and inflammatory effects that can be seen with even low-level blast exposures which produce minimal or no neuronal pathology. Acutely, blast exposure in animals causes prominent vasospasm and decreased cerebral blood flow along with blood-brain barrier breakdown and increased vascular permeability. Besides direct effects on the central nervous system, evidence supports a role for a thoracically mediated effect of blast; whereby, pressure waves transmitted through the systemic circulation damage the brain. Chronically, a vascular pathology has been observed that is associated with alterations of the vascular extracellular matrix. Sustained microglial and astroglial reactions occur after blast exposure. Markers of a central and peripheral inflammatory response are found for sustained periods after blast injury and include elevation of inflammatory cytokines and other inflammatory mediators. At low levels of blast exposure, a microvascular pathology has been observed in the presence of an otherwise normal brain parenchyma, suggesting that the vasculature may be selectively vulnerable to blast injury. Chronic immune activation in brain following vascular injury may lead to neurobehavioral changes in the absence of direct neuronal pathology. Strategies aimed at preventing or reversing vascular damage or modulating the immune response may improve the chronic neuropsychiatric symptoms associated with blast-related TBI.
Collapse
Affiliation(s)
- Gregory A Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, NY , USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, NY , USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, NY , USA
| | - James Radford Stone
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, VA , USA ; Department of Neurosurgery, University of Virginia , Charlottesville, VA , USA
| | - Dara L Dickstein
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Fatemeh Haghighi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center , Bronx, NY , USA ; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center , Silver Spring, MD , USA
| |
Collapse
|
7
|
Davenport P, Nalivaiko E. Introduction to special issue "Non-homeostatic control of respiration". Respir Physiol Neurobiol 2014; 204:1-2. [PMID: 25457727 DOI: 10.1016/j.resp.2014.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Paul Davenport
- Department of Physiological Sciences, University of Florida, Gainesville, United States
| | - Eugene Nalivaiko
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|