1
|
Veternik M, Simera M, Martvon L, Cibulkova L, Kotmanova Z, Poliacek I. Effect of various modes of tracheal mechanical stimulation on the cough motor pattern. Respir Physiol Neurobiol 2024; 332:104367. [PMID: 39532210 DOI: 10.1016/j.resp.2024.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The relationship between the level (rate) of stimulus and the characteristics of the cough response was studied on 15 spontaneously breathing anesthetized cats. Three modes of stimulation were used to elicit cough. 'High' vs. 'low' level of stimulation was accomplished: 1st mode by 1 vs. 4 penetrations of the soft catheter through the trachea (approximately 10 cm), 2nd mode by 2 penetrations with the soft catheter equipped with 4 fine cross nylon fibers vs. 4 penetrations by the stimulator with 8 fibers, and 3rd mode by a similar stimulator with 4 cross fibers probing 4 cm of the trachea either right below the larynx or deeper under the upper part of the sternum (data were pooled) vs. stimulating both areas at the same time. 'High' stimulation rate in each stimulation mode resulted in a higher number of coughs, increased cough efforts, and shortened several temporal cough features. Mechanical stimulation resulting in higher cough afferent drive induces more vigorous coughing with shorter temporal cough characteristics. Modulation of cough afferent input affects both spatial and temporal components of the cough motor pattern, representing a crucial point in cough management.
Collapse
Affiliation(s)
- Marcel Veternik
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Lukas Martvon
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Medical Education Support Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lucia Cibulkova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
2
|
Simera M, Veternik M, Martvon L, Kotmanova Z, Cibulkova L, Poliacek I. Differential inhibition of cough by GABA A and GABA B receptor antagonists in the nucleus of the solitary tract in cats. Respir Physiol Neurobiol 2023; 315:104115. [PMID: 37460080 DOI: 10.1016/j.resp.2023.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Bicuculline and saclofen were microinjected into the rostral (rNTS) and caudal nucleus of the solitary tract (cNTS) in 17 anesthetized cats. Electromyograms (EMGs) of the diaphragm (DIA) and abdominal muscles (ABD), esophageal pressures (EP), and blood pressure were recorded and analyzed. Bilateral microinjections of 1 mM bicuculline in the rNTS significantly reduced the number of coughs (CN), amplitudes of DIA and ABD EMG, inspiratory and expiratory EP, and prolonged the duration of the cough expiratory phase (CTE) as well as the total cough cycle duration (CTtot). Bilateral microinjections of 2 mM saclofen reduced only cough expiratory efforts. Bilateral microinjection of bicuculline in the cNTS significantly reduced CN and amplitudes of ABD EMG and elongated CTE and CTtot. Bilateral microinjections of saclofen in cNTS had no significant effect on analyzed cough parameters. Our results confirm a different GABAergic inhibitory system in the rNTS and cNTS acting on mechanically induced cough in cats.
Collapse
Affiliation(s)
- Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia.
| | - Lukas Martvon
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia
| | - Lucia Cibulkova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia
| | - Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia
| |
Collapse
|
3
|
Zhuang J, Gao X, Zhao L, Wei W, Xu F. Neurokinin 1 and 2 Receptors Are Involved in PEG 2- and Citric Acid-Induced Cough and Ventilatory Responses. Respir Physiol Neurobiol 2022; 306:103952. [PMID: 35905863 DOI: 10.1016/j.resp.2022.103952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Exposure to aerosolized citric acid (CA, 150mM) and prostaglandin E2 (PGE2, 0.43mM) for 10min in guinea pigs reportedly produces the distinct cough patterns (Type I vs. II) and ventilatory responses (long-lasting hyperventilation vs. brief tachypnea) even though triggering the same cough numbers. Type I and II coughs are primarily mediated by activation of TRPV1 and EP3 receptors (a PGE2 receptor) of vagal C-fibers respectively. Substance P (SP) and neurokinin A (NKA) released by vagal pulmonary sensory fibers peripherally are capable of affecting CA-induced cough and ventilation via preferentially activating neurokinin 1 and 2 receptors (NK1R and NK2R) respectively. This study aimed to define the impacts of CA- and PGE2-exposure on pulmonary SP and NKA levels and the roles of NK1R and NK2R in modulating CA- and PGE2-evoked cough and ventilatory responses. In unanesthetized guinea pigs, we determined: 1) pulmonary SP and NKA contents induced by the CA- or PGE2-exposure; 2) effects of CP-99994 and SR-48968 (a NK1R and a NK2R antagonist respectively) given by intraperitoneal injection (IP) or aerosol inhalation (IH) on the CA- and PGE2-evoked cough and ventilatory responses; and 3) immunocytochemical expressions of NK1R/NK2R in vagal C-neurons labeled by TRPV1 or EP3 receptors. We found that CA- and PGE2-exposure evoked Type I and II cough respectively associated with different degrees of increases in pulmonary SP and NKA. Applications of CP-99994 and SR-48968 via IP and IH efficiently suppressed the cough responses to CA with less impact on the cough response to PGE2. These antagonists inhibited or blocked the ventilatory response to CA and caused hypoventilation in response to PGE2. Moreover, NK1R and NK2R were always co-expressed in vagal C-neurons labeled by TRPV1 or EP3 receptors. These results suggest that SP and NKA endogenously released by CA- and PGE2-exposure play important roles in generating the cough and ventilatory responses to CA and PGE2, at least in part, via activation of NK1R and NK2R expressed in vagal C-neurons (pulmonary C-neurons).
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, NM 87108
| | - Xiuping Gao
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, NM 87108
| | - Lei Zhao
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, NM 87108; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Wan Wei
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, NM 87108; Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fadi Xu
- Pathophysiology Program, Lovelace Biomedical Research Institute, Albuquerque, NM 87108.
| |
Collapse
|
4
|
Suryanarayana SM, Robertson B, Grillner S. The neural bases of vertebrate motor behaviour through the lens of evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200521. [PMID: 34957847 PMCID: PMC8710883 DOI: 10.1098/rstb.2020.0521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The primary driver of the evolution of the vertebrate nervous system has been the necessity to move, along with the requirement of controlling the plethora of motor behavioural repertoires seen among the vast and diverse vertebrate species. Understanding the neural basis of motor control through the perspective of evolution, mandates thorough examinations of the nervous systems of species in critical phylogenetic positions. We present here, a broad review of studies on the neural motor infrastructure of the lamprey, a basal and ancient vertebrate, which enjoys a unique phylogenetic position as being an extant representative of the earliest group of vertebrates. From the central pattern generators in the spinal cord to the microcircuits of the pallial cortex, work on the lamprey brain over the years, has provided detailed insights into the basic organization (a bauplan) of the ancestral vertebrate brain, and narrates a compelling account of common ancestry of fundamental aspects of the neural bases for motion control, maintained through half a billion years of vertebrate evolution. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Shreyas M. Suryanarayana
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brita Robertson
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
| |
Collapse
|
5
|
Al-Shamlan F, El-Hashim AZ. Bradykinin sensitizes the cough reflex via a B 2 receptor dependent activation of TRPV1 and TRPA1 channels through metabolites of cyclooxygenase and 12-lipoxygenase. Respir Res 2019; 20:110. [PMID: 31170972 PMCID: PMC6551914 DOI: 10.1186/s12931-019-1060-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/28/2019] [Indexed: 01/10/2023] Open
Abstract
Background Inhaled bradykinin (BK) has been reported to both sensitize and induce cough but whether BK can centrally sensitize the cough reflex is not fully established. In this study, using a conscious guinea-pig model of cough, we investigated the role of BK in the central sensitization of the cough reflex and in airway obstruction. Methods Drugs were administered, to guinea pigs, by the intracerebroventricular (i.c.v.) route. Aerosolized citric acid (0.2 M) was used to induce cough in a whole-body plethysmograph box, following i.c.v. infusion of drugs. An automated analyser recorded both cough and airway obstruction simultaneously. Results BK, administered by the i.c.v. route, dose-dependently enhanced the citric acid-induced cough and airway obstruction. This effect was inhibited following i.c.v. pretreatment with a B2 receptor antagonist, TRPV1 and TRPA1 channels antagonists and cyclooxygenase (COX) and 12-lipoxygenase (12-LOX) inhibitors. Furthermore, co-administration of submaximal doses of the TRPV1 and TRPA1 antagonists or the COX and 12-LOX inhibitors resulted in a greater inhibition of both cough reflex and airway obstruction. Conclusions Our findings show that central BK administration sensitizes cough and enhances airway obstruction via a B2 receptor/TRPV1 and/or TRPA1 channels which are coupled via metabolites of COX and/or 12-LOX enzymes. In addition, combined blockade of TRPV1 and TRPA1 or COX and 12-LOX resulted in a greater inhibitory effect of both cough and airway obstruction. These results indicate that central B2 receptors, TRPV1/TRPA1 channels and COX/12-LOX enzymes may represent potential therapeutic targets for the treatment of cough hypersensitivity. Graphical abstract ![]()
Collapse
Affiliation(s)
- Fajer Al-Shamlan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, P.O. BOX 24923, 13110, Safat, Kuwait
| | - Ahmed Z El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, P.O. BOX 24923, 13110, Safat, Kuwait.
| |
Collapse
|
6
|
Brainstem mechanisms underlying the cough reflex and its regulation. Respir Physiol Neurobiol 2017; 243:60-76. [DOI: 10.1016/j.resp.2017.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
|
7
|
Poliacek I, Simera M, Veternik M, Kotmanova Z, Bolser DC, Machac P, Jakus J. Role of the dorsomedial medulla in suppression of cough by codeine in cats. Respir Physiol Neurobiol 2017; 246:59-66. [PMID: 28778649 DOI: 10.1016/j.resp.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/23/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
Abstract
The modulation of cough by microinjections of codeine in 3 medullary regions, the solitary tract nucleus rostral to the obex (rNTS), caudal to the obex (cNTS) and the lateral tegmental field (FTL) was studied. Experiments were performed on 27 anesthetized spontaneously breathing cats. Electromyograms (EMG) were recorded from the sternal diaphragm and expiratory muscles (transversus abdominis and/or obliquus externus; ABD). Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. Bilateral microinjections of codeine (3.3 or 33mM, 54±16nl per injection) in the cNTS had no effect on cough, while those in the rNTS and in the FTL reduced coughing. Bilateral microinjections into the rNTS (3.3mM codeine, 34±1 nl per injection) reduced the number of cough responses by 24% (P<0.05), amplitudes of diaphragm EMG by 19% (P<0.01), of ABD EMG by 49% (P<0.001) and of expiratory esophageal pressure by 56% (P<0.001). Bilateral microinjections into the FTL (33mM codeine, 33±3 nl per injection) induced reductions in cough expiratory as well as inspiratory EMG amplitudes (ABD by 60% and diaphragm by 34%; P<0.01) and esophageal pressure amplitudes (expiratory by 55% and inspiratory by 26%; P<0.001 and 0.01, respectively). Microinjections of vehicle did not significantly alter coughing. Breathing was not affected by microinjections of codeine. These results suggest that: 1) codeine acts within the rNTS and the FTL to reduce cough in the cat, 2) the neuronal circuits in these target areas have unequal sensitivity to codeine and/or they have differential effects on spatiotemporal control of cough, 3) the cNTS has a limited role in the cough suppression induced by codeine in cats.
Collapse
Affiliation(s)
- Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Donald C Bolser
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Peter Machac
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Jan Jakus
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| |
Collapse
|
8
|
Poliacek I, Pitts T, Rose MJ, Davenport PW, Simera M, Veternik M, Kotmanova Z, Bolser DC. Microinjection of kynurenic acid in the rostral nucleus of the tractus solitarius disrupts spatiotemporal aspects of mechanically induced tracheobronchial cough. J Neurophysiol 2017; 117:2179-2187. [PMID: 28250153 DOI: 10.1152/jn.00935.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
The importance of neurons in the nucleus of the solitary tract (NTS) in the production of coughing was tested by microinjections of the nonspecific glutamate receptor antagonist kynurenic acid (kyn; 100 mM in artificial cerebrospinal fluid) in 15 adult spontaneously breathing anesthetized cats. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airway. Electromyograms (EMG) were recorded from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles. Bilateral microinjections of kyn into the NTS rostral to obex [55 ± 4 nl total in 2 locations (n = 6) or 110 ± 4 nl total in 4 locations (n = 5)], primarily the ventrolateral subnucleus, reduced cough number and expiratory cough efforts (amplitudes of ABD EMG and maxima of esophageal pressure) compared with control. These microinjections also markedly prolonged the inspiratory phase, all cough-related EMG activation, and the total cough cycle duration as well as some other cough-related time intervals. In response to microinjections of kyn into the NTS rostral to the obex respiratory rate decreased, and there were increases in the durations of the inspiratory and postinspiratory phases and mean blood pressure. However, bilateral microinjections of kyn into the NTS caudal to obex as well as control vehicle microinjections in the NTS location rostral to obex had no effect on coughing or cardiorespiratory variables. These results are consistent with the existence of a critical component of the cough rhythmogenic circuit located in the rostral ventral and lateral NTS. Neuronal structures of the rostral NTS are significantly involved specifically in the regulation of cough magnitude and phase timing.NEW & NOTEWORTHY The nucleus of the solitary tract contains significant neuronal structures responsible for control of 1) cough excitability, 2) motor drive during cough, 3) cough phase timing, and 4) cough rhythmicity. Significant elimination of neurons in the solitary tract nucleus results in cough apraxia (incomplete and/or disordered cough pattern). The mechanism of the cough impairment is different from that for the concomitant changes in breathing.
Collapse
Affiliation(s)
- Ivan Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; and
| | - Teresa Pitts
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Melanie J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; and
| | - Marcel Veternik
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; and
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; and
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida;
| |
Collapse
|
9
|
Hewitt MM, Adams G, Mazzone SB, Mori N, Yu L, Canning BJ. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs. J Pharmacol Exp Ther 2016; 357:620-8. [PMID: 27000801 PMCID: PMC4885511 DOI: 10.1124/jpet.115.230383] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough.
Collapse
Affiliation(s)
- Matthew M Hewitt
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Gregory Adams
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Stuart B Mazzone
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Nanako Mori
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Li Yu
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| |
Collapse
|
10
|
Mutolo D, Cinelli E, Iovino L, Pantaleo T, Bongianni F. Downregulation of the cough reflex by aclidinium and tiotropium in awake and anesthetized rabbits. Pulm Pharmacol Ther 2016; 38:1-9. [DOI: 10.1016/j.pupt.2016.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 01/23/2023]
|
11
|
Bolser DC, Pitts TE, Davenport PW, Morris KF. Role of the dorsal medulla in the neurogenesis of airway protection. Pulm Pharmacol Ther 2015; 35:105-10. [PMID: 26549786 DOI: 10.1016/j.pupt.2015.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
The dorsal medulla encompassing the nucleus of the tractus solitarius (NTS) and surrounding reticular formation (RF) has an important role in processing sensory information from the upper and lower airways for the generation and control of airway protective behaviors. These behaviors, such as cough and swallow, historically have been studied in isolation. However, recent information indicates that these and other airway protective behaviors are coordinated to minimize risk of aspiration. The dorsal medullary neural circuits that include the NTS are responsible for rhythmogenesis for repetitive swallowing, but previous models have assigned a role for this portion of the network for coughing that is restricted to monosynaptic sensory processing. We propose a more complex NTS/RF circuit that controls expression of swallowing and coughing and the coordination of these behaviors. The proposed circuit is supported by recordings of activity patterns of selected neural elements in vivo and simulations of a computational model of the brainstem circuit for breathing, coughing, and swallowing. This circuit includes separate rhythmic sub-circuits for all three behaviors. The revised NTS/RF circuit can account for the mode of action of antitussive drugs on the cough motor pattern, as well as the unique coordination of cough and swallow by a meta-behavioral control system for airway protection.
Collapse
Affiliation(s)
- Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0144, USA.
| | - Teresa E Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0144, USA
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612-4799, USA
| |
Collapse
|