1
|
Kamra K, Zucker IH, Schultz HD, Wang HJ. Chemoreflex sensitization occurs in both male and female rats during recovery from acute lung injury. Front Physiol 2024; 15:1401774. [PMID: 39105084 PMCID: PMC11298475 DOI: 10.3389/fphys.2024.1401774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Sex-specific patterns in respiratory conditions, such as asthma, COPD, cystic fibrosis, obstructive sleep apnea, and idiopathic pulmonary fibrosis, have been previously documented. Animal models of acute lung injury (ALI) have offered insights into sex differences, with male mice exhibiting distinct lung edema and vascular leakage compared to female mice. Our lab has provided evidence that the chemoreflex is sensitized in male rats during the recovery from bleomycin-induced ALI, but whether sex-based chemoreflex changes occur post-ALI is not known. To bridge this gap, the current study employed the bleomycin-induced ALI animal model to investigate sex-based differences in chemoreflex activation during the recovery from ALI. Methods ALI was induced using a single intra-tracheal instillation of bleomycin (bleo, 2.5 mg/Kg) (day 1). Resting respiratory frequency (fR) was measured at 1-2 days pre-bleo, day 7 (D7) post-bleo, and 1 month (1 mth) post-bleo. The chemoreflex responses to hypoxia (10% O2, 0% CO2) and normoxic-hypercapnia (21% O2, 5% CO2) were measured before bleo administration (pre-bleo) and 1 mth post-bleo using whole-body plethysmography. The apnea-hypopnea Index (AHI), post-sigh apneas, and sighs were measured at each time point. Results There were no significant differences in resting fR between male and female rats at the pre-bleo time point or in the increase in resting fR at D7 post-bleo. At 1 mth post-bleo, the resting fR was partially restored in both sexes but the recovery towards normal ranges of resting fR was significantly lower in male rats. The AHI, post-sigh apneas, and sighs were not different between male and female rats pre-bleo and 1 mth post-bleo. However, at D7 post-bleo, the male rats exhibited a higher AHI than female rats. Both male and female rats exhibited a sensitized chemoreflex in response to hypoxia and normoxic-hypercapnia with no significant differences between sexes. Conclusion A sex difference in resting ventilatory parameters occurs post ALI with a prolonged increase in resting fR and larger AHI in male rats. On the other hand, we did not find any sex differences in the chemoreflex sensitization that occurs at 1 mth post-bleo. This work contributes to a better understanding of sex-based variations in lung disorders.
Collapse
Affiliation(s)
- Kajal Kamra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
2
|
Campanaro CK, Nethery DE, Guo F, Kaffashi F, Loparo KA, Jacono FJ, Dick TE, Hsieh YH. Dynamics of ventilatory pattern variability and Cardioventilatory Coupling during systemic inflammation in rats. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1038531. [PMID: 37583625 PMCID: PMC10423997 DOI: 10.3389/fnetp.2023.1038531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/20/2023] [Indexed: 08/17/2023]
Abstract
Introduction: Biometrics of common physiologic signals can reflect health status. We have developed analytics to measure the predictability of ventilatory pattern variability (VPV, Nonlinear Complexity Index (NLCI) that quantifies the predictability of a continuous waveform associated with inhalation and exhalation) and the cardioventilatory coupling (CVC, the tendency of the last heartbeat in expiration to occur at preferred latency before the next inspiration). We hypothesized that measures of VPV and CVC are sensitive to the development of endotoxemia, which evoke neuroinflammation. Methods: We implanted Sprague Dawley male rats with BP transducers to monitor arterial blood pressure (BP) and recorded ventilatory waveforms and BP simultaneously using whole-body plethysmography in conjunction with BP transducer receivers. After baseline (BSLN) recordings, we injected lipopolysaccharide (LPS, n = 8) or phosphate buffered saline (PBS, n =3) intraperitoneally on 3 consecutive days. We recorded for 4-6 h after the injection, chose 3 epochs from each hour and analyzed VPV and CVC as well as heart rate variability (HRV). Results: First, the responses to sepsis varied across rats, but within rats the repeated measures of NLCI, CVC, as well as respiratory frequency (fR), HR, BP and HRV had a low coefficient of variation, (<0.2) at each time point. Second, HR, fR, and NLCI increased from BSLN on Days 1-3; whereas CVC decreased on Days 2 and 3. In contrast, changes in BP and the relative low-(LF) and high-frequency (HF) of HRV were not significant. The coefficient of variation decreased from BSLN to Day 3, except for CVC. Interestingly, NLCI increased before fR in LPS-treated rats. Finally, we histologically confirmed lung injury, systemic inflammation via ELISA and the presence of the proinflammatory cytokine, IL-1β, with immunohistochemistry in the ponto-medullary respiratory nuclei. Discussion: Our findings support that NLCI reflects changes in the rat's health induced by systemic injection of LPS and reflected in increases in HR and fR. CVC decreased over the course to the experiment. We conclude that NLCI reflected the increase in predictability of the ventilatory waveform and (together with our previous work) may reflect action of inflammatory cytokines on the network generating respiration.
Collapse
Affiliation(s)
- Cara K. Campanaro
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - David E. Nethery
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Fei Guo
- Institute for Smart, Secure and Connected Systems (ISSACS), Case Western Reserve University, Cleveland, OH, United States
| | - Farhad Kaffashi
- Institute for Smart, Secure and Connected Systems (ISSACS), Case Western Reserve University, Cleveland, OH, United States
| | - Kenneth A. Loparo
- Institute for Smart, Secure and Connected Systems (ISSACS), Case Western Reserve University, Cleveland, OH, United States
| | - Frank J. Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Thomas E. Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Horton KKA, Campanaro CK, Clifford C, Nethery DE, Strohl KP, Jacono FJ, Dick TE. Cannabinoid Receptor mRNA Expression in Central and Peripheral Tissues in a Rodent Model of Peritonitis. Cannabis Cannabinoid Res 2023; 8:510-526. [PMID: 35446129 PMCID: PMC10249742 DOI: 10.1089/can.2021.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Our laboratory investigates changes in the respiratory pattern during systemic inflammation in various rodent models. The endogenous cannabinoid system (ECS) regulates cytokine production and mitigates inflammation. Inflammation not only affects cannabinoid (CB) 1 and CB2 receptor gene expression (Cnr1 and Cnr2), but also increases the predictability of the ventilatory pattern. Objectives: Our primary objective was to track ventilatory pattern variability and transcription of Cnr1 and Cnr2 mRNA, and of Il1b, Il6, and tumor necrosis factor-alpha (Tnfa) mRNAs at multiple time points in central and peripheral tissues during systemic inflammation induced by peritonitis. Methods: In male Sprague Dawley rats (n=24), we caused peritonitis by implanting a fibrin clot containing either 0 or 25×106 Escherichia coli intraperitoneally. We recorded breathing with whole-animal plethysmography at baseline and 1 h before euthanasia. We euthanized the rats at 3, 6, or 12 h after inoculation and harvested the pons, medulla, lung, and heart for gene expression analysis. Results: With peritonitis, Cnr1 mRNA more than Cnr2 mRNA was correlated to Il1b, Il6, and Tnfa mRNAs in medulla, pons, and lung and changed oppositely in the pons, medulla, and lung. These changes were associated with increased predictability of ventilatory pattern. Specifically, nonlinear complexity index correlated with increased Cnr1 mRNA in the pons and medulla, and coefficient of variation for cycle duration correlated with Cnr1 and Cnr2 mRNAs in the lung. Conclusion: The mRNAs for ECS receptors varied with time during the central and peripheral inflammatory response to peritonitis. These changes occurred in the brainstem, which contains the network that generates breathing pattern and thus, may participate in ventilatory pattern changes during systemic inflammation.
Collapse
Affiliation(s)
- Kofi-Kermit A. Horton
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cara K. Campanaro
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Caitlyn Clifford
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David E. Nethery
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kingman P. Strohl
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Frank J. Jacono
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Thomas E. Dick
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Kamra K, Karpuk N, Zucker IH, Schultz HD, Wang HJ. The superior cervical ganglion is involved in chronic chemoreflex sensitization during recovery from acute lung injury. Front Physiol 2023; 14:1101408. [PMID: 36846321 PMCID: PMC9944401 DOI: 10.3389/fphys.2023.1101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction: Acute lung injury (ALI) initiates an inflammatory cascade that impairs gas exchange, induces hypoxemia, and causes an increase in respiratory rate (fR). This stimulates the carotid body (CB) chemoreflex, a fundamental protective reflex that maintains oxygen homeostasis. Our previous study indicated that the chemoreflex is sensitized during the recovery from ALI. The superior cervical ganglion (SCG) is known to innervate the CB, and its electrical stimulation has been shown to significantly sensitize the chemoreflex in hypertensive and normotensive rats. We hypothesized that the SCG is involved in the chemoreflex sensitization post-ALI. Methods: We performed a bilateral SCG ganglionectomy (SCGx) or sham-SCGx (Sx) in male Sprague Dawley rats 2 weeks before inducing ALI (Week -2 i.e., W-2). ALI was induced using a single intra-tracheal instillation of bleomycin (bleo) (day 1). Resting-fR, Vt (Tidal Volume), and V̇ E (Minute Ventilation) were measured. The chemoreflex response to hypoxia (10% O2, 0% CO2) and normoxic-hypercapnia (21% O2, 5% CO2) were measured before surgery on W (-3), before bleo administration on W0 and on W4 post-bleo using whole-body plethysmography (WBP). Results: SCGx did not affect resting fR, Vt and V̇E as well as the chemoreflex responses to hypoxia and normoxic hypercapnia in either group prior to bleo. There was no significant difference in ALI-induced increase in resting fR between Sx and SCGx rats at W1 post-bleo. At W4 post-bleo, there were no significant differences in resting fR, Vt, and V̇E between Sx and SCGx rats. Consistent with our previous study, we observed a sensitized chemoreflex (delta fR) in response to hypoxia and normoxic hypercapnia in Sx rats at W4 post-bleo. However, at the same time, compared to Sx rats, the chemoreflex sensitivity was significantly less in SCGx rats in response to either hypoxia or normoxic hypercapnia. Discussion: These data suggest that SCG is involved in the chemoreflex sensitization during ALI recovery. Further understanding of the underlying mechanism will provide important information for the long-term goal of developing novel targeted therapeutic approaches to pulmonary diseases to improve clinical outcomes.
Collapse
Affiliation(s)
- Kajal Kamra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nikolay Karpuk
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Kamra K, Karpuk N, Adam R, Zucker IH, Schultz HD, Wang HJ. Time-dependent alteration in the chemoreflex post-acute lung injury. Front Physiol 2022; 13:1009607. [PMID: 36338487 PMCID: PMC9630356 DOI: 10.3389/fphys.2022.1009607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Acute lung injury (ALI) induces inflammation that disrupts the normal alveolar-capillary endothelial barrier which impairs gas exchange to induce hypoxemia that reflexively increases respiration. The neural mechanisms underlying the respiratory dysfunction during ALI are not fully understood. The purpose of this study was to investigate the role of the chemoreflex in mediating abnormal ventilation during acute (early) and recovery (late) stages of ALI. We hypothesized that the increase in respiratory rate (fR) during post-ALI is mediated by a sensitized chemoreflex. ALI was induced in male Sprague-Dawley rats using a single intra-tracheal injection of bleomycin (Bleo: low-dose = 1.25 mg/Kg or high-dose = 2.5 mg/Kg) (day 1) and respiratory variables- fR, Vt (Tidal Volume), and VE (Minute Ventilation) in response to 10% hypoxia (10% O2, 0% CO2) and 5% hypercapnia/21% normoxia (21% O2, 5% CO2) were measured weekly from W0-W4 using whole-body plethysmography (WBP). Our data indicate sensitization (∆fR = 93 ± 31 bpm, p < 0.0001) of the chemoreflex at W1 post-ALI in response to hypoxic/hypercapnic gas challenge in the low-dose bleo (moderate ALI) group and a blunted chemoreflex (∆fR = -0.97 ± 42 bpm, p < 0.0001) at W1 post-ALI in the high-dose bleo (severe ALI) group. During recovery from ALI, at W3-W4, both low-dose and high-dose groups exhibited a sensitized chemoreflex in response to hypoxia and normoxic-hypercapnia. We then hypothesized that the blunted chemoreflex at W1 post-ALI in the high-dose bleo group could be due to near maximal tonic activation of chemoreceptors, called the "ceiling effect". To test this possibility, 90% hyperoxia (90% O2, 0% CO2) was given to bleo treated rats to inhibit the chemoreflex. Our results showed no changes in fR, suggesting absence of the tonic chemoreflex activation in response to hypoxia at W1 post-ALI. These data suggest that during the acute stage of moderate (low-dose bleo) and severe (high-dose bleo) ALI, chemoreflex activity trends to be slightly sensitized and blunted, respectively while it becomes significantly sensitized during the recovery stage. Future studies are required to examine the molecular/cellular mechanisms underlying the time-course changes in chemoreflex sensitivity post-ALI.
Collapse
Affiliation(s)
- Kajal Kamra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nikolay Karpuk
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ryan Adam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Han-Jun Wang,
| |
Collapse
|
6
|
Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020; 87:610-633. [PMID: 32097765 PMCID: PMC8895345 DOI: 10.1016/j.bbi.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1β and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P → C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1β and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1β and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1β + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P → C I-comm via radial-glia of the FS.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Scott J Denstaedt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lauren F Borkowski
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
7
|
Watters JJ, Baker TL. From one breath to the next: an inflammatory rift in the pattern of predictability. J Physiol 2020; 598:2539-2540. [PMID: 32421228 DOI: 10.1113/jp280060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706
| | - Tracy L Baker
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
8
|
Hsieh YH, Litvin DG, Zaylor AR, Nethery DE, Dick TE, Jacono FJ. Brainstem inflammation modulates the ventilatory pattern and its variability after acute lung injury in rodents. J Physiol 2020; 598:2791-2811. [PMID: 32378188 DOI: 10.1113/jp279177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/21/2020] [Indexed: 01/20/2023] Open
Abstract
KEY POINTS Compared with sham rats, rats a week after acute lung injury (ALI) express more pro-inflammatory cytokines in their brainstem respiratory control nuclei, exhibit a higher respiratory frequency (fR) and breathe with a more predictable pattern. These characteristics of the respiratory pattern persist in in situ preparations even after minimizing pulmonary and chemo-afferent inputs. Interleukin (IL)-1β microinjected in the nucleus tractus solitarii increases fR and the predictability of the ventilatory pattern similar to rats with ALI. Intracerebroventricular infusion of indomethacin, an anti-inflammatory drug, mitigates the effect of ALI on fR and ventilatory pattern variability. We conclude that changes in the ventilatory pattern after ALI result not only from sensory input due to pulmonary damage and dysfunction but also from neuro-inflammation. ABSTRACT Acute lung injury (ALI) increases respiratory rate (fR) and ventilatory pattern variability (VPV), but also evokes peripheral and central inflammation. We hypothesized that central inflammation has a role in determining the ventilatory pattern after ALI. In rat pups, we intratracheally injected either bleomycin to induce ALI or saline as a sham control. One week later, we recorded the ventilatory pattern of the rat pups using flow-through plethysmography, then formed in situ preparations from these pups and recorded their 'fictive' patterns from respiratory motor nerves. Compared with the ventilatory pattern of the sham rat pups, injured rat pups had increased fR and predictability. Surprisingly, the fictive patterns of the in situ preparations from ALI pups retained these characteristics despite removing their lungs to eliminate pulmonary sensory inputs and perfusing them with hyperoxic artificial cerebral spinal fluid to minimize peripheral chemoreceptor input. Histological processing revealed increased immunoreactivity of the pro-inflammatory cytokine Interleukin-1β (IL-1β) in the nucleus tractus solitarii (nTS) from ALI but not sham rats. In subsequent experiments, we microinjected IL-1β in the nTS bilaterally in anaesthetized naïve adult rats, which increased fR and predictability of ventilatory pattern variability (VPV) after 2 h. Finally, we infused indomethacin intracerebroventricularly during the week of survival after ALI. This did not affect sham rats, but mitigated changes in fR and VPV in ALI rats. We conclude that neuro-inflammation has an essential role in determining the ventilatory pattern of ALI rats.
Collapse
Affiliation(s)
- Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - David G Litvin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Department of Fundamental Neuroscience, University of Lausanne, Lausanne, 1005, Switzerland
| | - Abigail R Zaylor
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, United States.,Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, Ohio, United States
| | - David E Nethery
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, United States.,Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, United States.,Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, Ohio, United States
| |
Collapse
|
9
|
Knutson AO, Watters JJ. All roads lead to inflammation: Is maternal immune activation a common culprit behind environmental factors impacting offspring neural control of breathing? Respir Physiol Neurobiol 2019; 274:103361. [PMID: 31874263 DOI: 10.1016/j.resp.2019.103361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Despite numerous studies investigating how prenatal exposures impact the developing brain, there remains very little known about how these in utero exposures impact the life-sustaining function of breathing. While some exposures such as alcohol and drugs of abuse are well-known to alter respiratory function, few studies have evaluated other common maternal environmental stimuli, such as maternal infection, inhalation of diesel exhaust particles prevalent in urban areas, or obstructive sleep apnea during pregnancy, just to name a few. The goals of this review article are thus to: 1) highlight data on gestational exposures that impair respiratory function, 2) discuss what is known about the potential role of inflammation in the effects of these maternal exposures, and 3) identify less studied but potential in utero exposures that could negatively impact CNS regions important in respiratory motor control, perhaps by impacting maternal or fetal inflammation. We highlight gaps in knowledge, summarize evidence related to the possible contributions of inflammation, and discuss the need for further studies of life-long offspring respiratory function both at baseline and after respiratory challenge.
Collapse
Affiliation(s)
- Andrew O Knutson
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jyoti J Watters
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
10
|
Proceedings of the 14th Oxford Conference on Modelling and Control of Breathing (September 2017, Oxford, United Kingdom)-Special issue of respiratory physiology and neurobiology. Respir Physiol Neurobiol 2019; 265:1-2. [PMID: 31141721 DOI: 10.1016/j.resp.2019.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|