1
|
Thakre PP, Rana S, Benevides ES, Fuller DD. Targeting drug or gene delivery to the phrenic motoneuron pool. J Neurophysiol 2023; 129:144-158. [PMID: 36416447 PMCID: PMC9829468 DOI: 10.1152/jn.00432.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Phrenic motoneurons (PhrMNs) innervate diaphragm myofibers. Located in the ventral gray matter (lamina IX), PhrMNs form a column extending from approximately the third to sixth cervical spinal segment. Phrenic motor output and diaphragm activation are impaired in many neuromuscular diseases, and targeted delivery of drugs and/or genetic material to PhrMNs may have therapeutic application. Studies of phrenic motor control and/or neuroplasticity mechanisms also typically require targeting of PhrMNs with drugs, viral vectors, or tracers. The location of the phrenic motoneuron pool, however, poses a challenge. Selective PhrMN targeting is possible with molecules that move retrogradely upon uptake into phrenic axons subsequent to diaphragm or phrenic nerve delivery. However, nonspecific approaches that use intrathecal or intravenous delivery have considerably advanced the understanding of PhrMN control. New opportunities for targeted PhrMN gene expression may be possible with intersectional genetic methods. This article provides an overview of methods for targeting the phrenic motoneuron pool for studies of PhrMNs in health and disease.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - Ethan S Benevides
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| |
Collapse
|
2
|
Huang R, Worrell J, Garner E, Wang S, Homsey T, Xu B, Galer EL, Zhou Y, Tavakol S, Daneshvar M, Le T, Vinters HV, Salamon N, McArthur DL, Nuwer MR, Wu I, Leiter JC, Lu DC. Epidural electrical stimulation of the cervical spinal cord opposes opioid-induced respiratory depression. J Physiol 2022; 600:2973-2999. [PMID: 35639046 DOI: 10.1113/jp282664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 02/02/2023] Open
Abstract
Opioid overdose suppresses brainstem respiratory circuits, causes apnoea and may result in death. Epidural electrical stimulation (EES) at the cervical spinal cord facilitated motor activity in rodents and humans, and we hypothesized that EES of the cervical spinal cord could antagonize opioid-induced respiratory depression in humans. Eighteen patients requiring surgical access to the dorsal surface of the spinal cord between C2 and C7 received EES or sham stimulation for up to 90 s at 5 or 30 Hz during complete (OFF-State) or partial suppression (ON-State) of respiration induced by remifentanil. During the ON-State, 30 Hz EES at C4 and 5 Hz EES at C3/4 increased tidal volume and decreased the end-tidal carbon dioxide level compared to pre-stimulation control levels. EES of 5 Hz at C5 and C7 increased respiratory frequency compared to pre-stimulation control levels. In the OFF-State, 30 Hz cervical EES at C3/4 terminated apnoea and induced rhythmic breathing. In cadaveric tissue obtained from a brain bank, more neurons expressed both the neurokinin 1 receptor (NK1R) and somatostatin (SST) in the cervical spinal levels responsive to EES (C3/4, C6 and C7) compared to a region non-responsive to EES (C2). Thus, the capacity of cervical EES to oppose opioid depression of respiration may be mediated by NK1R+/SST+ neurons in the dorsal cervical spinal cord. This study provides proof of principle that cervical EES may provide a novel therapeutic approach to augment respiratory activity when the neural function of the central respiratory circuits is compromised by opioids or other pathological conditions. KEY POINTS: Epidural electrical stimulation (EES) using an implanted spinal cord stimulator (SCS) is an FDA-approved method to manage chronic pain. We tested the hypothesis that cervical EES facilitates respiration during administration of opioids in 18 human subjects who were treated with low-dose remifentanil that suppressed respiration (ON-State) or high-dose remifentanil that completely inhibited breathing (OFF-State) during the course of cervical surgery. Dorsal cervical EES of the spinal cord augmented the respiratory tidal volume or increased the respiratory frequency, and the response to EES varied as a function of the stimulation frequency (5 or 30 Hz) and the cervical level stimulated (C2-C7). Short, continuous cervical EES restored a cyclic breathing pattern (eupnoea) in the OFF-State, suggesting that cervical EES reversed the opioid-induced respiratory depression. These findings add to our understanding of respiratory pattern modulation and suggest a novel mechanism to oppose the respiratory depression caused by opioids.
Collapse
Affiliation(s)
- Ruyi Huang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Interdepartmental Program in Neuroscience, University of California, Los Angeles, CA, USA
| | - Jason Worrell
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eric Garner
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephanie Wang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tali Homsey
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Bo Xu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Erika L Galer
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Molecular, Cellular, Integrated Physiology Program, University of California, Los Angeles, CA, USA
| | - Yan Zhou
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sherwin Tavakol
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meelod Daneshvar
- University of California Fresno, Department of Surgery, Fresno, CA, USA
| | - Timothy Le
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David L McArthur
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Marc R Nuwer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Irene Wu
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine, Lebanon, NH, USA
| | - Daniel C Lu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Interdepartmental Program in Neuroscience, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Perim RR, Sunshine MD, Welch JF, Santiago J, Holland A, Ross A, Mitchell GS, Gonzalez-Rothi EJ. Daily acute intermittent hypoxia enhances phrenic motor output and stimulus-evoked phrenic responses in rats. J Neurophysiol 2021; 126:777-790. [PMID: 34260289 DOI: 10.1152/jn.00112.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity is a hallmark of the respiratory neural control system. Phrenic long-term facilitation (pLTF) is one form of respiratory plasticity characterized by persistent increases in phrenic nerve activity following acute intermittent hypoxia (AIH). Although there is evidence that key steps in the cellular pathway giving rise to pLTF are localized within phrenic motor neurons (PMNs), the impact of AIH on the strength of breathing-related synaptic inputs to PMNs remains unclear. Further, the functional impact of AIH is enhanced by repeated/daily exposure to AIH (dAIH). Here, we explored the effects of AIH vs. 2 weeks of dAIH preconditioning on spontaneous and evoked responses recorded in anesthetized, paralyzed (with pancuronium bromide) and mechanically ventilated rats. Evoked phrenic potentials were elicited by respiratory cycle-triggered lateral funiculus stimulation at C2 delivered prior to- and 60 min post-AIH (or an equivalent time in controls). Charge-balanced biphasic pulses (100 µs/phase) of progressively increasing intensity (100 to 700 µA) were delivered during the inspiratory and expiratory phases of the respiratory cycle. Although robust pLTF (~60% from baseline) was observed after a single exposure to moderate AIH (3 x 5 min; 5 min intervals), there was no effect on evoked phrenic responses, contrary to our initial hypothesis. However, in rats preconditioned with dAIH, baseline phrenic nerve activity and evoked responses were increased, suggesting that repeated exposure to AIH enhances functional synaptic strength when assessed using this technique. The impact of daily AIH preconditioning on synaptic inputs to PMNs raises interesting questions that require further exploration.
Collapse
Affiliation(s)
- Raphael Rodrigues Perim
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Michael D Sunshine
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joseph F Welch
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Juliet Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ashley Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ashley Ross
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Gonzalez-Rothi EJ, Lee KZ. Intermittent hypoxia and respiratory recovery in pre-clinical rodent models of incomplete cervical spinal cord injury. Exp Neurol 2021; 342:113751. [PMID: 33974878 DOI: 10.1016/j.expneurol.2021.113751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Impaired respiratory function is a common and devastating consequence of cervical spinal cord injury. Accordingly, the development of safe and effective treatments to restore breathing function is critical. Acute intermittent hypoxia has emerged as a promising therapeutic strategy to treat respiratory insufficiency in individuals with spinal cord injury. Since the original report by Bach and Mitchell (1996) concerning long-term facilitation of phrenic motor output elicited by brief, episodic exposure to reduced oxygen, a series of studies in animal models have led to the realization that acute intermittent hypoxia may have tremendous potential for inducing neuroplasticity and functional recovery in the injured spinal cord. Advances in our understanding of the neurobiology of acute intermittent hypoxia have prompted us to begin to explore its effects in human clinical studies. Here, we review the basic neurobiology of the control of breathing and the pathophysiology and respiratory consequences of two common experimental models of incomplete cervical spinal cord injury (i.e., high cervical hemisection and mid-cervical contusion). We then discuss the impact of acute intermittent hypoxia on respiratory motor function in these models: work that has laid the foundation for translation of this promising therapeutic strategy to clinical populations. Lastly, we examine the limitations of these animal models and intermittent hypoxia and discuss how future work in animal models may further advance the translation and therapeutic efficacy of this treatment.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|