1
|
Neumann J, Grobe JM, Weisgut J, Schwelberger HG, Fogel WA, Marušáková M, Wache H, Bähre H, Buchwalow IB, Dhein S, Hofmann B, Kirchhefer U, Gergs U. Histamine can be Formed and Degraded in the Human and Mouse Heart. Front Pharmacol 2021; 12:582916. [PMID: 34045955 PMCID: PMC8144513 DOI: 10.3389/fphar.2021.582916] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Histamine is metabolized by several enzymes in vitro and in vivo. The relevance of this metabolism in the mammalian heart in vivo is unclear. However, histamine can exert positive inotropic effects (PIE) and positive chronotropic effects (PCE) in humans via H2-histamine receptors. In transgenic mice (H2-TG) that overexpress the human H2 receptor in cardiomyocytes but not in wild-type littermate mice (WT), histamine induced PIE and PCE in isolated left or right atrial preparations. These H2-TG were used to investigate the putative relevance of histamine degrading enzymes in the mammalian heart. Histidine, the precursor of histamine, increased force of contraction (FOC) in human atrial preparations. Moreover, histamine increased the phosphorylation state of phospholamban in human atrium. Here, we could detect histidine decarboxylase (HDC) and histamine itself in cardiomyocytes of mouse hearts. Moreover, our data indicate that histamine is subject to degradation in the mammalian heart. Inhibition of the histamine metabolizing enzymes diamine oxidase (DAO) and monoamine oxidase (MAO) shifted the concentration response curves for the PIE in H2-TG atria to the left. Moreover, activity of histamine metabolizing enzymes was present in mouse cardiac samples as well as in human atrial samples. Thus, drugs used for other indication (e.g. antidepressants) can alter histamine levels in the heart. Our results deepen our understanding of the physiological role of histamine in the mouse and human heart. Our findings might be clinically relevant because we show enzyme targets for drugs to modify the beating rate and force of the human heart.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Juliane M Grobe
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Jacqueline Weisgut
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hubert G Schwelberger
- Department of Visceral, Transplant and Thoracic Surgery, Molecular Biology Laboratory, Medical University Innsbruck, Innsbruck, Austria
| | | | - Margaréta Marušáková
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hartmut Wache
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | | | - Stefan Dhein
- Klinik für Herzchirurgie, Herzzentrum der Universität Leipzig, Leipzig, Germany
| | - Britt Hofmann
- Department of Cardiothoracic Surgery, Heart Centre of the University Clinics Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
2
|
Schön M, Mousa A, Berk M, Chia WL, Ukropec J, Majid A, Ukropcová B, de Courten B. The Potential of Carnosine in Brain-Related Disorders: A Comprehensive Review of Current Evidence. Nutrients 2019; 11:nu11061196. [PMID: 31141890 PMCID: PMC6627134 DOI: 10.3390/nu11061196] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Neurological, neurodegenerative, and psychiatric disorders represent a serious burden because of their increasing prevalence, risk of disability, and the lack of effective causal/disease-modifying treatments. There is a growing body of evidence indicating potentially favourable effects of carnosine, which is an over-the-counter food supplement, in peripheral tissues. Although most studies to date have focused on the role of carnosine in metabolic and cardiovascular disorders, the physiological presence of this di-peptide and its analogues in the brain together with their ability to cross the blood-brain barrier as well as evidence from in vitro, animal, and human studies suggest carnosine as a promising therapeutic target in brain disorders. In this review, we aim to provide a comprehensive overview of the role of carnosine in neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders, summarizing current evidence from cell, animal, and human cross-sectional, longitudinal studies, and randomized controlled trials.
Collapse
Affiliation(s)
- Martin Schön
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, Victoria 3220, Australia.
- Orygen, The Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Wern L Chia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Jozef Ukropec
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Barbara Ukropcová
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
- Faculty of Physical Education and Sports, Comenius University, 81469 Bratislava, Slovakia.
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| |
Collapse
|
3
|
Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration. Sci Rep 2015; 5:15356. [PMID: 26481857 PMCID: PMC4611873 DOI: 10.1038/srep15356] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 09/09/2015] [Indexed: 11/24/2022] Open
Abstract
The formation of glial scar impedes the neurogenesis and neural functional recovery following cerebral ischemia. Histamine showed neuroprotection at early stage after cerebral ischemia, however, its long-term effect, especially on glial scar formation, hasn’t been characterized. With various administration regimens constructed for histidine, a precursor of histamine, we found that histidine treatment at a high dose at early stage and a low dose at late stage demonstrated the most remarkable long-term neuroprotection with decreased infarct volume and improved neurological function. Notably, this treatment regimen also robustly reduced the glial scar area and facilitated the astrocyte migration towards the infarct core. In wound-healing assay and transwell test, histamine significantly promoted astrocyte migration. H2 receptor antagonists reversed the promotion of astrocyte migration and the neuroprotection provided by histidine. Moreover, histamine upregulated the GTP-bound small GTPase Rac1, while a Rac1 inhibitor, NSC23766, abrogated the neuroprotection of histidine and its promotion of astrocyte migration. Our data indicated that a dose/stage-dependent histidine treatment, mediated by H2 receptor, promoted astrocyte migration towards the infarct core, which benefited long-term post-cerebral ischemia neurological recovery. Therefore, targeting histaminergic system may be an effective therapeutic strategy for long-term cerebral ischemia injury through its actions on astrocytes.
Collapse
|
4
|
Ström JO, Ingberg E, Theodorsson A, Theodorsson E. Method parameters' impact on mortality and variability in rat stroke experiments: a meta-analysis. BMC Neurosci 2013; 14:41. [PMID: 23548160 PMCID: PMC3637133 DOI: 10.1186/1471-2202-14-41] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 12/14/2022] Open
Abstract
Background Even though more than 600 stroke treatments have been shown effective in preclinical studies, clinically proven treatment alternatives for cerebral infarction remain scarce. Amongst the reasons for the discrepancy may be methodological shortcomings, such as high mortality and outcome variability, in the preclinical studies. A common approach in animal stroke experiments is that A) focal cerebral ischemia is inflicted, B) some type of treatment is administered and C) the infarct sizes are assessed. However, within this paradigm, the researcher has to make numerous methodological decisions, including choosing rat strain and type of surgical procedure. Even though a few studies have attempted to address the questions experimentally, a lack of consensus regarding the optimal methodology remains. Methods We therefore meta-analyzed data from 502 control groups described in 346 articles to find out how rat strain, procedure for causing focal cerebral ischemia and the type of filament coating affected mortality and infarct size variability. Results The Wistar strain and intraluminal filament procedure using a silicone coated filament was found optimal in lowering infarct size variability. The direct and endothelin methods rendered lower mortality rate, whereas the embolus method increased it compared to the filament method. Conclusions The current article provides means for researchers to adjust their middle cerebral artery occlusion (MCAo) protocols to minimize infarct size variability and mortality.
Collapse
Affiliation(s)
- Jakob O Ström
- Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden.
| | | | | | | |
Collapse
|
5
|
Conceição FGD, Conde CMS, Svensjö E, Bottino DA, Bouskela E. Preconditioning of the response to ischemia/ reperfusion-induced plasma leakage in hamster cheek pouch microcirculation. Clinics (Sao Paulo) 2012; 67:923-9. [PMID: 22948461 PMCID: PMC3416899 DOI: 10.6061/clinics/2012(08)12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/02/2012] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Ischemic preconditioning and some drugs can protect tissues from injury by preserving microcirculation. This study evaluated vascular permeability in a hamster cheek pouch preparation using either short ischemic periods or bradykinin as preconditioning stimuli followed by 30 min of ischemia/reperfusion. METHOD Sixty-six male hamsters were divided into 11 groups: five combinations of different ischemic frequencies and durations (one, three or five shorts periods of ischemia, separated by one or five minutes) with 10 min intervals between the ischemic periods, followed by 30 min ischemia/reperfusion; three or five 1 min ischemic periods with 10 min intervals between them followed by the topical application of histamine (2 µM); bradykinin (400 nM) followed by 30 min of ischemia/reperfusion; and three control groups (30 min of ischemia/reperfusion or histamine or bradykinin by themselves). Macromolecular permeability was assessed by injection of fluorescein-labeled dextran (FITC-dextran, MW= 150 kDa; 250 mg/Kg body weight), and the number of leaks/cm2 was counted using an intravital microscope and fluorescent light in the cheek pouch. RESULTS Plasma leakage (number of leaks/cm²) was significantly reduced by preconditioning with three and five 1 min ischemic periods, one and three 5 min ischemic periods and by bradykinin. Histamine-induced macromolecular permeability was also reduced after three periods of 5 min of ischemia. CONCLUSION Short ischemic periods and bradykinin can function as preconditioning stimuli of the ischemia/reperfusion response in the hamster cheek pouch microcirculation. Short ischemic periods also reduced histamineinduced macromolecular permeability.
Collapse
Affiliation(s)
- Fabiana Gomes da Conceição
- Laboratory for Clinical and Experimental Research on Vascular Biology, Biomedical Center, State University of Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|