1
|
Barajas MB, Oyama T, Shiota M, Li Z, Zaum M, Zecevic I, Riess ML. Ischemic Post-Conditioning in a Rat Model of Asphyxial Cardiac Arrest. Cells 2024; 13:1047. [PMID: 38920675 PMCID: PMC11201463 DOI: 10.3390/cells13121047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Ischemic post-conditioning (IPoC) has been shown to improve outcomes in limited pre-clinical models. As down-time is often unknown, this technique needs to be investigated over a range of scenarios. As this tool limits reperfusion injury, there may be limited benefit or even harm after short arrest and limited ischemia-reperfusion injury. METHODS Eighteen male Wistar rats underwent 7 min of asphyxial arrest. Animals randomized to IPoC received a 20 s pause followed by 20 s of compressions, repeated four times, initiated 40 s into cardiopulmonary resuscitation. If return of spontaneous circulation (ROSC) was achieved, epinephrine was titrated to mean arterial pressure (MAP) of 70 mmHg. Data were analyzed using t-test or Mann-Whitney test. Significance set at p ≤ 0.05. RESULTS The rate of ROSC was equivalent in both groups, 88%. There was no statistically significant difference in time to ROSC, epinephrine required post ROSC, carotid flow, or peak lactate at any timepoint. There was a significantly elevated MAP with IPoC, 90.7 mmHg (SD 13.9), as compared to standard CPR, 76.7 mmHg (8.5), 2 h after ROSC, p = 0.03. CONCLUSIONS IPoC demonstrated no harm in a model of short arrest using a new arrest etiology for CPR based IPoC intervention in a rat model.
Collapse
Affiliation(s)
- Matthew B. Barajas
- Department of Anesthesiology, Tennessee Valley Healthcare System, Veterans Affairs Medical Center, Nashville, TN 37212, USA;
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37212, USA (Z.L.); (M.Z.)
| | - Takuro Oyama
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37212, USA (Z.L.); (M.Z.)
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37212, USA;
| | - Zhu Li
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37212, USA (Z.L.); (M.Z.)
| | - Maximillian Zaum
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37212, USA (Z.L.); (M.Z.)
- Department of Anesthesiology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ilija Zecevic
- School of Medicine, Meharry Medical College, Nashville, TN 37212, USA
| | - Matthias L. Riess
- Department of Anesthesiology, Tennessee Valley Healthcare System, Veterans Affairs Medical Center, Nashville, TN 37212, USA;
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37212, USA (Z.L.); (M.Z.)
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
2
|
Balzer C, Eagle SS, Yannopoulos D, Aufderheide TP, Riess ML. High central venous pressure amplitude predicts successful defibrillation in a porcine model of cardiac arrest. Resuscitation 2023; 185:109716. [PMID: 36736947 PMCID: PMC11087940 DOI: 10.1016/j.resuscitation.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
AIM Increasing venous return during cardiopulmonary resuscitation (CPR) has been shown to improve hemodynamics during CPR and outcomes following cardiac arrest (CA). We hypothesized that a high central venous pressure amplitude (CVP-A), the difference between the maximum and minimum central venous pressure during chest compressions, could serve as a robust predictor of return of spontaneous circulation (ROSC) in addition to traditional measurements of coronary perfusion pressure (CPP) and end-tidal CO2 (etCO2) in a porcine model of CA. METHODS After 10 min of ventricular fibrillation, 9 anesthetized and intubated female pigs received mechanical chest compressions with active compression/decompression (ACD) and an impedance threshold device (ITD). CPP, CVP-A and etCO2 were measured continuously. All groups received biphasic defibrillation (200 J) at minute 4 of CPR and were classified into two groups (ROSC, NO ROSC). Mean values were analyzed over 3 min before defibrillation by repeated-measures Analysis of Variance and receiver operating characteristic (ROC). RESULTS Five animals out of 9 experienced ROSC. CVP-A showed a statistically significant difference (p = 0.003) between the two groups during 3 min of CPR before defibrillation compared to CPP (p = 0.056) and etCO2 (p = 0.064). Areas-under-the-curve in ROC analysis for CVP-A, CPP and etCO2 were 0.94 (95% Confidence Interval 0.86, 1.00), 0.74 (0.54, 0.95) and 0.78 (0.50, 1.00), respectively. CONCLUSION In our study, CVP-A was a potentially useful predictor of successful defibrillation and return of spontaneous circulation. Overall, CVP-A could serve as a marker for prediction of ROSC with increased venous return and thereby monitoring the beneficial effects of ACD and ITD.
Collapse
Affiliation(s)
- Claudius Balzer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan S Eagle
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Tom P Aufderheide
- Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthias L Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN, USA; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Wyckoff MH, Greif R, Morley PT, Ng KC, Olasveengen TM, Singletary EM, Soar J, Cheng A, Drennan IR, Liley HG, Scholefield BR, Smyth MA, Welsford M, Zideman DA, Acworth J, Aickin R, Andersen LW, Atkins D, Berry DC, Bhanji F, Bierens J, Borra V, Böttiger BW, Bradley RN, Bray JE, Breckwoldt J, Callaway CW, Carlson JN, Cassan P, Castrén M, Chang WT, Charlton NP, Phil Chung S, Considine J, Costa-Nobre DT, Couper K, Couto TB, Dainty KN, Davis PG, de Almeida MF, de Caen AR, Deakin CD, Djärv T, Donnino MW, Douma MJ, Duff JP, Dunne CL, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Finn J, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Kawakami MD, Kim HS, Kleinman M, Kloeck DA, Kudenchuk PJ, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin YJ, Lockey AS, Maconochie IK, Madar J, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Morgan P, Morrison LJ, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, O'Neill BJ, Gene Ong YK, Orkin AM, Paiva EF, Parr MJ, Patocka C, Pellegrino JL, Perkins GD, Perlman JM, Rabi Y, Reis AG, Reynolds JC, Ristagno G, Rodriguez-Nunez A, Roehr CC, Rüdiger M, Sakamoto T, Sandroni C, Sawyer TL, Schexnayder SM, Schmölzer GM, Schnaubelt S, Semeraro F, Skrifvars MB, Smith CM, Sugiura T, Tijssen JA, Trevisanuto D, Van de Voorde P, Wang TL, Weiner GM, Wyllie JP, Yang CW, Yeung J, Nolan JP, Berg KM. 2022 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Pediatrics 2023; 151:189896. [PMID: 36325925 DOI: 10.1542/peds.2022-060463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
This is the sixth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. This summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. Topics covered by systematic reviews include cardiopulmonary resuscitation during transport; approach to resuscitation after drowning; passive ventilation; minimizing pauses during cardiopulmonary resuscitation; temperature management after cardiac arrest; use of diagnostic point-of-care ultrasound during cardiac arrest; use of vasopressin and corticosteroids during cardiac arrest; coronary angiography after cardiac arrest; public-access defibrillation devices for children; pediatric early warning systems; maintaining normal temperature immediately after birth; suctioning of amniotic fluid at birth; tactile stimulation for resuscitation immediately after birth; use of continuous positive airway pressure for respiratory distress at term birth; respiratory and heart rate monitoring in the delivery room; supraglottic airway use in neonates; prearrest prediction of in-hospital cardiac arrest mortality; basic life support training for likely rescuers of high-risk populations; effect of resuscitation team training; blended learning for life support training; training and recertification for resuscitation instructors; and recovery position for maintenance of breathing and prevention of cardiac arrest. Members from 6 task forces have assessed, discussed, and debated the quality of the evidence using Grading of Recommendations Assessment, Development, and Evaluation criteria and generated consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections, and priority knowledge gaps for future research are listed.
Collapse
|
4
|
Wyckoff MH, Greif R, Morley PT, Ng KC, Olasveengen TM, Singletary EM, Soar J, Cheng A, Drennan IR, Liley HG, Scholefield BR, Smyth MA, Welsford M, Zideman DA, Acworth J, Aickin R, Andersen LW, Atkins D, Berry DC, Bhanji F, Bierens J, Borra V, Böttiger BW, Bradley RN, Bray JE, Breckwoldt J, Callaway CW, Carlson JN, Cassan P, Castrén M, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Couto TB, Dainty KN, Davis PG, de Almeida MF, de Caen AR, Deakin CD, Djärv T, Donnino MW, Douma MJ, Duff JP, Dunne CL, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Finn J, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Kawakami MD, Kim HS, Kleinman M, Kloeck DA, Kudenchuk PJ, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin YJ, Lockey AS, Maconochie IK, Madar RJ, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Morgan P, Morrison LJ, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, O'Neill BJ, Ong YKG, Orkin AM, Paiva EF, Parr MJ, Patocka C, Pellegrino JL, Perkins GD, Perlman JM, Rabi Y, Reis AG, Reynolds JC, Ristagno G, Rodriguez-Nunez A, Roehr CC, Rüdiger M, Sakamoto T, Sandroni C, Sawyer TL, Schexnayder SM, Schmölzer GM, Schnaubelt S, Semeraro F, Skrifvars MB, Smith CM, Sugiura T, Tijssen JA, Trevisanuto D, Van de Voorde P, Wang TL, Weiner GM, Wyllie JP, Yang CW, Yeung J, Nolan JP, Berg KM, Cartledge S, Dawson JA, Elgohary MM, Ersdal HL, Finan E, Flaatten HI, Flores GE, Fuerch J, Garg R, Gately C, Goh M, Halamek LP, Handley AJ, Hatanaka T, Hoover A, Issa M, Johnson S, Kamlin CO, Ko YC, Kule A, Leone TA, MacKenzie E, Macneil F, Montgomery W, O’Dochartaigh D, Ohshimo S, Palazzo FS, Picard C, Quek BH, Raitt J, Ramaswamy VV, Scapigliati A, Shah BA, Stewart C, Strand ML, Szyld E, Thio M, Topjian AA, Udaeta E, Vaillancourt C, Wetsch WA, Wigginton J, Yamada NK, Yao S, Zace D, Zelop CM. 2022 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation 2022; 146:e483-e557. [PMID: 36325905 DOI: 10.1161/cir.0000000000001095] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This is the sixth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. This summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. Topics covered by systematic reviews include cardiopulmonary resuscitation during transport; approach to resuscitation after drowning; passive ventilation; minimizing pauses during cardiopulmonary resuscitation; temperature management after cardiac arrest; use of diagnostic point-of-care ultrasound during cardiac arrest; use of vasopressin and corticosteroids during cardiac arrest; coronary angiography after cardiac arrest; public-access defibrillation devices for children; pediatric early warning systems; maintaining normal temperature immediately after birth; suctioning of amniotic fluid at birth; tactile stimulation for resuscitation immediately after birth; use of continuous positive airway pressure for respiratory distress at term birth; respiratory and heart rate monitoring in the delivery room; supraglottic airway use in neonates; prearrest prediction of in-hospital cardiac arrest mortality; basic life support training for likely rescuers of high-risk populations; effect of resuscitation team training; blended learning for life support training; training and recertification for resuscitation instructors; and recovery position for maintenance of breathing and prevention of cardiac arrest. Members from 6 task forces have assessed, discussed, and debated the quality of the evidence using Grading of Recommendations Assessment, Development, and Evaluation criteria and generated consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections, and priority knowledge gaps for future research are listed.
Collapse
|
5
|
Wyckoff MH, Greif R, Morley PT, Ng KC, Olasveengen TM, Singletary EM, Soar J, Cheng A, Drennan IR, Liley HG, Scholefield BR, Smyth MA, Welsford M, Zideman DA, Acworth J, Aickin R, Andersen LW, Atkins D, Berry DC, Bhanji F, Bierens J, Borra V, Böttiger BW, Bradley RN, Bray JE, Breckwoldt J, Callaway CW, Carlson JN, Cassan P, Castrén M, Chang WT, Charlton NP, Phil Chung S, Considine J, Costa-Nobre DT, Couper K, Couto TB, Dainty KN, Davis PG, de Almeida MF, de Caen AR, Deakin CD, Djärv T, Donnino MW, Douma MJ, Duff JP, Dunne CL, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Finn J, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Kawakami MD, Kim HS, Kleinman M, Kloeck DA, Kudenchuk PJ, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin YJ, Lockey AS, Maconochie IK, Madar RJ, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Morgan P, Morrison LJ, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, O'Neill BJ, Gene Ong YK, Orkin AM, Paiva EF, Parr MJ, Patocka C, Pellegrino JL, Perkins GD, Perlman JM, Rabi Y, Reis AG, Reynolds JC, Ristagno G, Rodriguez-Nunez A, Roehr CC, Rüdiger M, Sakamoto T, Sandroni C, Sawyer TL, Schexnayder SM, Schmölzer GM, Schnaubelt S, Semeraro F, Skrifvars MB, Smith CM, Sugiura T, Tijssen JA, Trevisanuto D, Van de Voorde P, Wang TL, Weiner GM, Wyllie JP, Yang CW, Yeung J, Nolan JP, Berg KM, Cartledge S, Dawson JA, Elgohary MM, Ersdal HL, Finan E, Flaatten HI, Flores GE, Fuerch J, Garg R, Gately C, Goh M, Halamek LP, Handley AJ, Hatanaka T, Hoover A, Issa M, Johnson S, Kamlin CO, Ko YC, Kule A, Leone TA, MacKenzie E, Macneil F, Montgomery W, O’Dochartaigh D, Ohshimo S, Stefano Palazzo F, Picard C, Quek BH, Raitt J, Ramaswamy VV, Scapigliati A, Shah BA, Stewart C, Strand ML, Szyld E, Thio M, Topjian AA, Udaeta E, Vaillancourt C, Wetsch WA, Wigginton J, Yamada NK, Yao S, Zace D, Zelop CM. 2022 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Resuscitation 2022; 181:208-288. [PMID: 36325905 DOI: 10.1016/j.resuscitation.2022.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This is the sixth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. This summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. Topics covered by systematic reviews include cardiopulmonary resuscitation during transport; approach to resuscitation after drowning; passive ventilation; minimising pauses during cardiopulmonary resuscitation; temperature management after cardiac arrest; use of diagnostic point-of-care ultrasound during cardiac arrest; use of vasopressin and corticosteroids during cardiac arrest; coronary angiography after cardiac arrest; public-access defibrillation devices for children; pediatric early warning systems; maintaining normal temperature immediately after birth; suctioning of amniotic fluid at birth; tactile stimulation for resuscitation immediately after birth; use of continuous positive airway pressure for respiratory distress at term birth; respiratory and heart rate monitoring in the delivery room; supraglottic airway use in neonates; prearrest prediction of in-hospital cardiac arrest mortality; basic life support training for likely rescuers of high-risk populations; effect of resuscitation team training; blended learning for life support training; training and recertification for resuscitation instructors; and recovery position for maintenance of breathing and prevention of cardiac arrest. Members from 6 task forces have assessed, discussed, and debated the quality of the evidence using Grading of Recommendations Assessment, Development, and Evaluation criteria and generated consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections, and priority knowledge gaps for future research are listed.
Collapse
|
6
|
Manzo-Silberman S, Nix C, Goetzenich A, Demondion P, Kang C, Bonneau M, Cohen-Solal A, Leprince P, Lebreton G. Severe Myocardial Dysfunction after Non-Ischemic Cardiac Arrest: Effectiveness of Percutaneous Assist Devices. J Clin Med 2021; 10:jcm10163623. [PMID: 34441919 PMCID: PMC8396996 DOI: 10.3390/jcm10163623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction: Despite the improvements in standardized cardiopulmonary resuscitation, survival remains low, mainly due to initial myocardial dysfunction and hemodynamic instability. Our goal was to compare the efficacy of two left ventricular assist devices on resuscitation and hemodynamic supply in a porcine model of ventricular fibrillation (VF) cardiac arrest. Methods: Seventeen anaesthetized pigs had 12 min of untreated VF followed by 6 min of chest compression and boluses of epinephrine. Next, a first defibrillation was attempted and pigs were randomized to any of the three groups: control (n = 5), implantation of an percutaneous left ventricular assist device (Impella, n = 5) or extracorporeal membrane oxygenation (ECMO, n = 7). Hemodynamic and myocardial functions were evaluated invasively at baseline, at return of spontaneous circulation (ROSC), after 10–30–60–120–240 min post-resuscitation. The primary endpoint was the rate of ROSC. Results: Only one of 5 pigs in the control group, 5 of 5 pigs in the Impella group, and 5 of 7 pigs in the ECMO group had ROSC (p < 0.05). Left ventricular ejection fraction at 240 min post-resuscitation was 37.5 ± 6.2% in the ECMO group vs. 23 ± 3% in the Impella group (p = 0.06). No significant difference in hemodynamic parameters was observed between the two ventricular assist devices. Conclusion: Early mechanical circulatory support appeared to improve resuscitation rates in a shockable rhythm model of cardiac arrest. This approach appears promising and should be further evaluated.
Collapse
Affiliation(s)
- Stéphane Manzo-Silberman
- Department of Cardiology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Denis Diderot University, INSERM UMRS 942, 75010 Paris, France;
- Correspondence: ; Tel.: +33-661135334 or +33-149958224
| | - Christoph Nix
- Abiomed Europe GmbH, Neuenhofer Weg 3, D-52074 Aachen, Germany; (C.N.); (A.G.)
| | - Andreas Goetzenich
- Abiomed Europe GmbH, Neuenhofer Weg 3, D-52074 Aachen, Germany; (C.N.); (A.G.)
| | - Pierre Demondion
- Department of Cardiovascular and Thoracic Surgery, Institute of Cardiology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (P.D.); (P.L.); (G.L.)
| | - Chantal Kang
- XP-MED, 78100 Saint Germain en Laye, France; (C.K.); (M.B.)
| | - Michel Bonneau
- XP-MED, 78100 Saint Germain en Laye, France; (C.K.); (M.B.)
| | - Alain Cohen-Solal
- Department of Cardiology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Denis Diderot University, INSERM UMRS 942, 75010 Paris, France;
| | - Pascal Leprince
- Department of Cardiovascular and Thoracic Surgery, Institute of Cardiology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (P.D.); (P.L.); (G.L.)
| | - Guillaume Lebreton
- Department of Cardiovascular and Thoracic Surgery, Institute of Cardiology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, 47-83 Boulevard de l’Hôpital, 75013 Paris, France; (P.D.); (P.L.); (G.L.)
| |
Collapse
|
7
|
Remote Ischemic Conditioning in Emergency Medicine-Clinical Frontiers and Research Opportunities. Shock 2021; 53:269-276. [PMID: 32045394 DOI: 10.1097/shk.0000000000001362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Time-critical acute ischemic conditions such as ST-elevation myocardial infarction and acute ischemic stroke are staples in Emergency Medicine practice. While timely reperfusion therapy is a priority, the resultant acute ischemia/reperfusion injury contributes to significant mortality and morbidity. Among therapeutics targeting ischemia/reperfusion injury (IRI), remote ischemic conditioning (RIC) has emerged as the most promising.RIC, which consists of repetitive inflation and deflation of a pneumatic cuff on a limb, was first demonstrated to have protective effect on IRI through various neural and humoral mechanisms. Its attractiveness stems from its simplicity, low-cost, safety, and efficacy, while at the same time it does not impede reperfusion treatment. There is now good evidence for RIC as an effective adjunct to reperfusion in ST-elevation myocardial infarction patients for improving clinical outcomes. For other applications such as acute ischemic stroke, subarachnoid hemorrhage, traumatic brain injury, cardiac arrest, and spinal injury, there is varying level of evidence.This review aims to describe the RIC phenomenon, briefly recount its historical development, and appraise the experimental and clinical evidence for RIC in selected emergency conditions. Finally, it describes the practical issues with RIC clinical application and research in Emergency Medicine.
Collapse
|
8
|
Taylor TG, Esibov A, Melnick SB, Chapman FW, Walcott GP. Alternating fast and slow chest compression rates during CPR improved hemodynamics. Resuscitation 2021; 163:64-70. [PMID: 33852958 DOI: 10.1016/j.resuscitation.2021.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Mechanical chest compression devices allow for variation in chest compression (CCs) characteristics from moment to moment, enabling therapy that is not feasible for manual CCs. Effects of varying compressions over time have not been studied. In a randomized trial in an experimental model of prolonged cardiac arrest, we compared time-varying CPR (TVCPR), alternating between 100 and 200 compressions per minute (cpm) every 6 s, to guidelines CPR (Control). METHODS Ventricular fibrillation (VF) was electrically induced in 20 anesthetized pigs (28.4-45.8 kg). Following 10 min of untreated VF, cardiopulmonary resuscitation (CPR) began, randomized to TVCPR or Control. Rate of return of spontaneous circulation (ROSC), 4-h survival, and hemodynamics during the first 5 min of CPR were compared between groups. Moment-to-moment hemodynamic effects of changing the CC rate were analyzed. RESULTS TVCPR improved the proportion of ROSC over time compared to Control (p < 0.05) but ROSC (9/10 vs. 5/10) and 4-h survival (8/10 vs 5/10) did not differ significantly between groups. During CPR, coronary and cerebral perfusion pressures and femoral artery pressure did not differ between groups; however, end-tidal CO2 and mixed venous O2 saturation were higher, and pulmonary artery pressure was lower (p < 0.05) for TVCPR than Control. During TVCPR, switching to 100 cpm increased coronary perfusion pressure (p < 0.05), and switching to 200 cpm increased cerebral perfusion pressure (p < 0.05). CONCLUSIONS Time-varying CPR significantly improved indicators of net forward blood flow and proportion of ROSC over time without negatively impacting perfusion pressures. Alternating CC rate alternates between perfusion pressures favoring the brain and those favoring the heart. Time-varying CPR represents a new avenue of research for optimizing CPR. INSTITUTIONAL PROTOCOL NUMBER University of Alabama at Birmingham Institutional Animal Care and Use Committee (IACUC) Protocol Number 140406860.
Collapse
Affiliation(s)
| | | | - Sharon B Melnick
- Cardiac Rhythm Management Lab, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Gregory P Walcott
- Cardiac Rhythm Management Lab, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Salzman MM, Bartos JA, Yannopoulos D, Riess ML. Poloxamer 188 Protects Isolated Adult Mouse Cardiomyocytes from Reoxygenation Injury. Pharmacol Res Perspect 2020; 8:e00639. [PMID: 33073927 PMCID: PMC7570448 DOI: 10.1002/prp2.639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Reperfusion injury is a complex pathological event involving processes that can lead to further disruption of the cell membrane and function following an ischemic event. Return of blood flow allows for the needed reperfusion; however, for a period of time before remaining viable cells stabilize, reperfusion results in additional cellular injury. In cardiomyocytes, loss of membrane integrity allows abnormal influx of extracellular calcium, leading to hyper-contracture and cell death. Methods to improve the membrane integrity of cardiomyocytes overwhelmed by pathological disruptions, such as reperfusion injury, are needed to prevent cell death, because of the myocardium's limited ability to regenerate. Research has shown administration of the copolymer P(oloxamer) 188 before ischemia/reperfusion can protect cardiomyocytes through membrane stabilization. This study sought to determine whether the administration of P188 at the beginning of the clinically more relevant time of reperfusion after ischemia will attenuate any additional damage to cardiomyocytes by stabilizing membrane integrity to allow the cells to maintain function. Using an in-vitro cardiomyocyte model subjected to hypoxia/reoxygenation to simulate ischemia/reperfusion injury, we show that reoxygenation significantly potentiates the injury caused by hypoxia itself. P188, with its unique combination of hydrophobic and hydrophilic chemical properties, and only delivered at the beginning of reoxygenation, dose-dependently protected cardiomyocytes from injury due to reoxygenation by repairing cell membranes, decreasing calcium influx, and maintaining cellular morphology. Our study also shows the hydrophobic portion of P188 is necessary for the stabilization of cell membrane integrity in providing protection to cardiomyocytes against reoxygenation injury.
Collapse
Affiliation(s)
- Michele M. Salzman
- Department of AnesthesiologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Present address:
Department of Pediatrics ‐ NeonatologyVanderbilt University Medical CenterNashvilleTNUnited States
| | - Jason A. Bartos
- Department of Medicine – Cardiovascular DivisionUniversity of MinnesotaMinneapolisMNUSA
| | - Demetris Yannopoulos
- Department of Medicine – Cardiovascular DivisionUniversity of MinnesotaMinneapolisMNUSA
| | - Matthias L. Riess
- Department of AnesthesiologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Department of AnesthesiologyTVHS VA Medical CenterNashvilleTNUSA
| |
Collapse
|
10
|
Sebastian PS, Kosmopoulos MN, Gandhi M, Oshin A, Olson MD, Ripeckyj A, Bahmer L, Bartos JA, Theodorou EA, Yannopoulos D. Closed-loop machine-controlled CPR system optimises haemodynamics during prolonged CPR. Resusc Plus 2020; 3:100021. [PMID: 34223304 PMCID: PMC8244522 DOI: 10.1016/j.resplu.2020.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
Objectives We evaluated the feasibility of optimising coronary perfusion pressure (CPP) during cardiopulmonary resuscitation (CPR) with a closed-loop, machine-controlled CPR system (MC-CPR) that sends real-time haemodynamic feedback to a set of machine learning and control algorithms which determine compression/decompression characteristics over time. Background American Heart Association CPR guidelines (AHA-CPR) and standard mechanical devices employ a “one-size-fits-all” approach to CPR that fails to adjust compressions over time or individualise therapy, thus leading to deterioration of CPR effectiveness as duration exceeds 15–20 min. Methods CPR was administered for 30 min in a validated porcine model of cardiac arrest. Intubated anaesthetised pigs were randomly assigned to receive MC-CPR (6), mechanical CPR conducted according to AHA-CPR (6), or human-controlled CPR (HC-CPR) (10). MC-CPR directly controlled the CPR piston’s amplitude of compression and decompression to maximise CPP over time. In HC-CPR a physician controlled the piston amplitudes to maximise CPP without any algorithmic feedback, while AHA-CPR had one compression depth without adaptation. Results MC-CPR significantly improved CPP throughout the 30-min resuscitation period compared to both AHA-CPR and HC-CPR. CPP and carotid blood flow (CBF) remained stable or improved with MC-CPR but deteriorated with AHA-CPR. HC-CPR showed initial but transient improvement that dissipated over time. Conclusion Machine learning implemented in a closed-loop system successfully controlled CPR for 30 min in our preclinical model. MC-CPR significantly improved CPP and CBF compared to AHA-CPR and ameliorated the temporal haemodynamic deterioration that occurs with standard approaches.
Collapse
Affiliation(s)
- Pierre S Sebastian
- Center for Resuscitation Medicine, University of Minnesota Medical School, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Marinos N Kosmopoulos
- Center for Resuscitation Medicine, University of Minnesota Medical School, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Manan Gandhi
- Georgia Institute of Technology, School of Aerospace Engineering, Institute of Robotics and Intelligent Machines, Center for Machine Learning, United States
| | - Alex Oshin
- Georgia Institute of Technology, School of Aerospace Engineering, Institute of Robotics and Intelligent Machines, Center for Machine Learning, United States
| | - Matthew D Olson
- Center for Resuscitation Medicine, University of Minnesota Medical School, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Adrian Ripeckyj
- Center for Resuscitation Medicine, University of Minnesota Medical School, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Logan Bahmer
- Center for Resuscitation Medicine, University of Minnesota Medical School, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Jason A Bartos
- Center for Resuscitation Medicine, University of Minnesota Medical School, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Evangelos A Theodorou
- Georgia Institute of Technology, School of Aerospace Engineering, Institute of Robotics and Intelligent Machines, Center for Machine Learning, United States
| | - Demetris Yannopoulos
- Center for Resuscitation Medicine, University of Minnesota Medical School, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Ripeckyj A, Kosmopoulos M, Shekar K, Carlson C, Kalra R, Rees J, Aufderheide TP, Bartos JA, Yannopoulos D. Sodium Nitroprusside-Enhanced Cardiopulmonary Resuscitation Improves Blood Flow by Pulmonary Vasodilation Leading to Higher Oxygen Requirements. ACTA ACUST UNITED AC 2020; 5:183-192. [PMID: 32140624 PMCID: PMC7046538 DOI: 10.1016/j.jacbts.2019.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
SNPeCPR improves coronary perfusion pressure, tissue perfusion, and carotid blood flow compared to epinephrine-based standard advanced cardiac life support. In a porcine model of prolonged resuscitation, SNPeCPR was associated with decreased arterial oxygen saturation but improved tissue oxygen delivery due to improvement in blood flow. Oxygen supplementation led to alleviation of hypoxemia and maintenance of the SNPeCPR hemodynamic benefits. Arterial oxygen saturation must be a safety endpoint that will be prospectively assessed in the first SNPeCPR clinical trial in humans.
Sodium nitroprusside–enhanced cardiopulmonary resuscitation has shown superior resuscitation rates and neurologic outcomes in large animal models supporting the need for a randomized human clinical trial. This study is the first to show nonselective pulmonary vasodilation as a potential mechanism for the hemodynamic benefits. The pulmonary shunting that is created requires increased oxygen treatment, but the overall improvement in blood flow increases minute oxygen delivery to tissues. In this context, hypoxemia is an important safety endpoint and a 100% oxygen ventilation strategy may be necessary for the first human clinical trial.
Collapse
Key Words
- A-a, alveolar-arterial
- ACLS, advanced cardiac life support
- BLS, basic life support
- CBF, carotid blood flow
- CPP, coronary perfusion pressure
- CPR, cardiopulmonary resuscitation
- FiO2, fraction of inspired oxygen
- ITD, impedance threshold device
- ROSC, return of spontaneous circulation
- SNP, sodium nitroprusside
- SNPeCPR, sodium nitroprusside–enhanced cardiopulmonary resuscitation
- VF, ventricular fibrillation
- cardiopulmonary resuscitation
- coronary perfusion pressure
- lactic acid
- pulmonary vasodilation
- sodium nitroprusside
Collapse
Affiliation(s)
- Adrian Ripeckyj
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota
| | | | - Kadambari Shekar
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota
| | - Claire Carlson
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota
| | - Rajat Kalra
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota
| | - Jennifer Rees
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota
| | - Tom P. Aufderheide
- Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jason A. Bartos
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Demetris Yannopoulos
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota
- Address for correspondence: Dr. Demetris Yannopoulos, Center for Resuscitation Medicine, Office of Academic Clinical Affairs, University of Minnesota Medical School, 420 Delaware Street, Southeast, MMC 508 Mayo, Minneapolis, Minnesota 55455.
| |
Collapse
|
12
|
Abstract
Cardiac arrest remains a significant cause of death and disability throughout the world. However, as our understanding of cardiac arrest and resuscitation physiology has developed, new technologies are fundamentally altering our potential to improve survival and neurologic sequela. Some advances are relatively simple, requiring only alterations in current basic life support measures or integration with pre-hospital organization, whereas others, such as extra-corporeal membrane oxygenation, require significant time and resource investments. When combined with consistent rescuer and patient-physiologic monitoring, these innovations allow an unprecedented capacity to personalize cardiac arrest resuscitation to patient-specific pathophysiology. However, as more extensive options are established, it can be difficult for providers to incorporate novel resuscitation techniques into a cardiac arrest protocol which can fit a wide variety of cases with varying complexity. This article will explore recent advances in our understanding of cardiac arrest physiology and resuscitation sciences, with particular focus on the metabolic phase after significant ischemia has been induced. To this end, we establish a practical consideration for providers seeking to integrate novel advances in cardiac arrest resuscitation into daily practice.
Collapse
Affiliation(s)
- Cyrus E Kuschner
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Boulevard, Hempstead, NY, 11549, USA
| | - Lance B Becker
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Boulevard, Hempstead, NY, 11549, USA
| |
Collapse
|
13
|
Zhou X, Yong L, Huang Y, Zhu S, Song X, Li B, Zhu J, Wang H. The protective effects of distal ischemic treatment on apoptosis and mitochondrial permeability in the hippocampus after cardiopulmonary resuscitation. J Cell Physiol 2018; 233:6902-6910. [PMID: 29323705 DOI: 10.1002/jcp.26459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023]
Abstract
Apoptosis and mitochondrial dysfunction are the main cause of neurological injury after cardiopulmonary resuscitation (CPR). However, the effects of distal ischemic treatments on ischemia induced apoptosis are rarely studied, and the mechanism by which mitochondrial dysfunction contributes to CPR still unclear. A rat model of distal ischemia was established by clipping the right femoral artery. Rats were divided into blank, model, pre distal ischemic treatment, per-treatment, and post-treatment groups. Neurological deficit score was scored to evaluate neurologic function after cardiopulmonary resuscitation for 72 hr. We employed TUNEL and flow cytometry to measure the rate of apoptosis of hippocampal neurons, the integrity of mitochondrial membrane and the degree of mitochondrial permeability transition pore (mPTP) opening. The rate of apoptosis rate of hippocampal CA1 neurons in the pre-treatment and post-treatment groups were significantly lower than that of the model group. Moreover, the integrity of the mitochondrial membrane in the pre-treatment and post-treatment groups was higher than that in the model and per- treatment groups. Furthermore, the degree of mPTP opening was lower in the pre-treatment and post-treatment groups than the untreated and per-treatment groups. Taken together, our results show that ischemic preconditioning and post processing can maintain the integrity of mitochondria, perhaps by inhibiting the opening of mPTP, and reducing apoptosis of hippocampal neurons by regulating expression of apoptosis related proteins after CPR, to improve neurological function. This study highlights a novel target pathway for treatment of CPR.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Anesthesiology, Wuhan General Hospital of People's Liberation Army of China, Wuhan, China
- Southern Medical University, Guangzhou, China
| | - Liu Yong
- Department of Thoracic Cardiovascular Surgery, ZhongNan Hospital of WuHan University, Wuhan, China
| | - Yang Huang
- Southern Medical University, Guangzhou, China
| | - ShuiBo Zhu
- Southern Medical University, Guangzhou, China
- Department of Thoracic Cardiovascular Surgery, Wuhan General Hospital of People's Liberation Army of China, Wuhan, China
| | - XiaoYang Song
- Department of Anesthesiology, Wuhan General Hospital of People's Liberation Army of China, Wuhan, China
| | - BiXi Li
- Department of Anesthesiology, Wuhan General Hospital of People's Liberation Army of China, Wuhan, China
| | - Jian Zhu
- Department of Thoracic Cardiovascular Surgery, Wuhan General Hospital of People's Liberation Army of China, Wuhan, China
| | - HaiBo Wang
- Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Survival with favorable neurological function after cardiac arrest remains low. The purpose of this review is to identify recent advances that focus on neuroprotection during cardiopulmonary resuscitation (CPR). RECENT FINDINGS Multiple strategies have been shown to enhance neuroprotection during CPR. Brain perfusion during CPR is increased with therapies such as active compression decompression CPR and intrathoracic pressure regulation that improve cardiac preload and decrease intracranial pressure. Head Up CPR has been shown to decrease intracranial pressure thereby increasing cerebral perfusion pressure and cerebral blood flow. Sodium nitroprusside enhanced CPR increases cerebral perfusion, facilitates heat exchange, and improves neurologic survival in swine after cardiac arrest. Postconditioning has been administered during CPR in laboratory settings. Poloxamer 188, a membrane stabilizer, and ischemic postconditioning have been shown to improve cardiac and neural function after cardiac arrest in animal models. Postconditioning with inhaled gases protects the myocardium, with more evidence mounting for the potential for neural protection. SUMMARY Multiple promising neuroprotective therapies are being developed in animal models of cardiac arrest, and are in early stages of human trials. These therapies have the potential to be bundled together to improve rates of favorable neurological survival after cardiac arrest.
Collapse
|
15
|
Segal N, Youngquist S, Lurie K. Ideal (i) CPR: Looking beyond shadows in a cave. Resuscitation 2017; 121:81-83. [PMID: 29031625 DOI: 10.1016/j.resuscitation.2017.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 10/24/2022]
Abstract
Survival rates after cardiac arrest have shown minimal improvement in the last 60 years. However, in some forward-thinking cities and hospitals, out-of and in-hospital cardiac arrest survival rates exceed 20% and 40% respectively. These beacons of hope can enlighten us, providing a clearer vision of what it takes to provide Ideal cardiopulmonary resuscitation. To make progress in a field that has seemingly stagnated for too many decades, we must be open to new ideas and develop bundles of care that work in communities with varying EMS systems and various existing infrastructure to bring the best practices to the rest of the country.
Collapse
Affiliation(s)
- Nicolas Segal
- Department of Emergency Medicine, University of Minnesota, Minneapolis, MN, United States.
| | - Scott Youngquist
- Division of Emergency Medicine, University of Utah, Salt Lake City, UT, United States
| | - Keith Lurie
- Department of Emergency Medicine, University of Minnesota, Minneapolis, MN, United States; Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN, United States.
| |
Collapse
|
16
|
Matsuura TR, Bartos JA, Tsangaris A, Shekar KC, Olson MD, Riess ML, Bienengraeber M, Aufderheide TP, Neumar RW, Rees JN, McKnite SH, Dikalova AE, Dikalov SI, Douglas HF, Yannopoulos D. Early Effects of Prolonged Cardiac Arrest and Ischemic Postconditioning during Cardiopulmonary Resuscitation on Cardiac and Brain Mitochondrial Function in Pigs. Resuscitation 2017; 116:8-15. [PMID: 28408349 PMCID: PMC5552370 DOI: 10.1016/j.resuscitation.2017.03.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Out-of-hospital cardiac arrest (CA) is a prevalent medical crisis resulting in severe injury to the heart and brain and an overall survival of less than 10%. Mitochondrial dysfunction is predicted to be a key determinant of poor outcomes following prolonged CA. However, the onset and severity of mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) is not fully understood. Ischemic postconditioning (IPC), controlled pauses during the initiation of CPR, has been shown to improve cardiac function and neurologically favorable outcomes after 15min of CA. We tested the hypothesis that mitochondrial dysfunction develops during prolonged CA and can be rescued with IPC during CPR (IPC-CPR). METHODS A total of 63 swine were randomized to no ischemia (Naïve), 19min of ventricular fibrillation (VF) CA without CPR (Untreated VF), or 15min of CA with 4min of reperfusion with either standard CPR (S-CPR) or IPC-CPR. Mitochondria were isolated from the heart and brain to quantify respiration, rate of ATP synthesis, and calcium retention capacity (CRC). Reactive oxygen species (ROS) production was quantified from fresh frozen heart and brain tissue. RESULTS Compared to Naïve, Untreated VF induced cardiac and brain ROS overproduction concurrent with decreased mitochondrial respiratory coupling and CRC, as well as decreased cardiac ATP synthesis. Compared to Untreated VF, S-CPR attenuated brain ROS overproduction but had no other effect on mitochondrial function in the heart or brain. Compared to Untreated VF, IPC-CPR improved cardiac mitochondrial respiratory coupling and rate of ATP synthesis, and decreased ROS overproduction in the heart and brain. CONCLUSIONS Fifteen minutes of VF CA results in diminished mitochondrial respiration, ATP synthesis, CRC, and increased ROS production in the heart and brain. IPC-CPR attenuates cardiac mitochondrial dysfunction caused by prolonged VF CA after only 4min of reperfusion, suggesting that IPC-CPR is an effective intervention to reduce cardiac injury. However, reperfusion with both CPR methods had limited effect on mitochondrial function in the brain, emphasizing an important physiological divergence in post-arrest recovery between those two vital organs.
Collapse
Affiliation(s)
- Timothy R Matsuura
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jason A Bartos
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Adamantios Tsangaris
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | | | - Matthew D Olson
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Matthias L Riess
- Department of Anesthesiology, TVHS VA Medical Center, Nashville, TN, USA; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martin Bienengraeber
- Departments of Anesthesiology and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tom P Aufderheide
- Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Neumar
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer N Rees
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Scott H McKnite
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Anna E Dikalova
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergey I Dikalov
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hunter F Douglas
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Demetris Yannopoulos
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Talikowska M, Tohira H, Inoue M, Bailey P, Brink D, Finn J. Lower chest compression fraction associated with ROSC in OHCA patients with longer downtimes. Resuscitation 2017; 116:60-65. [DOI: 10.1016/j.resuscitation.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/06/2017] [Accepted: 05/02/2017] [Indexed: 11/30/2022]
|
18
|
Bartos JA, Voicu S, Matsuura TR, Tsangaris A, Sideris G, Oestreich BA, George SA, Olson M, Shekar KC, Rees JN, Carlson K, Sebastian P, McKnite S, Raveendran G, Aufderheide TP, Yannopoulos D. Role of epinephrine and extracorporeal membrane oxygenation in the management of ischemic refractory ventricular fibrillation: a randomized trial in pigs. JACC Basic Transl Sci 2017; 2:244-253. [PMID: 29152600 PMCID: PMC5693223 DOI: 10.1016/j.jacbts.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Minnesota Resuscitation Consortium has established a protocol for rapid transport of patients with refractory out-of-hospital VF cardiac arrest to the cardiac catheterization laboratory for rapid evaluation and stabilization often requiring ECMO. This protocol provides new challenges to treatment paradigms that were created to rapidly achieve return of spontaneous circulation in the field. A porcine model of refractory VF cardiac arrest was developed, including initiation of VF using endovascular occlusion of the proximal LAD followed by 5 min of untreated VF. Resuscitation begins with 10 min of high-quality CPR followed by 35 min of ACLS and reconstitution of coronary flow. A 2 × 2 study design was used with animals randomized to use of epinephrine or placebo during ACLS and then again randomized to ECMO or no ECMO at the time of reinitiation of coronary flow. ECMO-facilitated coronary reperfusion and hemodynamic stabilization improved 4-h survival compared with CPR-facilitated reperfusion and standard ACLS in a porcine model of refractory VF cardiac arrest. Repeated epinephrine boluses provided in accordance with standard ACLS protocols increased systemic blood pressure and coronary perfusion pressure but provided no benefit in survival compared with placebo. Over 50% of the animals receiving ECMO met criteria for decannulation at 4 h, suggesting that rapid cardiac and hemodynamic recovery is possible in severely injured animals treated with ECMO.
Extracorporeal membrane oxygenation (ECMO) is used in cardiopulmonary resuscitation (CPR) of refractory cardiac arrest. The authors used a 2 × 2 study design to compare ECMO versus CPR and epinephrine versus placebo in a porcine model of ischemic refractory ventricular fibrillation (VF). Pigs underwent 5 min of untreated VF and 10 min of CPR, and were randomized to receive epinephrine versus placebo for another 35 min. Animals were further randomized to left anterior descending artery (LAD) reperfusion at minute 45 with ongoing CPR versus venoarterial ECMO cannulation at minute 45 of CPR and subsequent LAD reperfusion. Four-hour survival was improved with ECMO whereas epinephrine showed no effect.
Collapse
Affiliation(s)
- Jason A Bartos
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Sebastian Voicu
- Medical and Toxicological Intensive Care Unit, Université Paris Diderot, Sorbonne Paris Cité, APHP, Lariboisière Hospital, 2 rue Ambroise Paré, 75475 Paris, France
| | - Timothy R Matsuura
- Department of Integrated Biology & Physiology, University of Minnesota, Minneapolis, MN
| | - Adamantios Tsangaris
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Georgios Sideris
- Department of Cardiology, Inserm U942, Lariboisiere Hospital, AP-HP, Paris Diderot University, Paris, France
| | - Brett A Oestreich
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Stephen A George
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Matthew Olson
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| | | | - Jennifer N Rees
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Kathleen Carlson
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Pierre Sebastian
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Scott McKnite
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Ganesh Raveendran
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Tom P Aufderheide
- Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Demetris Yannopoulos
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
19
|
Vognsen M, Fabian-Jessing BK, Secher N, Løfgren B, Dezfulian C, Andersen LW, Granfeldt A. Contemporary animal models of cardiac arrest: A systematic review. Resuscitation 2017; 113:115-123. [PMID: 28214538 DOI: 10.1016/j.resuscitation.2017.01.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/01/2023]
Abstract
AIM OF THE STUDY Animal models are widely used in cardiac arrest research. This systematic review aimed to provide an overview of contemporary animal models of cardiac arrest. METHODS Using a comprehensive research strategy, we searched PubMed and EMBASE from March 8, 2011 to March 8, 2016 for cardiac arrest animal models. Two investigators reviewed titles and abstracts for full text inclusion from which data were extracted according to pre-defined definitions. RESULTS Search criteria yielded 1741 unique titles and abstracts of which 490 full articles were included. The most common animals used were pigs (52%) followed by rats (35%) and mice (6%). Studies favored males (52%) over females (16%); 17% of studies included both sexes, while 14% omitted to report on sex. The most common methods for induction of cardiac arrest were either electrically-induced ventricular fibrillation (54%), asphyxia (25%), or potassium (8%). The median no-flow time was 8min (quartiles: 5, 8, range: 0-37min). The majority of studies used adrenaline during resuscitation (64%), while bicarbonate (17%), vasopressin (8%) and other drugs were used less prevalently. In 53% of the studies, the post-cardiac arrest observation time was ≥24h. Neurological function was an outcome in 48% of studies while 43% included assessment of a cardiac outcome. CONCLUSIONS Multiple animal models of cardiac arrest exist. The great heterogeneity of these models along with great variability in definitions and reporting make comparisons between studies difficult. There is a need for standardization of animal cardiac arrest research and reporting.
Collapse
Affiliation(s)
- Mikael Vognsen
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Niels Secher
- Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Løfgren
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Internal Medicine, Regional Hospital of Randers, Randers, Denmark
| | - Cameron Dezfulian
- Safar Center for Resuscitation Research, Vascular Medicine Institute and Critical Care Medicine Department, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lars W Andersen
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Asger Granfeldt
- Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
20
|
Remote ischemic preconditioning improves post resuscitation cerebral function via overexpressing neuroglobin after cardiac arrest in rats. Brain Res 2016; 1648:345-355. [DOI: 10.1016/j.brainres.2016.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/14/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
|
21
|
Abstract
Traumatic brain injury (TBI) represents a wide spectrum of disease and disease severity. Because the primary brain injury occurs before the patient enters the health care system, medical interventions seek principally to prevent secondary injury. Anesthesia teams that provide care for patients with TBI both in and out of the operating room should be aware of the specific therapies and needs of this unique and complex patient population.
Collapse
|
22
|
Debaty G, Lurie K, Metzger A, Lick M, Bartos JA, Rees JN, McKnite S, Puertas L, Pepe P, Fowler R, Yannopoulos D. Reperfusion injury protection during Basic Life Support improves circulation and survival outcomes in a porcine model of prolonged cardiac arrest. Resuscitation 2016; 105:29-35. [DOI: 10.1016/j.resuscitation.2016.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/03/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022]
|
23
|
Intracoronary Poloxamer 188 Prevents Reperfusion Injury in a Porcine Model of ST-Segment Elevation Myocardial Infarction. JACC Basic Transl Sci 2016; 1:224-234. [PMID: 27695713 PMCID: PMC5042154 DOI: 10.1016/j.jacbts.2016.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Poloxamer 188 (P188) is a nonionic triblock copolymer believed to prevent cellular injury after ischemia and reperfusion. This study compared intracoronary (IC) infusion of P188 immediately after reperfusion with delayed infusion through a peripheral intravenous catheter in a porcine model of ST-segment elevation myocardial infarction (STEMI). STEMI was induced in 55 pigs using 45 min of endovascular coronary artery occlusion. Pigs were then randomized to 4 groups: control, immediate IC P188, delayed peripheral P188, and polyethylene glycol infusion. Heart tissue was collected after 4 h of reperfusion. Assessment of mitochondrial function or infarct size was performed. Mitochondrial yield improved significantly with IC P188 treatment compared with control animals (0.25% vs. 0.13%), suggesting improved mitochondrial morphology and survival. Mitochondrial respiration and calcium retention were also significantly improved with immediate IC P188 compared with control animals (complex I respiratory control index: 7.4 vs. 3.7; calcium retention: 1,152 nmol vs. 386 nmol). This benefit was only observed with activation of complex I of the mitochondrial respiratory chain, suggesting a specific effect from ischemia and reperfusion on this complex. Infarct size and serum troponin I were significantly reduced by immediate IC P188 infusion (infarct size: 13.9% vs. 41.1%; troponin I: 19.2 μg/l vs. 77.4 μg/l). Delayed P188 and polyethylene glycol infusion did not provide a significant benefit. These results demonstrate that intracoronary infusion of P188 immediately upon reperfusion significantly reduces cellular and mitochondrial injury after ischemia and reperfusion in this clinically relevant porcine model of STEMI. The timing and route of delivery were critical to achieve the benefit. STEMI remains a significant cause of in-hospital mortality, and up to 20% of people go on to develop heart failure. P188 is a nonionic triblock copolymer believed to prevent cellular injury after ischemia and reperfusion. The CORE trial examined P188 for STEMI patients showing no benefit when it was infused through a peripheral IV catheter approximately 30 min after revascularization with thrombolytic therapy. STEMI was induced in pigs using endovascular coronary artery occlusion to compare intracoronary infusion of P188 immediately after revascularization to infusion of P188 through a peripheral IV catheter 30 min after revascularization. Immediate intracoronary infusion of vehicle control and PEG, a rheological control, were also compared. Intracoronary infusion of P188 immediately upon reperfusion reduced infarct size by 68% compared with delayed peripheral P188 infusion, which was similar to vehicle control. Mitochondrial respiration and calcium stress tolerance were preserved in the ischemic tissue of pigs treated with immediate intracoronary P188 infusion. Mitochondria from pigs with delayed peripheral P188 infusion were no different from control pigs. By reducing infarct size and mitochondrial dysfunction, immediate intracoronary infusion of P188 may provide a therapeutic strategy to improve post-STEMI outcomes. The timing and route of delivery were critical to the observed benefit.
Collapse
|
24
|
Thrombolytic-Enhanced Extracorporeal Cardiopulmonary Resuscitation After Prolonged Cardiac Arrest. Crit Care Med 2016; 44:e58-69. [PMID: 26488218 DOI: 10.1097/ccm.0000000000001305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To investigate the effects of the combination of extracorporeal cardiopulmonary resuscitation and thrombolytic therapy on the recovery of vital organ function after prolonged cardiac arrest. DESIGN Laboratory investigation. SETTING University laboratory. SUBJECTS Pigs. INTERVENTIONS Animals underwent 30-minute untreated ventricular fibrillation cardiac arrest followed by extracorporeal cardiopulmonary resuscitation for 6 hours. Animals were allocated into two experimental groups: t-extracorporeal cardiopulmonary resuscitation (t-ECPR) group, which received streptokinase 1 million units, and control extracorporeal cardiopulmonary resuscitation (c-ECPR), which did not receive streptokinase. In both groups, the resuscitation protocol included the following physiologic targets: mean arterial pressure greater than 70 mm Hg, cerebral perfusion pressure greater than 50 mm Hg, PaO2 150 ± 50 torr (20 ± 7 kPa), PaCO2 40 ± 5 torr (5 ± 1 kPa), and core temperature 33°C ± 1°C. Defibrillation was attempted after 30 minutes of extracorporeal cardiopulmonary resuscitation. MEASUREMENTS AND MAIN RESULTS A cardiac resuscitability score was assessed on the basis of success of defibrillation, return of spontaneous heart beat, weanability from extracorporeal cardiopulmonary resuscitation, and left ventricular systolic function after weaning. The addition of thrombolytic to extracorporeal cardiopulmonary resuscitation significantly improved cardiac resuscitability (3.7 ± 1.6 in t-ECPR vs 1.0 ± 1.5 in c-ECPR). Arterial lactate clearance was higher in t-ECPR than in c-ECPR (40% ± 15% vs 18% ± 21%). At the end of the experiment, the intracranial pressure was significantly higher in c-ECPR than in t-ECPR. Recovery of brain electrical activity, as assessed by quantitative analysis of electroencephalogram signal, and ischemic neuronal injury on histopathologic examination did not differ between groups. Animals in t-ECPR group did not have increased bleeding complications, including intracerebral hemorrhages. CONCLUSIONS In a porcine model of prolonged cardiac arrest, t-ECPR improved cardiac resuscitability and reduced brain edema, without increasing bleeding complications. However, early electroencephalogram recovery and ischemic neuronal injury were not improved.
Collapse
|
25
|
Forreider B, Pozivilko D, Kawaji Q, Geng X, Ding Y. Hibernation-like neuroprotection in stroke by attenuating brain metabolic dysfunction. Prog Neurobiol 2016; 157:174-187. [PMID: 26965388 DOI: 10.1016/j.pneurobio.2016.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/24/2022]
Abstract
Many mammalian species naturally undergo hibernation, a process that is associated with drastic changes in metabolism and systemic physiology. Their ability to retain an undamaged central nervous system during severely reduced cerebral blood flow has been studied for possible therapeutic application in human ischemic stroke. By inducing a less extreme 'hibernation-like' state, it has been hypothesized that similar neuroprotective effects reduce ischemia-mediated tissue damage in stroke patients. This manuscript includes reviews and evaluations of: (1) true hibernation, (2) hibernation-like state and its neuroprotective characteristics, (3) the preclinical and clinical methods for induction of artificial hibernation (i.e., therapeutic hypothermia, phenothiazine drugs, and ethanol), and (4) the mechanisms by which cerebral ischemia leads to tissue damage and how the above-mentioned induction methods function to inhibit those processes.
Collapse
Affiliation(s)
- Brian Forreider
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - David Pozivilko
- Michigan State University College of Human Medicine, East Lansing, MI, USA
| | - Qingwen Kawaji
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Lurie KG, Nemergut EC, Yannopoulos D, Sweeney M. The Physiology of Cardiopulmonary Resuscitation. Anesth Analg 2016; 122:767-783. [DOI: 10.1213/ane.0000000000000926] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Affiliation(s)
- Matthias L Riess
- Department of Anesthesiology, Vanderbilt University, 1161 21st Avenue South, T4202 MCN, Nashville, TN 37232-2520, USA.,Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN 37232, USA.,Department of Anesthesiology, TVHS VA Medical Center, 1310 24th Avenue South, Nashville, TN 37212, USA
| |
Collapse
|
28
|
Psotova H, Ostadal P, Mlcek M, Kruger A, Janotka M, Vondrakova D, Svoboda T, Hrachovina M, Taborsky L, Dudkova V, Strunina S, Kittnar O, Neuzil P. Ischemic Postconditioning and Nitric Oxide Administration Failed to Confer Protective Effects in a Porcine Model of Extracorporeal Cardiopulmonary Resuscitation. Artif Organs 2015; 40:353-9. [PMID: 26412075 DOI: 10.1111/aor.12556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The protective effects of ischemic postconditioning (IPC) and nitric oxide (NO) administration have been demonstrated in several ischemic scenarios. However, current evidence regarding the effect of IPC and NO in extracorporeal cardiopulmonary resuscitation remains lacking. Fifteen female swine (body weight 45 kg) underwent veno-arterial extracorporeal membrane oxygenation (ECMO) implantation; cardiac arrest-ventricular fibrillation was induced by rapid ventricular pacing. After 20 min of cardiac arrest, blood flow was restored by increasing the ECMO flow rate to 4.5 L/min. The animals (five per group) were then randomly assigned to receive IPC (three cycles of 3 min ischemia and reperfusion), NO (80 ppm via oxygenator), or mild hypothermia (HT; 33.0°C). Cerebral oximetry and aortic blood pressure were monitored continuously. After 90 min of reperfusion, blood samples were drawn for the measurement of troponin I, myoglobin, creatine-phosphokinase, alanine aminotransferase, neuron-specific enolase, cystatin C, and reactive oxygen metabolite (ROM) levels. Significantly higher blood pressure and cerebral oxygen saturation values were observed in the HT group compared with the IPC and NO groups (P < 0.05). The levels of troponin I, myoglobin, creatine phosphokinase, and alanine aminotransferase were significantly lower in the HT group (P < 0.05); levels of neuron-specific enolase, cystatin C, and ROM were not significantly different. IPC and NO were comparable in all monitored parameters. The results of the present study indicate that IPC and NO administration are not superior interventions to HT for the maintenance of blood pressure, cerebral oxygenation, organ protection, and suppression of oxidative stress following extracorporeal cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Hana Psotova
- Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic
| | - Petr Ostadal
- Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic
| | - Mikulas Mlcek
- Department of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Andreas Kruger
- Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic
| | - Marek Janotka
- Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic
| | | | - Tomas Svoboda
- Department of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Matej Hrachovina
- Department of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ludek Taborsky
- Department of Clinical Biochemistry, Hematology, and Immunology, Na Homolce Hospital, Prague, Czech Republic
| | - Vlasta Dudkova
- Department of Nuclear Medicine, Na Homolce Hospital, Prague, Czech Republic
| | - Svitlana Strunina
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Otomar Kittnar
- Department of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petr Neuzil
- Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
29
|
Albrecht M, Meybohm P, Broch O, Zitta K, Hein M, Gräsner JT, Renner J, Bein B, Gruenewald M. Evaluation of remote ischaemic post-conditioning in a pig model of cardiac arrest: A pilot study. Resuscitation 2015; 93:89-95. [PMID: 26051813 DOI: 10.1016/j.resuscitation.2015.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Remote ischaemic post-conditioning (RIPoC) in which transient episodes of ischaemia (e.g. by inflation and deflation of a blood pressure cuff) are applied after a prolonged ischaemia/reperfusion injury, may have the potential to improve patient outcome and survival following cardiac arrest. In this study we employed a pig model of cardiac arrest and successful cardiopulmonary resuscitation to evaluate the effects of RIPoC on haemodynamics, cardiac tissue damage and neurologic deficit. MATERIALS AND METHODS A total of 22 pigs were subjected to ventricular fibrillation, cardiopulmonary resuscitation and randomly assigned to Control or RIPoC treatment consisting of 4 cycles of 5 min femoral artery occlusion followed by 5 min of reperfusion starting 10min after return of spontaneous circulation (ROSC). Post-resuscitation was evaluated by haemodynamics using left ventricular conductance catheters, quantification of cardiac troponin T (cTnT), lactate dehydrogenase (LDH) and creatine kinase (CK). Neurological testing was performed 24h after return of spontaneous circulation (ROSC). RESULTS RIPoC resulted in a statistically significant reduction of serum cTnT levels 4h after ROSC (P ≤ 0.01). LDH and CK concentrations were significantly lower in RIPoC treated pigs 24h after ROSC (P ≤ 0.001), suggesting tissue and/or cardioprotective effects of RIPoC. End-systolic pressure volume relationship was significantly increased in RIPoC treated animals 4h after ROSC (P ≤ 0.05). Neurological testing revealed a trend towards an improved outcome in RIPoC treated animals. CONCLUSIONS We propose that RIPoC applied immediately after ROSC reduces serum concentrations of markers for cell damage and improves end-systolic pressure volume relationship 4h after ROSC.
Collapse
Affiliation(s)
- Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ole Broch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Marc Hein
- Department of Anaesthesiology, University Hospital RTWH Aachen, Germany
| | - Jan-Thorsten Gräsner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Jochen Renner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Berthold Bein
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Matthias Gruenewald
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| |
Collapse
|
30
|
Neuroprotection in acute brain injury: an up-to-date review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:186. [PMID: 25896893 PMCID: PMC4404577 DOI: 10.1186/s13054-015-0887-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroprotective strategies that limit secondary tissue loss and/or improve functional outcomes have been identified in multiple animal models of ischemic, hemorrhagic, traumatic and nontraumatic cerebral lesions. However, use of these potential interventions in human randomized controlled studies has generally given disappointing results. In this paper, we summarize the current status in terms of neuroprotective strategies, both in the immediate and later stages of acute brain injury in adults. We also review potential new strategies and highlight areas for future research.
Collapse
|
31
|
Remote ischemic pre- and postconditioning improve postresuscitation myocardial and cerebral function in a rat model of cardiac arrest and resuscitation. Crit Care Med 2015; 43:e12-8. [PMID: 25365722 DOI: 10.1097/ccm.0000000000000684] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Cardiac arrest and resuscitation are models of whole body ischemia reperfusion injury. Postresuscitation myocardial and cerebral dysfunction are major causes of high mortality and morbidity. Remote ischemic postconditioning has been proven to provide potent protection of the heart and brain against ischemia reperfusion injury. In this study, we investigated the effects of remote ischemic postconditioning on postresuscitation myocardial and cerebral function in a rat model of cardiac arrest and resuscitation. DESIGN Prospective, randomized, controlled experimental study. SETTING University-affiliated animal research institution. SUBJECTS Twenty-eight healthy male Sprague-Dawley rats. INTERVENTIONS The animals were randomized into four groups: 1) remote ischemic preconditioning initiated 40 minutes before induction of ventricular fibrillation, 2) remote ischemic postconditioning initiated coincident with the start of cardiopulmonary resuscitation, 3) remote ischemic postconditioning initiated 5 minutes after successful resuscitation, and 4) control. Remote ischemic pre- and postconditioning was induced by four cycles of 5 minutes of limb ischemia, followed by 5 minutes of reperfusion. Ventricular fibrillation was induced and untreated for 6 minutes while defibrillation was attempted after 8 minutes of cardiopulmonary resuscitation. The animals were then monitored for 4 hours and observed for an additional 68 hours after resuscitation. MEASUREMENTS AND MAIN RESULTS Hemodynamic measurements and myocardial function, including cardiac output, left ventricular ejection fraction, and myocardial performance index, were measured at baseline and hourly for 4 hours after resuscitation. Postresuscitation cerebral function was evaluated by neurologic deficit score at 24-hour intervals for a total of 72 hours. Consequently, significantly better myocardial and cerebral function with a longer duration of survival were observed in the three groups treated with remote ischemic pre- and postconditioning. CONCLUSIONS In a rat model of cardiac arrest and resuscitation, remote ischemic pre-and postconditioning attenuated postresuscitation myocardial and cerebral dysfunction and improved the duration of survival.
Collapse
|
32
|
Tourniqueting the Limbs, the New Chest Compression in Cardiopulmonary Resuscitation*. Crit Care Med 2015; 43:257-8. [DOI: 10.1097/ccm.0000000000000729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Riess ML, Matsuura TR, Bartos JA, Bienengraeber M, Aldakkak M, McKnite SH, Rees JN, Aufderheide TP, Sarraf M, Neumar RW, Yannopoulos D. Anaesthetic Postconditioning at the Initiation of CPR Improves Myocardial and Mitochondrial Function in a Pig Model of Prolonged Untreated Ventricular Fibrillation. Resuscitation 2014; 85:1745-51. [PMID: 25281906 PMCID: PMC4276313 DOI: 10.1016/j.resuscitation.2014.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Anaesthetic postconditioning (APoC) attenuates myocardial injury following coronary ischaemia/reperfusion. We hypothesised that APoC at the initiation of cardiopulmonary resuscitation (CPR) will improve post resuscitation myocardial function along with improved mitochondrial function in a pig model of prolonged untreated ventricular fibrillation. METHODS In 32 pigs isoflurane anaesthesia was discontinued prior to induction of ventricular fibrillation that was left untreated for 15 min. At the initiation of CPR, 15 animals were randomised to controls (CON), and 17 to APoC with 2 vol% sevoflurane during the first 3 min CPR. Pigs were defibrillated after 4 min of CPR. After return of spontaneous circulation (ROSC), isoflurane was restarted at 0.8-1.5 vol% in both groups. Systolic and diastolic blood pressures were measured continuously. Of the animals that achieved ROSC, eight CON and eight APoC animals were randomised to have their left ventricular ejection fraction (LVEF%) assessed by echocardiography at 4h. Seven CON and nine APoC were randomised to euthanasia 15 min after ROSC to isolate mitochondria from the left ventricle for bioenergetic studies. RESULTS ROSC was achieved in 10/15 CON and 15/17 APoC animals. APoC improved haemodynamics during CPR and post-CPR LVEF%. Mitochondrial ATP synthesis, coupling of oxidative phosphorylation and calcium retention capacity were improved in cardiac mitochondria isolated after APoC. CONCLUSIONS In a porcine model of prolonged untreated cardiac arrest, APoC with inhaled sevoflurane at the initiation of CPR, is associated with preserved mitochondrial function and improved post resuscitation myocardial dysfunction. Approved by the Institutional Animal Care Committee of the Minneapolis Medical Research Foundation of Hennepin County Medical Center (protocol number 11-05).
Collapse
Affiliation(s)
- Matthias L Riess
- TVHS VA Medical Center, Nashville, TN, United States; Department of Anesthesiology, Vanderbilt University, Nashville, TN, United States.
| | - Timothy R Matsuura
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Jason A Bartos
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Martin Bienengraeber
- Departments of Anesthesiology and Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammed Aldakkak
- Department of Surgery, Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott H McKnite
- Minneapolis Medical Research Foundation, Minneapolis, MN, United States
| | - Jennifer N Rees
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Tom P Aufderheide
- Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammad Sarraf
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Robert W Neumar
- Department of Emergency Medicine, University of Michigan Health System, Ann Arbor, MI, United States
| | - Demetris Yannopoulos
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
34
|
Bartos JA, Matsuura TR, Sarraf M, Youngquist ST, McKnite SH, Rees JN, Sloper DT, Bates FS, Segal N, Debaty G, Lurie KG, Neumar RW, Metzger JM, Riess ML, Yannopoulos D. Bundled postconditioning therapies improve hemodynamics and neurologic recovery after 17 min of untreated cardiac arrest. Resuscitation 2014; 87:7-13. [PMID: 25447036 DOI: 10.1016/j.resuscitation.2014.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/04/2014] [Accepted: 10/14/2014] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Ischemic postconditioning (stutter CPR) and sevoflurane have been shown to mitigate the effects of reperfusion injury in cardiac tissue after 15min of ventricular fibrillation (VF) cardiac arrest. Poloxamer 188 (P188) has also proven beneficial to neuronal and cardiac tissue during reperfusion injury in human and animal models. We hypothesized that the use of stutter CPR, sevoflurane, and P188 combined with standard advanced life support would improve post-resuscitation cardiac and neurologic function after prolonged VF arrest. METHODS Following 17min of untreated VF, 20 pigs were randomized to Control treatment with active compression/decompression (ACD) CPR and impedance threshold device (ITD) (n=8) or Bundle therapy with stutter ACD CPR+ITD+sevoflurane+P188 (n=12). Epinephrine and post-resuscitation hypothermia were given in both groups per standard protocol. Animals that achieved return of spontaneous circulation (ROSC) were evaluated with echocardiography, biomarkers, and a blinded neurologic assessment with a cerebral performance category score. RESULTS Bundle therapy improved hemodynamics during resuscitation, reduced need for epinephrine and repeated defibrillation, reduced biomarkers of cardiac injury and end-organ dysfunction, and increased left ventricular ejection fraction compared to Controls. Bundle therapy also improved rates of ROSC (100% vs. 50%), freedom from major adverse events (50% vs. 0% at 48h), and neurologic function (42% with mild or no neurologic deficit and 17% achieving normal function at 48h). CONCLUSIONS Bundle therapy with a combination of stutter ACD CPR, ITD, sevoflurane, and P188 improved cardiac and neurologic function after 17min of untreated cardiac arrest in pigs. All studies were performed with approval from the Institutional Animal Care Committee of the Minneapolis Medical Research Foundation (protocol #12-11).
Collapse
Affiliation(s)
- Jason A Bartos
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Timothy R Matsuura
- Department of Integrative Biology and Physiology, University of Minnesota, United States
| | - Mohammad Sarraf
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | | | - Scott H McKnite
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Jennifer N Rees
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Daniel T Sloper
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, United States
| | - Nicolas Segal
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Guillaume Debaty
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States; UJF-Grenoble 1/CNRS/CHU de Grenoble/TIMC-IMAG UMR 5525, Grenoble F-38041, France
| | - Keith G Lurie
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States
| | - Robert W Neumar
- Department of Emergency Medicine, University of Michigan, United States
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota, United States
| | - Matthias L Riess
- Department of Anesthesiology, TVHS VA Medical Center, Nashville, TN, United States; Department of Anesthesiology, Vanderbilt University, Nashville, TN, United States
| | - Demetris Yannopoulos
- Department of Medicine-Cardiovascular Division, University of Minnesota, United States.
| |
Collapse
|
35
|
|
36
|
Mangus DB, Huang L, Applegate PM, Gatling JW, Zhang J, Applegate RL. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (Part I - Protection via specific pathways). Med Gas Res 2014; 4:9. [PMID: 24808942 PMCID: PMC4012247 DOI: 10.1186/2045-9912-4-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/25/2014] [Indexed: 01/04/2023] Open
Abstract
Neurocognitive deficits are a major source of morbidity in survivors of cardiac arrest. Treatment options that could be implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation to improve these neurological deficits are limited. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following cardiac arrest with associated global cerebral ischemia. The search was limited to investigational therapies that were utilized to treat global cerebral ischemia associated with cardiac arrest. In this review we discuss potential mechanisms of neurologic protection following cardiac arrest including actions of several medical gases such as xenon, argon, and nitric oxide. The 3 included mechanisms are: 1. Modulation of neuronal cell death; 2. Alteration of oxygen free radicals; and 3. Improving cerebral hemodynamics. Only a few approaches have been evaluated in limited fashion in cardiac arrest patients and results show inconclusive neuroprotective effects. Future research focusing on combined neuroprotective strategies that target multiple pathways are compelling in the setting of global brain ischemia resulting from cardiac arrest.
Collapse
Affiliation(s)
- Dustin B Mangus
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda University Medical Center, Room 2532, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | - Lei Huang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda University Medical Center, Room 2532, 11234 Anderson Street, Loma Linda, CA 92354, USA ; Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA
| | - Patricia M Applegate
- Department of Cardiology, Loma Linda University School of Medicine, 11201 Benton St, Loma Linda, CA 92354, USA
| | - Jason W Gatling
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda University Medical Center, Room 2532, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | - John Zhang
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA ; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda University Medical Center, Room 2532, 11234 Anderson Street, Loma Linda, CA 92354, USA ; Department of Neurosurgery, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA 92354, USA
| | - Richard L Applegate
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda University Medical Center, Room 2532, 11234 Anderson Street, Loma Linda, CA 92354, USA
| |
Collapse
|
37
|
Neurologic recovery from profound accidental hypothermia after 5 hours of cardiopulmonary resuscitation. Crit Care Med 2014; 42:e167-70. [PMID: 24158171 DOI: 10.1097/ccm.0b013e3182a643bc] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To describe the successful neurologic recovery from profound accidental hypothermia with cardiac arrest despite the longest reported duration of cardiopulmonary resuscitation. DESIGN Case report. SETTING Mountain. PATIENT A 57-year-old woman experienced profound accidental hypothermia (16.9°C) in a mountainous region of Grenoble. She was unconscious and had extreme bradycardia (6 beats/min) at presentation. A cardiac arrest occurred at the mobilization that was not responsive to electrical shocks or epinephrine. INTERVENTION Cardiopulmonary resuscitation was continued for 307 minutes after rescue until venoarterial extracorporeal membrane oxygenation blood flow had been established at the emergency department. MEASUREMENTS AND MAIN RESULTS At a 3-month follow-up, the patient showed good physical and mental recovery. CONCLUSION With no evidence of trauma or asphyxia, profound accidental hypothermia with cardiac arrest represents a specific condition for which successful neurologic recovery is feasible despite prolonged cardiopulmonary resuscitation.
Collapse
|
38
|
|
39
|
Yannopoulos D, Segal N, Matsuura T, Sarraf M, Thorsgard M, Caldwell E, Rees J, McKnite S, Santacruz K, Lurie KG. Ischemic post-conditioning and vasodilator therapy during standard cardiopulmonary resuscitation to reduce cardiac and brain injury after prolonged untreated ventricular fibrillation. Resuscitation 2013; 84:1143-9. [PMID: 23376583 DOI: 10.1016/j.resuscitation.2013.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/21/2013] [Indexed: 01/25/2023]
Abstract
AIM OF THE STUDY We investigated the effects of ischemic postconditioning (IPC) with and without cardioprotective vasodilatory therapy (CVT) at the initiation of cardiopulmonary resuscitation (CPR) on cardio-cerebral function and 48-h survival. METHODS Prospective randomized animal study. Following 15 min of ventricular fibrillation, 42 Yorkshire farm pigs weighing an average of 34 ± 2 kg were randomized to receive standard CPR (SCPR, n=12), SCPR+IPC (n=10), SCPR+IPC+CVT (n=10), or SCPR+CVT (n=10). IPC was delivered during the first 3 min of CPR with 4 cycles of 20s of chest compressions followed by 20-s pauses. CVT consisted of intravenous sodium nitroprusside (2mg) and adenosine (24 mg) during the first minute of CPR. Epinephrine was given in all groups per standard protocol. A transthoracic echocardiogram was obtained on all survivors 1 and 4h post-ROSC. The brains were extracted after euthanasia at least 24h later to assess ischemic injury in 7 regions. Ischemic injury was graded on a 0-4 scale with (0=no injury to 4 ≥ 50% neural injury). The sum of the regional scores was reported as cerebral histological score (CHS). 48 h survival was reported. RESULTS Post-resuscitation left ventricular ejection (LVEF) fraction improved in SCPR+CVT, SCPR+IPC+CVT and SCPR+IPC groups compared to SCPR (59% ± 9%, 52% ± 14%, 52% ± 14% vs. 35% ± 11%, respectively, p<0.05). Only SCPR+IPC and SCPR+IPC+CVT, but not SCPR+CVT, had lower mean CHS compared to SCPR (5.8 ± 2.6, 2.8 ± 1.8 vs. 10 ± 2.1, respectively, p<0.01). The 48-h survival among SCPR+IPC, SCPR+CVT, SCPR+IPC+CVT and SCPR was 6/10, 3/10, 5/10 and 1/12, respectively (Cox regression p<0.01). CONCLUSIONS IPC and CVT during standard CPR improved post-resuscitation LVEF but only IPC was independently neuroprotective and improved 48-h survival after 15 min of untreated cardiac arrest in pigs.
Collapse
|
40
|
Mahan VL. Neuroprotective, neurotherapeutic, and neurometabolic effects of carbon monoxide. Med Gas Res 2012; 2:32. [PMID: 23270619 PMCID: PMC3599315 DOI: 10.1186/2045-9912-2-32] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022] Open
Abstract
Studies in animal models show that the primary mechanism by which heme-oxygenases impart beneficial effects is due to the gaseous molecule carbon monoxide (CO). Produced in humans mainly by the catabolism of heme by heme-oxygenase, CO is a neurotransmitter important for multiple neurologic functions and affects several intracellular pathways as a regulatory molecule. Exogenous administration of inhaled CO or carbon monoxide releasing molecules (CORM’s) impart similar neurophysiological responses as the endogenous gas. Its’ involvement in important neuronal functions suggests that regulation of CO synthesis and biochemical properties may be clinically relevant to neuroprotection and the key may be a change in metabolic substrate from glucose to lactate. Currently, the drug is under development as a therapeutic agent and safety studies in humans evaluating the safety and tolerability of inhaled doses of CO show no clinically important abnormalities, effects, or changes over time in laboratory safety variables. As an important therapeutic option, inhaled CO has entered clinical trials and its clinical role as a neuroprotective and neurotherapeutic agent has been suggested. In this article, we review the neuroprotective effects of endogenous CO and discuss exogenous CO as a neuroprotective and neurotherapeutic agent.
Collapse
Affiliation(s)
- Vicki L Mahan
- St, Christopher's Hospital for Children, Department of Pediatric Cardiothoracic Surgery, 3601 A Street, Philadelphia, PA, 19134, USA.
| |
Collapse
|