1
|
Hua T, Lu Z, Wang M, Zhang Y, Chu Y, Liu Y, Xiao W, Zhou W, Cui X, Shi W, Zhang J, Yang M. Shenfu injection alleviate gut ischemia/reperfusion injury after severe hemorrhagic shock through improving intestinal microcirculation in rats. Heliyon 2024; 10:e31377. [PMID: 38845930 PMCID: PMC11153106 DOI: 10.1016/j.heliyon.2024.e31377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Background Shenfu (SF) injection, a traditional Chinese medication, would improve microcirculation in cardiogenic shock and infectious shock. This study was aimed to explore the therapeutic potential of the SF injection in gut ischemia-reperfusion (I/R) injury after severe hemorrhagic shock (SHS) and resuscitation. Furthermore, we also investigated the optimal adm? inistration timing. Methods Twenty-four male SD rats were randomly divided into four groups: Sham group (sham, n = 6), Control group (n = 6), SF injection group (SF, n = 6), and Delayed Shenfu injection administration group (SF-delay, n = 6). In SHS and resuscitation model, rats were induced by blood draw to a mean arterial pressure (MAP) of 40 ± 5 mmHg within 1 h and then maintained for 40 min; HR, MAP 'were recorded, microcirculation index [De Backer score, perfused small vessel density (PSVD), total vessel density (TVD), microcirculation flow index score (MFI), flow heterogeneity index (HI)] were analyzed. The blood gas index was detected, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), diamine oxidase (DAO), malondialdehyde (MDA) were measured by ELISA; ZO-1, and claudin-1 were measured by Western blotting. In addition, hematoxylin-eosin (HE) and periodic acid schiff (PAS) staining pathological sections of the intestinal mucosal tissues were also performed. Results SF injection increased the MAP, relieved the metabolic acidosis degree associated with the hypoperfusion, and improved the intestinal microcirculatory density and perfusion quality after I/R injury. The expression of DAO, MDA in intestinal tissue, and plasma IL-6, TNF-α significantly decreased in the SF injection group compared to the control group. The concentration of ZO-1 and claudin-1 is also higher in the SF injection group. In addition, the HE and PAS staining results also showed that SF injection could decrease mucosal damage and maintain the structure. In the SF-delay group, the degree of intestinal tissue damage was intermediate between that of the control group and SF injection group. Conclusions SF injection protect the intestine from I/R injury induced by SHS and resuscitation, the mechanism of which might be through improving intestinal microcirculation, reducing the excessive release of inflammatory factors and increasing intestinal mucosal permeability. Furthermore, the protection effect is more pronounced if administration during the initial resuscitation phase.
Collapse
Affiliation(s)
- Tianfeng Hua
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Zongqing Lu
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Minjie Wang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Yijun Zhang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Yuqian Chu
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Yue Liu
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Cardiovascular Disease Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Wenyan Xiao
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Wuming Zhou
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Xuanxuan Cui
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Wei Shi
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Jin Zhang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Min Yang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| |
Collapse
|
2
|
Tamura H, Yasuda H, Oishi T, Shinzato Y, Amagasa S, Kashiura M, Moriya T. Association between sub-phenotypes identified using latent class analysis and neurological outcomes in patients with out-of-hospital cardiac arrest in Japan. BMC Cardiovasc Disord 2024; 24:303. [PMID: 38877462 PMCID: PMC11177357 DOI: 10.1186/s12872-024-03975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND In patients who experience out-of-hospital cardiac arrest (OHCA), it is important to assess the association of sub-phenotypes identified by latent class analysis (LCA) using pre-hospital prognostic factors and factors measurable immediately after hospital arrival with neurological outcomes at 30 days, which would aid in making treatment decisions. METHODS This study retrospectively analyzed data obtained from the Japanese OHCA registry between June 2014 and December 2019. The registry included a complete set of data on adult patients with OHCA, which was used in the LCA. The association between the sub-phenotypes and 30-day survival with favorable neurological outcomes was investigated. Furthermore, adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by multivariate logistic regression analysis using in-hospital data as covariates. RESULTS A total of, 22,261 adult patients who experienced OHCA were classified into three sub-phenotypes. The factor with the highest discriminative power upon patient's arrival was Glasgow Coma Scale followed by partial pressure of oxygen. Thirty-day survival with favorable neurological outcome as the primary outcome was evident in 66.0% participants in Group 1, 5.2% in Group 2, and 0.5% in Group 3. The 30-day survival rates were 80.6%, 11.8%, and 1.3% in groups 1, 2, and 3, respectively. Logistic regression analysis revealed that the ORs (95% CI) for 30-day survival with favorable neurological outcomes were 137.1 (99.4-192.2) for Group 1 and 4.59 (3.46-6.23) for Group 2 in comparison to Group 3. For 30-day survival, the ORs (95%CI) were 161.7 (124.2-212.1) for Group 1 and 5.78 (4.78-7.04) for Group 2, compared to Group 3. CONCLUSIONS This study identified three sub-phenotypes based on the prognostic factors available immediately after hospital arrival that could predict neurological outcomes and be useful in determining the treatment strategy of patients experiencing OHCA upon their arrival at the hospital.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Department of Emergency and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-Cho, Omiya-Ku, Saitama-Shi, Saitama, 330-8503, Japan
| | - Hideto Yasuda
- Department of Emergency and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-Cho, Omiya-Ku, Saitama-Shi, Saitama, 330-8503, Japan.
| | - Takatoshi Oishi
- Department of Emergency and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-Cho, Omiya-Ku, Saitama-Shi, Saitama, 330-8503, Japan
| | - Yutaro Shinzato
- Department of Emergency and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-Cho, Omiya-Ku, Saitama-Shi, Saitama, 330-8503, Japan
| | - Shunsuke Amagasa
- Division of Emergency and Transport Services, National Center for Child Health and Development, Tokyo, Japan
| | - Masahiro Kashiura
- Department of Emergency and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-Cho, Omiya-Ku, Saitama-Shi, Saitama, 330-8503, Japan
| | - Takashi Moriya
- Department of Emergency and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-Cho, Omiya-Ku, Saitama-Shi, Saitama, 330-8503, Japan
| |
Collapse
|
3
|
Wang X, Guo R, Guo Y, Guo Q, Yan Y, Gong W, Zheng W, Wang H, Xu L, Ai H, Que B, Yan X, Ma X, Nie S. Rationale and design of the RESTORE trial: A multicenter, randomized, double-blinded, parallel-group, placebo-controlled trial to evaluate the effect of Shenfu injection on myocardial injury in STEMI patients after primary PCI. Am Heart J 2023; 260:9-17. [PMID: 36822255 DOI: 10.1016/j.ahj.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND The mortality following ST-segment elevation myocardial infarction (STEMI) remains substantial in the reperfusion era. Shenfu injection, as a traditional Chinese herbal formula, can alleviate ischemia-reperfusion injury through multiple pharmacologic effects. However, no robust data are available regarding the role of Shenfu injection in reducing infarct size for patients with STEMI undergoing primary percutaneous coronary intervention (PPCI). METHODS/DESIGN This RESTORE trial is a multicenter, randomized, double-blind, parallel-group, placebo-controlled trial (NCT04493840). A total of 326 eligible patients with first-time anterior STEMI undergoing PPCI within 12 h of symptom onset will be enrolled from 10 centers in mainland China. Patients are randomized in a 1:1 fashion to receive either intravenous Shenfu injection (80mL Shenfu injection + 70mL 5% glucose injection) or placebo group (150mL 5% glucose injection) before reperfusion and followed by once a day until 5 days after PPCI. The primary end point is infarct size assessed by cardiac magnetic resonance (CMR) imaging 5±2 days after PPCI. The major secondary end points include enzymatic infarct size, microvascular obstruction, intramyocardial hemorrhage, left ventricular volume and ejection fraction assessed by CMR, as well as cardiovascular events at 30 days. CONCLUSIONS The RESTORE trial is sufficiently powered to demonstrate the clinical effects of Shenfu injection on myocardial injury in STEMI patients undergoing PPCI in the contemporary era.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ruifeng Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingying Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qian Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yan Yan
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Gong
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wen Zheng
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui Ai
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bin Que
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Yan
- Peking University Clinical Research Institute, Beijing, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Shaoping Nie
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Wu Y, Li S, Li Z, Mo Z, Luo Z, Li D, Wang D, Zhu W, Ding B. Efficacy and safety of Shenfu injection for the treatment of post-acute myocardial infarction heart failure: A systematic review and meta-analysis. Front Pharmacol 2022; 13:1027131. [PMID: 36506518 PMCID: PMC9730285 DOI: 10.3389/fphar.2022.1027131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: This systematic review and meta-analysis aimed to investigate the adjuvant effect and safety of Shenfu injection (SFI) on the treatment of post-acute myocardial infarction heart failure (PAMIHF). Methods: Seven databases were searched to identify randomized controlled trials (RCTs) associated with SFI and PAMIHF treatment from May 1990 to May 2022. Primary outcomes included NT-proBNP and left ventricular ejection fraction (LVEF), and secondary outcomes included total effective rate, BNP, heart rate (HR), cardiac output (CO), and adverse event (AE). The risk of bias evaluation was assessed by the ROB2 tool, meta-analysis, subgroup analysis, sensitivity analysis, and publication bias were conducted by RevMan5.3 software, and the Grade of Recommendations, Assessment, Development, and Evaluations (GRADE) system was used to evaluate the quality of evidence of meta results. Results: A total of 36 studies with 3231 PAMIHF patients were included. The meta results suggested that adjuvant SFI therapy was superior to conventional medical therapy alone. It improved the total effective rate [RR = 1.33; 95% CI (1.25.1.40); p < 0.00001], increased LVEF [SMD = 0.98; 95% CI (0.71, 1.24); p < 0.00001], and decreased HR [SMD = -1.14; 95% CI (-1.28, -0.99); p < 0.00001]. In addition, adjuvant SFI therapy (9.73%, 66/678) had a rate of AE lower than that of conventional medical therapy alone (21.7%, 147/677) when regarding safety [RR = 0.45; 95% CI (0.35, 0.57); p < 0.00001]. The quality of the evidence for the outcomes was rated from "very low" to "moderate." Conclusion: Adjuvant SFI therapy was safer to improve the total effective rate and the heart function of PAMIHF patients. However, well-designed RCTs were needed to confirm the efficacy and safety of adjuvant SFI therapy in PAMIHF treatment due to the low quality of the evidence for the outcomes caused by a small sample size and unclear risk of bias existed in included studies. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=151856), identifier CRD42020151856.
Collapse
Affiliation(s)
- Yanhua Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Emergency of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shuang Li
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zunjiang Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaofan Mo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziqing Luo
- Animal Experiment Centre of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongli Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Emergency of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Banghan Ding
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Emergency of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Li X, Huang F, Zhu L, Luo T, Zhang Y, Gu H, Guo L, Mao S. Effects of combination therapy with Shenfu Injection in critically ill patients with septic shock receiving mechanical ventilation: A multicentric, real-world study. Front Pharmacol 2022; 13:1041326. [PMID: 36438846 PMCID: PMC9682251 DOI: 10.3389/fphar.2022.1041326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/26/2022] [Indexed: 10/19/2024] Open
Abstract
Background: Septic shock has increasingly become a cause of death threatening human survival. Shenfu Injection (SFI), a patented Chinese medicine, has been widely used in the treatment of patients with sepsis and cardiovascular diseases domestically. We sought to examine whether combination therapy with SFI can improve clinical outcomes in critically ill patients undergoing mechanical ventilation (MV). Methods: This real-world, multicenter retrospective trial enrolled consecutive adult patients with sepsis requiring MV from four medical/surgical intensive care units (ICUs) in China between August 2016 and September 2021. Patients were identified from the medical information department database of each center and assigned to either of two groups (SFI or control) on the basis of the initial treatment received. The primary outcome was 28-day all-cause mortality, and the durations of vasopressor therapy and MV, the ICU length of stay, and costs were assessed as secondary outcomes. Subsequently, we performed a meta-analysis of randomized controlled trials (RCTs) on SFI published before July 2021 to verify our conclusions. Results: 2311 mechanically ventilated patients with septic shock (1128 patients in the SFI group and 1183 in the control group) were analyzed. The survival probability during the first 28 days after admission in the SFI group was greater than that in the control group [p < 0.01 by log-rank test; hazard ratio (HR), 0.56; 95% confidence interval (CI), 0.39-0.72]. Patients in the SFI group also experienced a significantly reduced duration of vasopressor therapy [7.28 (95% CI, 6.14-8.42) vs. 12.06 (95% CI, 10.71-13.41) days, p < 0.001], more ventilator-free days [6.49 (95% CI, 5.42-7.55) vs. 10.84 (95% CI, 9.59-12.09) days, p < 0.001], a shorter ICU length of stay [18.48 (95% CI, 17.59-19.38) vs. 23.77 (95% CI, 22.47-25.07) days, p < 0.001], and more time free from organ failure [14.23 (95% CI, 12.94-15.52) vs. 19.07 (95% CI, 16.09-22.05) days, p < 0.001]. No major adverse effects were reported in either group. Conclusion: Among critically ill patients requiring MV, combination therapy with SFI can improve the survival probability without any obvious adverse reactions.
Collapse
Affiliation(s)
- Xiaoqian Li
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fan Huang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lixia Zhu
- Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, China
| | - Tianyi Luo
- Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, China
| | - Yuzhuo Zhang
- Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, China
| | - Huiwen Gu
- Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, China
| | - Liheng Guo
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Mao
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Wang S, Liu G, Chen L, Xu X, Jia T, Zhu C, Xiong J. EFFECTS OF SHENFU INJECTION ON SUBLINGUAL MICROCIRCULATION IN SEPTIC SHOCK PATIENTS: A RANDOMIZED CONTROLLED TRIAL. Shock 2022; 58:196-203. [PMID: 35959775 DOI: 10.1097/shk.0000000000001975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Background and Objective: The optimization of macrocirculatory hemodynamics is recommended by current sepsis guidelines. However, microcirculatory dysfunction is considered the cause of severe sepsis. In the present study, we designed to verify whether the application of Shenfu injection (SFI) restores microcirculation, thereby improving tissue perfusion and inhibiting organ dysfunction, resulting in improved outcomes. Design: We conducted a prospective, single-center, randomized, double-blind, placebo-controlled clinical trial. Intervention: Patients were randomly assigned to group receiving SFI (n = 20) or placebo (n = 20) for 5 days. We administered SFI or glucose injection for 5 days and blinded the investigators and clinical staff by applying light-proof infusion equipment that concealed therapy allocation. Measurements and Results: We measured the systemic dynamics and lactate levels, biomarkers of endothelial dysfunction, and inflammatory cytokines in the plasma. The parameters of sublingual microcirculation were assessed using side-stream dark-field imaging. Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) score, total dose, and duration of vasopressor use, emergency intensive care unit (EICU) stay, and 28-day mortality were evaluated. After treatment with SFI, the disturbance of the sublingual microcirculation was considerably alleviated, as indicated by the significant increase in total vessel density, perfused vessel density, and microvascular flow index. Moreover, the plasma biomarker levels of endothelial dysfunction, including Ang-2, Syn-1, and ET-1, were reversed after SFI treatment. Importantly, the SFI group had a more favorable prognosis than the control group in terms of the APACHE-II score, SOFA score, duration of vasopressor administration, and length of EICU stay. However, the difference in mortality at day 28 was not statistically different between the SFI (15%, 3/20) and placebo (25%, 5/20) groups ( P = 0.693). Conclusions : Shenfu injection provided apparent effects in improving sublingual microcirculatory perfusion in patients with septic shock, and this protection may be related with the inhibition of endothelial dysfunction and vasodilatory effects.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Andersen LW, Nolan JP, Sandroni C. Drugs for advanced life support. Intensive Care Med 2022; 48:606-608. [PMID: 35411492 DOI: 10.1007/s00134-022-06678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Lars W Andersen
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark.,Prehospital Emergency Medical Services, Central Denmark Region, Denmark
| | - Jerry P Nolan
- Warwick Medical School, University of Warwick, Coventry, UK.,Department of Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
| | - Claudio Sandroni
- Department of Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy. .,Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
8
|
Protective Effect of Shenfu Injection () on Vascular Endothelial Damage in a Porcine Model of Hemorrhagic Shock. Chin J Integr Med 2022; 28:794-801. [PMID: 35023060 DOI: 10.1007/s11655-021-2876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effects of Shenfu Injection (, SFI) on endothelial damage in a porcine model of hemorrhagic shock (HS). METHODS After being bled to a mean arterial pressure of 40±3 mm Hg and held for 60 min, 32 pigs were treated with a venous injection of either shed blood (transfusion group), shed blood and saline (saline group), shed blood and SFI (SFI group) or without resuscitation (sham group). Venous blood samples were collected and analyzed at baseline and 0, 1, 2, 4, and 6 h after HS. Tumor necrosis factor-α (TNF-α), serum interleuking (IL)-6, and IL-10 levels were measured by enzyme-linked immunosorbent assay (ELISA); expressions of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule 1 (ICAM -1), von Willebrand factor (vWF), plasminogen activator inhibitor-1 (PAI-1) and Bcl-2, Bax, and caspase-3 proteins were determined by Western blot. RESULTS The serum level of TNF-α in the SFI group was significantly lower than in the other groups at 0, 1, and 2 h after HS, while the level of IL-6 was lower at 4 and 6 h compared with the saline group (P<0.01 or P<0.05). The concentration of serum IL-10 was significantly higher in the SFI group than in the other groups at 0, 1, 4, and 6 h after HS (P<0.01). Western blot and immunohistochemistry of vascular tissue showed that the expression of caspase-3 was downregulated, and that of Bcl-2 and Bax was upregulated in the SFI group compared to other groups (P<0.05). CONCLUSION SFI attenuated endothelial injury in the porcine model of HS by inhibiting cell apoptosis, suppressing the formation of proinflammatory cytokines, and reducing endothelial activation.
Collapse
|
9
|
Lyu M, Fan G, Xiao G, Wang T, Xu D, Gao J, Ge S, Li Q, Ma Y, Zhang H, Wang J, Cui Y, Zhang J, Zhu Y, Zhang B. Traditional Chinese medicine in COVID-19. Acta Pharm Sin B 2021; 11:3337-3363. [PMID: 34567957 PMCID: PMC8450055 DOI: 10.1016/j.apsb.2021.09.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread across the globe, posing an enormous threat to public health and safety. Traditional Chinese medicine (TCM), in combination with Western medicine (WM), has made important and lasting contributions in the battle against COVID-19. In this review, updated clinical effects and potential mechanisms of TCM, presented in newly recognized three distinct phases of the disease, are summarized and discussed. By integrating the available clinical and preclinical evidence, the efficacies and underlying mechanisms of TCM on COVID-19, including the highly recommended three Chinese patent medicines and three Chinese medicine formulas, are described in a panorama. We hope that this comprehensive review not only provides a reference for health care professionals and the public to recognize the significant contributions of TCM for COVID-19, but also serves as an evidence-based in-depth summary and analysis to facilitate understanding the true scientific value of TCM.
Collapse
Affiliation(s)
- Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanwei Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taiyi Wang
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford OX1 3PT, UK
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Qingling Li
- Institute of Basic Medicine and Cancer, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuling Ma
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford OX1 3PT, UK
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanlu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
10
|
Gardner MM, Topjian AA. Improving outcomes from pediatric cardiac arrest: Should we be out for blood? Resuscitation 2021; 167:405-406. [PMID: 34418480 DOI: 10.1016/j.resuscitation.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Monique M Gardner
- Anesthesia and Critical Care Medicine, Pediatrics University of Pennsylvania Perelman School of Medicine Division of Cardiac Critical Care The Children's Hospital of Philadelphia, United States
| | - Alexis A Topjian
- Anesthesia and Critical Care Medicine and Pediatrics, University of Pennsylvania Perelman School of Medicine Children''s Hospital of Philadelphia, United States.
| |
Collapse
|
11
|
Lind PC, Johannsen CM, Vammen L, Magnussen A, Andersen LW, Granfeldt A. Translation from animal studies of novel pharmacological therapies to clinical trials in cardiac arrest: A systematic review. Resuscitation 2020; 158:258-269. [PMID: 33147523 DOI: 10.1016/j.resuscitation.2020.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND There is a lack of new promising therapies to improve the dismal outcomes from cardiac arrest. The objectives of this study were: (1) To identify novel pharmacological therapies investigated in experimental animal studies and (2) to identify pharmacological therapies translated from experimental animal studies to clinical trials. METHODS PubMed was searched to first identify relevant experimental cardiac arrest animal models published within the last 20 years. Based on this, a list of interventions was created and a second search was performed to identify clinical trials testing one of these interventions. Data extraction was performed using standardised data extraction forms. RESULTS We identified 415 animal studies testing 190 different pharmacological interventions. The most commonly tested interventions were classified as vasopressors, anaesthetics/gases, or interventions aimed at molecular targets. We found 43 clinical trials testing 26 different interventions identified in the animal studies. Of these, 13 trials reported positive findings and 30 trials reported neutral findings with regards to the primary endpoint. No study showed harm of the intervention. Some interventions tested in human clinical trials, had previously been tested in animal studies without a positive effect on outcomes. A large number of animal studies was performed after publication of a clinical trial. CONCLUSION Numerous different pharmacological interventions have been tested in experimental animal models. Despite this only a limited number of these interventions have advanced to clinical trials, however several of the clinical trials tested interventions that were first tested in experimental animal models.
Collapse
Affiliation(s)
- Peter Carøe Lind
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Lauge Vammen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Intensive Care and Anesthesiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars W Andersen
- Department of Intensive Care and Anesthesiology, Aarhus University Hospital, Aarhus, Denmark; Research Center for Emergency Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark; Prehospital Emergency Medical Services, Central Denmark Region, Denmark
| | - Asger Granfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Intensive Care and Anesthesiology, Aarhus University Hospital, Aarhus, Denmark; Department of Anesthesiology and Intensive Care Medicine, Randers Regional Hospital, Randers, Denmark.
| |
Collapse
|