1
|
Refaey MS, Abosalem EF, Yasser El-Basyouni R, Elsheriri SE, Elbehary SH, Fayed MAA. Exploring the therapeutic potential of medicinal plants and their active principles in dental care: A comprehensive review. Heliyon 2024; 10:e37641. [PMID: 39318809 PMCID: PMC11420497 DOI: 10.1016/j.heliyon.2024.e37641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Since the human population realized how important it was to maintain overall health and the weight of disease, they have been looking for therapeutic qualities in natural environments. The use of plants having medicinal qualities for the treatment and prevention of illnesses that may have an impact on general health is known as herbal medicine. There has been a noticeable increase in interest lately in the combination of synthetic contemporary medications and traditional herbal remedies. About 80 % of people rely on it for healthcare, particularly in developing nations. One important aspect of overall health is said to be oral healthcare. The World Health Organization views oral health as a crucial component of overall health and well-being. Because they are more readily available, less expensive, and have fewer adverse effects than pharmaceutical treatments, using natural medicines to treat pathologic oro-dental disorders can make sense. The current evaluation of the literature sought to investigate the range and scope of the use of herbal products and their secondary metabolites in maintaining oral health, encompassing several oral healthcare domains such as halitosis, gingivitis, periodontitis, and other oral disorders. Therefore, there are many herbs discussed in this work and their mechanism in the treatment and improvement of many oral ailments. Besides, compounds that are useful in oral treatment with their natural sources and the cases where they can be used. To prevent any possible side effects or drug interactions, a doctor's consultation is necessary before using dental medicine. Although herbal therapy is safe and with minimum side effects, it is also strongly advised to do a more thorough preclinical and clinical evaluation before using herbal medicines officially.
Collapse
Affiliation(s)
- Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Esraa Fawzy Abosalem
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Rana Yasser El-Basyouni
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Shymaa E Elsheriri
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Sara Hassan Elbehary
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
2
|
Carvalho-Silva JM, Teixeira ABV, Valente MLDC, Shimano MVW, Dos Reis AC. Antimicrobial activity of essential oils against biofilms formed in dental acrylic resin: a systematic review of in vitro studies. BIOFOULING 2024; 40:114-129. [PMID: 38538551 DOI: 10.1080/08927014.2024.2332709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
This study aimed to answer the question formulated according to the PICO strategy: 'Which essential oils show antimicrobial activity against biofilms formed on dental acrylic resin?' composed by population (dental acrylic resin), intervention (application of essential oils), comparison (denture cleansers, antifungal drugs, chlorhexidine, and oral mouthwashes), and outcome (antibiofilm activity). In vitro experimental studies evaluating the activity of EOs on biofilm formed on acrylic resin were included. PRISMA guidelines were followed, and the search was performed in the PubMed, Science Direct, Embase, and Lilacs databases and in the gray literature using Google Scholar and ProQuest in December 2023. A manual search of the reference lists of the included primary studies was performed. Of the 1467 articles identified, 37 were selected for full-text reading and 12 were included. Twelve EOs were evaluated, of which 11 showed activity against Candida spp., 3 against Staphylococcus aureus, and 1 against Pseudomonas aeruginosa. The EOs of Cymbopogon citratus, Cinnamomum zeylanicum, and Cymbopogon nardus showed higher action than chlorhexidine, C. nardus higher than Listerine, C. citratus higher than nystatin, and Melaleuca alternifolia higher than fluconazole and nystatin. However, chlorhexidine was more effective than Lippia sidoides and Salvia officinalis, sodium hypochlorite was more effective than L. sidoides, nystatin was more effective than Zingiber officinale, Amphotericin B more effective than Eucalyptus globulus and M. alternifolia. In conclusion, the EOs of C. zeylanicum, C. citratus, C. nardus, and M. alternifolia showed antimicrobial activity to reduce biofilm on dental acrylic resin.
Collapse
Affiliation(s)
- João Marcos Carvalho-Silva
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Beatriz Vilela Teixeira
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Mariana Lima da Costa Valente
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marcos Vinicius Wada Shimano
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Özarslan M, Avcioglu NH, Bilgili Can D, Çalışkan A. Biofilm formation of C. albicans on occlusal device materials and antibiofilm effects of chitosan and eugenol. J Prosthet Dent 2024; 131:144.e1-144.e9. [PMID: 38167132 DOI: 10.1016/j.prosdent.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024]
Abstract
STATEMENT OF PROBLEM Microbial adhesion on occlusal devices may lead to oral diseases such as candidiasis. Whether chitosan and eugenol provide antibiofilm effects is unclear. PURPOSE The purpose of this in vitro study was to evaluate the biofilm formation of C. albicans strains on occlusal device materials and the antibiofilm effects of chitosan and eugenol against C. albicans on these surfaces. MATERIAL AND METHODS A total of 88 specimens (5×10×2 mm) were produced from occlusal device materials with 4 production techniques: vacuum-formed thermoplastic (Group V), head-press (Group H), computer-aided design and computer-aided manufacture (CAD-CAM) (Group C), and 3-dimensionally (3D) printed (Group D) (n=22). After various finishing procedures, the surface properties of the specimens were evaluated by using surface free energy (SFE), surface roughness (SR) measurements, and elemental and topographic analysis. Biofilm formation of C. albicans strain and the antibiofilm effects of chitosan and eugenol against biofilm formation on these surfaces were also examined with a crystal violet assay. The distribution's normality was statistically analyzed with the Kolmogorov-Smirnov test. One-way and two-way analysis of variance with post hoc Tukey tests were used for statistical evaluations (α=.05). RESULTS Surface roughness values in Groups D and H were significantly higher than in other groups (P<.05). While the highest surface free energy values (except γp) were in Group V, Group C had the highest γp. The lowest biofilm value appeared in Group H. Chitosan exhibited an antibiofilm effect in all groups except Group H, while eugenol was effective in all groups. CONCLUSIONS The production method affected the susceptibility of occlusal device materials to the adhesion of C. albicans. Eugenol was an effective antibiofilm agent for device materials.
Collapse
Affiliation(s)
- Merve Özarslan
- Associate Professor, Department of Prosthetic Dentistry, Faculty of Dentistry, Akdeniz University, Antalya, Turkey.
| | - Nermin Hande Avcioglu
- Research Assistant, Department of Biology, Biotechnology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Dilber Bilgili Can
- Associate Professor, Department of Restorative Dentistry, Faculty of Dentistry, Van Yuzuncu Yil University, Van, Turkey
| | | |
Collapse
|
4
|
Kumar R, Mirza MA, Naseef PP, Kuruniyan MS, Zakir F, Aggarwal G. Exploring the Potential of Natural Product-Based Nanomedicine for Maintaining Oral Health. Molecules 2022; 27:1725. [PMID: 35268826 PMCID: PMC8911592 DOI: 10.3390/molecules27051725] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 12/29/2022] Open
Abstract
Oral diseases pose a major threat to public health across the globe. Diseases such as dental caries, periodontitis, gingivitis, halitosis, and oral cancer affect people of all age groups. Moreover, unhealthy diet practices and the presence of comorbidities aggravate the problem even further. Traditional practices such as the use of miswak for oral hygiene and cloves for toothache have been used for a long time. The present review exhaustively explains the potential of natural products obtained from different sources for the prevention and treatment of dental diseases. Additionally, natural medicine has shown activity in preventing bacterial biofilm resistance and can be one of the major forerunners in the treatment of oral infections. However, in spite of the enormous potential, it is a less explored area due to many setbacks, such as unfavorable physicochemical and pharmacokinetic properties. Nanotechnology has led to many advances in the dental industry, with various applications ranging from maintenance to restoration. However, can nanotechnology help in enhancing the safety and efficacy of natural products? The present review discusses these issues in detail.
Collapse
Affiliation(s)
- Rajeev Kumar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-3, M.B. Road, PushpVihar, New Delhi 110017, India;
| | - Mohd A. Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India;
| | | | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Foziyah Zakir
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-3, M.B. Road, PushpVihar, New Delhi 110017, India;
| | - Geeta Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-3, M.B. Road, PushpVihar, New Delhi 110017, India;
| |
Collapse
|
5
|
Garlic ( Allium sativum L.) Bioactives and Its Role in Alleviating Oral Pathologies. Antioxidants (Basel) 2021; 10:antiox10111847. [PMID: 34829718 PMCID: PMC8614839 DOI: 10.3390/antiox10111847] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Garlic (Allium sativa L.) is a bulbous flowering plant belongs to the family of Amaryllidaceae and is a predominant horticultural crop originating from central Asia. Garlic and its products are chiefly used for culinary and therapeutic purposes in many countries. Bulbs of raw garlic have been investigated for their role in oral health, which are ascribed to a myriad of biologically active compounds such as alliin, allicin, methiin, S-allylcysteine (SAC), diallyl sulfide (DAS), S-ally-mercapto cysteine (SAMC), diallyl disulphide (DADS), diallyl trisulfide (DATS) and methyl allyl disulphide. A systematic review was conducted following the PRISMA statement. Scopus, PubMed, Clinicaltrials.gov, and Science direct databases were searched between 12 April 2021 to 4 September 2021. A total of 148 studies were included and the qualitative synthesis phytochemical profile of GE, biological activities, therapeutic applications of garlic extract (GE) in oral health care system, and its mechanism of action in curing various oral pathologies have been discussed. Furthermore, the safety of incorporation of GE as food supplements is also critically discussed. To conclude, GE could conceivably make a treatment recourse for patients suffering from diverse oral diseases.
Collapse
|
6
|
Milutinovici RA, Chioran D, Buzatu R, Macasoi I, Razvan S, Chioibas R, Corlan IV, Tanase A, Horia C, Popovici RA, Dinu S, Dehelean C, Scurtu A, Pinzaru I, Soica C. Vegetal Compounds as Sources of Prophylactic and Therapeutic Agents in Dentistry. PLANTS (BASEL, SWITZERLAND) 2021; 10:2148. [PMID: 34685957 PMCID: PMC8537575 DOI: 10.3390/plants10102148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Dental pathology remains a global health problem affecting both children and adults. The most important dental diseases are dental caries and periodontal pathologies. The main cause of oral health problems is overpopulation with pathogenic bacteria and for this reason, conventional therapy can often be ineffective due to bacterial resistance or may have unpleasant side effects. For that reason, studies in the field have focused on finding new therapeutic alternatives. Special attention is paid to the plant kingdom, which offers a wide range of plants and active compounds in various pathologies. This review focused on the most used plants in the dental field, especially on active phytocompounds, both in terms of chemical structure and in terms of mechanism of action. It also approached the in vitro study of active compounds and the main types of cell lines used to elucidate the effect and mechanism of action. Thus, medicinal plants and their compounds represent a promising and interesting alternative to conventional therapy.
Collapse
Affiliation(s)
- Raluca-Adriana Milutinovici
- Departament of Orthodontics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Revolutiei Ave. 1989 No. 9, 300041 Timisoara, Romania
| | - Doina Chioran
- Department of Dento-Alveolar Surgery, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Roxana Buzatu
- Department of Facial Tooth Aesthetics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Susan Razvan
- Department of Family Medicine, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Raul Chioibas
- Department of Surgery I, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania;
| | - Ion Virgil Corlan
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.V.C.); (A.T.); (R.A.P.)
| | - Alina Tanase
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.V.C.); (A.T.); (R.A.P.)
| | - Calniceanu Horia
- Department of Periodontics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Ramona Amina Popovici
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.V.C.); (A.T.); (R.A.P.)
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Cristina Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Alexandra Scurtu
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Codruta Soica
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Departament of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| |
Collapse
|
7
|
Antifungal and anti-biofilm activity of a new Spanish extract of propolis against Candida glabrata. BMC Complement Med Ther 2021; 21:147. [PMID: 34020643 PMCID: PMC8140450 DOI: 10.1186/s12906-021-03323-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/13/2021] [Indexed: 11/11/2022] Open
Abstract
Background Resistance to traditional antifungal agents is a considerable health problem nowadays, aggravated by infectious processes related to biofilm formation, usually on implantable devices. Therefore, it is necessary to identify new antimicrobial molecules, such as natural products, to develop new therapeutic strategies to prevent and eradicate these infections. One promising product is propolis, a natural resin produced by honeybees with substances from various botanical sources, beeswax and salivary enzymes. The aim of this work was to study the effect of a new Spanish ethanolic extract of propolis (SEEP) on growth, cell surface hydrophobicity, adherence and biofilm formation of Candida glabrata, a yeast capable of achieving high levels of resistance to available anti-fungal agents. Methods The antifungal activity of SEEP was evaluated in the planktonic cells of 12 clinical isolates of C. glabrata. The minimum inhibitory concentration (MIC) of propolis was determined by quantifying visible growth inhibition by serial plate dilutions. The minimum fungicide concentration (MFC) was evaluated as the lowest concentration of propolis that produced a 95% decrease in cfu/mL, and is presented as MFC50 and MFC90, which corresponds to the minimum concentrations at which 50 and 90% of the C. glabrata isolates were inhibited, respectively. Influence on cell surface hydrophobicity (CSH) was determined by the method of microbial adhesion to hydrocarbons (MATH). The propolis effect on adhesion and biofilm formation was determined in microtiter plates by measurement of optical density (OD) and metabolic activity (XTT-assay) in the presence of sub-MIC concentrations of SEEP. Results SEEP had antifungal capacity against C. glabrata isolates, with a MIC50 of 0.2% (v/v) and an MFC50 of 0.4%, even in azole-resistant strains. SEEP did not have a clear effect on surface hydrophobicity and adhesion, but an inhibitory effect on biofilm formation was observed at subinhibitory concentrations (0.1 and 0.05%) with a significant decrease in biofilm metabolism. Conclusions The novel Spanish ethanolic extract of propolis shows antifungal activity against C. glabrata, and decreases biofilm formation. These results suggest its possible use in the control of fungal infections associated with biofilms.
Collapse
|
8
|
Gharibpour F, Shirban F, Bagherniya M, Nosouhian M, Sathyapalan T, Sahebkar A. The Effects of Nutraceuticals and Herbal Medicine on Candida albicans in Oral Candidiasis: A Comprehensive Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:225-248. [PMID: 33861447 DOI: 10.1007/978-3-030-64872-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Candida albicans is part of the healthy flora in the oral cavity. It can also cause opportunistic infection, which can be deleterious. The most typical type of chronic oral candidiasis is denture stomatitis, and C. albicans is identified as the most crucial organism in this situation. Due to the development of the resistant form of candida, using conventional drugs can sometimes be ineffective. Herbs and naturally imitative bioactive compounds could become a new source for antimycotic therapy. Several review studies suggest that herbal medicine and natural bioactive compounds have antibacterial, antiviral and antifungal effects. Thus, it is hypothesized that these natural products might have beneficial effects on pathogenic oral fungal flora such as C. albicans. Although the effects of herbs have been investigated as antifungal agents in several studies, to the best of our knowledge, the effects of these natural products on C. albicans have not yet been reviewed. Thus, the aim of this study was to review the anti-candida activity (especially C. albicans in oral candidiasis) of herbal medicines and natural bioactive compounds. It is concluded that, in general, medicinal plants and nutraceuticals such as garlic, green tea, propolis, curcumin, licorice root, cinnamon, resveratrol, ginger, and berberine are useful in the treatment of C. albicans in oral candidiasis and could be considered as a safe, accessible, and inexpensive management option in an attempt to prevent and treat oral diseases. However, most of the evidence is based on the in vitro and animal studies, so more clinical trials are needed.
Collapse
Affiliation(s)
- Fateme Gharibpour
- Post graduate, Dental students, Research Committee, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Shirban
- Dental Research Center, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Nosouhian
- Post graduate, Dental students, Research Committee, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
9
|
Bassi RC, Boriollo MFG. Amphotericin B, fluconazole, and nystatin as development inhibitors of Candida albicans biofilms on a dental prosthesis reline material: Analytical models in vitro. J Prosthet Dent 2020; 127:320-330. [PMID: 33279153 DOI: 10.1016/j.prosdent.2020.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/15/2022]
Abstract
STATEMENT OF PROBLEM The use of antifungals has been suggested during the treatment of denture stomatitis associated with Candida albicans biofilms. However, how time, material surface, and substrates present during adhesion and biofilm development can influence clinical treatment is unclear. PURPOSE The purpose of this in vitro study was to investigate the growth kinetics of C. albicans biofilms on surfaces of specimens under the influence of adsorbed films and to evaluate the antibiofilm efficacy of antifungal agents: amphotericin B, fluconazole, and nystatin. MATERIAL AND METHODS Specimens of Silagum-Comfort Soft Relining were submerged in preconditioning systems: phosphate-buffered saline, artificial saliva, fetal bovine serum, and artificial saliva+fetal bovine serum. Planktonic cells were incubated (phosphate-buffered saline+specimens) for 1.5 hours (adhesion phase) and washed with phosphate-buffered saline solution. The specimens were then incubated (YNB+glucose) for 8, 24, and 48 hours (initial, intermediate, and maturation phases). The biofilm sessile minimum inhibitory concentration was determined by the broth microdilution method (7.81 to 500 μg/mL). The metabolic activity of the biofilms was tested by colorimetric assay (cell metabolic activity). Cell viability, relative biomass (μm3), and the thickness of the biofilm (μm) were evaluated by confocal laser scanning microscopy. RESULTS The highest bioactivity was recorded in the presence of fetal bovine serum. Biofilms treated with fluconazole and amphotericin B were partially inhibited in a dose-dependent manner. Nystatin inhibited metabolic activity mainly from ≥15.63 or 62.5 μg/mL. Variations in magnitude parameters (relative biomass and thickness) were observed depending on the development phases of biofilms, whereas biological parameters (percentage of nonviable cells) were constant throughout the formation of C. albicans biofilms. CONCLUSIONS The data suggest that partial (fluconazole and amphotericin B) or more effective (nystatin) reduction of metabolic activity of C. albicans biofilms occurred depending on the time and the antifungal and its concentrations.
Collapse
Affiliation(s)
- Rodrigo C Bassi
- Graduate student, Graduate Program in Oral Biology, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), Piracicaba, SP, Brazil.
| | - Marcelo F G Boriollo
- Professor and Researcher, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), Piracicaba, SP, Brazil
| |
Collapse
|
10
|
WITHDRAWN: Chemical Composition and Antibacterial Activity of the Essential Oil of Allium sativum L. from Morocco. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Potential efficacy of garlic lock therapy in combating biofilm and catheter-associated infections; experimental studies on an animal model with focus on toxicological aspects. Saudi Pharm J 2019; 27:830-840. [PMID: 31516325 PMCID: PMC6734154 DOI: 10.1016/j.jsps.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022] Open
Abstract
Background Life-threatening central venous catheter-related infections are primarily initiated by biofilm formation on the catheter surface. Antibiotic lock therapy is recommended for eradicating intraluminal biofilm. In the era of antibiotic resistance, antibiotics of natural origins provide an effective and cheap option for combating resistant strains. Garlic especially stole the spotlight because of its impressive antimicrobial effectiveness against such superbugs. Aim Is to estimate the potential use of fresh garlic extract (FGE) as a lock agent against multi-drug resistant (MDR) bacteria. Methods The agar well diffusion and broth microdilution techniques were employed to test the antimicrobial activities of FGE against five MDR strains; E. coli, Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae), Serratia marscens (S. marscens) and Methicillin-resistant Staphylococcus aureus (MRSA). Then the protective and therapeutic efficiencies of FGE against bacterial biofilms were in-vitro evaluated; at concentrations of 100, 75, 50 and 25%; in tissue culture plate (TCP) and on the polyurethane (PU) sheets using the crystal violet (CV) assay and colony-forming unit (CFU), respectively. Scanning electron microscopy (SEM) was also used to confirm eradication of biofilms on PU sheets. Finally, systemic and deep tissue infections by P. aeruginosa and MRSA were induced in mice that were then treated by FGE at either 100 or 200 mg/kg for seven days. Where the antibacterial activity was assessed by tissue and blood culturing at the end of the treatment period. Biochemical, hematological and histological parameters were also investigated. Results FGE exhibited potent in-vitro and in-vivo antibacterial and antibiofilm activities against MDR strains. It not only didn’t exhibit toxicological effects at the hematological and the histological levels but also provided protective effects as demonstrated by the significant drop in the biochemical parameters. Conclusion FGE has the potential to be used as a prophylactic and/or therapeutic lock agent against biofilm-associated infections caused by MDR bacteria.
Collapse
|