1
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
2
|
Tang H, Zhu L, Zhao X, Jiang X, Zhang J, Pei C, Li L, Kong X. Characterization of CD3γ/δ gene and its immune response in Qihe crucian carp Carassius auratus after challenged by Aeromonas veronii and Poly(I:C). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108550. [PMID: 36646341 DOI: 10.1016/j.fsi.2023.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
CD3γ/δ found in non-mammalian vertebrates is a CD3 homolog with structural characteristics similar to both mammalian CD3γ and CD3δ, and plays important roles in T cell recognization and immune response in fish. In this study, the full-length of CD3γ/δ from Qihe crucian carp (named CaCD3γ/δ) was cloned and characterized, then the expression response profiles and potential immune functions was explored after Aeromonas veronii and Poly(I:C) challenge. The results showed that the full-length of CaCD3γ/δ was 819 bp including a 5'-UTR of 141 bp, a 3'-UTR of 168 bp, and an ORF of 510 bp encoding a putative 169-aa protein with an estimated MW of 18.71 kD and a theoretical pI of 8.77. The protein sequence of CaCD3γ/δ contained a Leu-Leu and a CXXXC motif in the extracellular domain, and an ITAM and a Leu-Ile motif in the cytoplasm, and a residue of Asn in the transmembrane. CaCD3γ/δ was constitutively expressed in the spleen, liver, gill, and blood of Qihe crucian carp. After the carp were challenged with Poly(I:C) and Aeromonas veronii, the mRNA expression levels of CaCD3γ/δ were significantly changed in the spleen, head kidney, intestine and gill, according to the results of qPCR. However, compared with A. veronii, Poly(I:C) challenge can rapidly induce the CaCD3γ/δ expression levels in head kidney, intestine and spleen, which suggested CaCD3γ/δ may be differentially modulated by different pathogens. Moreover, the results of immunohistochemical analysis showed that the CaCD3γ/δ+ secreted cells in the spleen and gills of Qihe crucian were increased after challenged with Poly(I:C), as well as the spleen challenged with A. veronii, but at different levels. Combined with the fact that vascular congestion, necrosis of parenchymal cells, and inflammatory cells including lymphocytes infiltration were also observed in the gill and spleen of Qihe crucian carp treated with A. veronii and Poly(I:C) revealed by pathological analysis, it was predicted that CaCD3γ/δ+ T lymphocytes may participated in the immune response against pathogens. This study will contribute to understand the important role of CaCD3γ/δ+ T lymphocytes in the immune response of Qihe crucian carp, and provide new insights for the prevention and treatment of the diseases of Qihe crucian carp.
Collapse
Affiliation(s)
- Hairong Tang
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Lei Zhu
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
3
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunity of the intestinal mucosa in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108572. [PMID: 36717066 DOI: 10.1016/j.fsi.2023.108572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the problem of intestinal mucosa immunity in teleost fish. The immunity of the intestinal mucosa in teleost fish depends on the elements and mechanisms with different organizational/structural and functional properties than in mammals. The organization of the elements of intestinal mucosal immunitya in these animals is associated with the presence of immune cells that fulfil the functions assigned to the induction and effector sites of mucosal immunity in mammals; they are located at various histological sites of the mucosa - in the lamina propria (LP) and in the surface epithelium. The presence of mucosa-associated lymphoid tissue (MALT) has not been demonstrated in teleost fish, and the terminology used in relation to the structure and function of the mucosa immunity components in teleost fish is inadequate. In this article, we review the knowledge of intestinal mucosal immunity in teleost fish, with great potential for knowledge and practical applications especially in the field of epidemiological safety. We discuss the organization and functional properties of the elements that determine this immunity, according to current data and taking into account the tissue definition and terminology adopted by the Society for Mucosal Immunology General Assembly (13th ICMI in Tokyo, 2007).
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
4
|
Tian HF, Xing J, Tang XQ, Chi H, Sheng XZ, Zhan WB. Cluster of differentiation antigens: essential roles in the identification of teleost fish T lymphocytes. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:303-316. [PMID: 37073166 PMCID: PMC10077257 DOI: 10.1007/s42995-022-00136-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/25/2022] [Indexed: 05/03/2023]
Abstract
Cluster of differentiation (CD) antigens are cell surface molecules expressed on leukocytes and other cells associated with the immune system. Antibodies that react with CD antigens are known to be one of the most essential tools for identifying leukocyte subpopulations. T lymphocytes, as an important population of leukocytes, play essential roles in the adaptive immune system. Many of the CD antigens expressed on T lymphocytes are used as surface markers for T lymphocyte classification, including CD3, CD4 and CD8 molecules. In this review, we summarize the recent advances in the identification of CD molecules on T lymphocytes in teleosts, with emphasis on the functions of CD markers in the classification of T lymphocyte subsets. We notice that genes encoding CD3, co-receptors CD4 and CD8 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. T lymphocytes can be divided into CD4+ and CD8+ cells discriminated by the expression of CD4 and CD8 molecules in teleost, which are functionally similar to mammalian helper T cells (Th) and cytotoxic T cells (Tc), respectively. Further studies are still needed on the particular characteristics of teleost T cell repertoires and adaptive responses, and results will facilitate the health management and development of vaccines for fish.
Collapse
Affiliation(s)
- Hong-fei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Xiao-qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Xiu-zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Wen-bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
5
|
Picchietti S, Buonocore F, Guerra L, Belardinelli MC, De Wolf T, Couto A, Fausto AM, Saraceni PR, Miccoli A, Scapigliati G. Molecular and cellular characterization of European sea bass CD3ε + T lymphocytes and their modulation by microalgal feed supplementation. Cell Tissue Res 2021; 384:149-165. [PMID: 33433686 DOI: 10.1007/s00441-020-03347-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Abstract
The CD3 coreceptor is a master T cell surface marker, and genes encoding CD3ζ, γδ, and ε chains have been reported in several teleost fish. Here, a complete cDNA sequence of CD3ɛ chain was identified from a sea bass (Dicentrarchus labrax L.) gill transcriptome. Its basal expression was quantified in both lymphoid and non-lymphoid organs of sea bass juveniles with real-time qPCR analysis. After either in vitro stimulation of head kidney leukocytes with the T-cell mitogen phytohaemagglutinin or in vivo stimulation with an orally administered Vibrio anguillarum vaccine, CD3ε expression levels increased in head kidney leukocytes, confirming that CD3ε T cells may play important roles in fish systemic protection against pathogens. Further, three peptides were designed on the CD3ɛ cytoplasmic tail region and employed as immunogens for antibody production in rabbit. One antiserum so obtained, named RACD3/1, immunostained a band of the expected size in a western blot of a sea bass thymocyte lysate. The distribution of CD3ε+ lymphocyte population in the lymphoid organs and mucosal tissues was addressed in healthy fish by IHC. In decreasing percentage order, CD3ε+ lymphocytes were detected by flow cytometry in thymus, peripheral blood leukocytes, gills, head kidney, gut, and spleen. Finally, a significant in vivo enhancement of CD3ε+ T intestinal lymphocytes was found in fish fed on diets in which 100% fish meal was replaced by the microalgae Nannochloropsis sp. biomass. These results indicate that CD3ε+ T cells are involved in nutritional immune responses.
Collapse
Affiliation(s)
- Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Laura Guerra
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Maria Cristina Belardinelli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Tania De Wolf
- INVE Aquaculture Research Center, Dendermond, Belgium
| | - Ana Couto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Paolo Roberto Saraceni
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Andrea Miccoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
6
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
7
|
Miyazawa R, Murata N, Matsuura Y, Shibasaki Y, Yabu T, Nakanishi T. Peculiar Expression of CD3-Epsilon in Kidney of Ginbuna Crucian Carp. Front Immunol 2018; 9:1321. [PMID: 29951063 PMCID: PMC6008321 DOI: 10.3389/fimmu.2018.01321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
TCR/CD3 complex is composed of the disulfide-linked TCR-αβ heterodimer that recognizes the antigen as a peptide presented by the MHC, and non-covalently paired CD3γε- and δε-chains together with disulfide-linked ζ-chain homodimers. The CD3 chains play key roles in T cell development and T cell activation. In the present study, we found nor or extremely lower expression of CD3ε in head- and trunk-kidney lymphocytes by flow cytometric analysis, while CD3ε was expressed at the normal level in lymphocytes from thymus, spleen, intestine, gill, and peripheral blood. Furthermore, CD4-1+ and CD8α+ T cells from kidney express Zap-70, but not CD3ε, while the T cells from other tissues express both Zap-70 and CD3ε, although expression of CD3ε was low. Quantitative analysis of mRNA expression revealed that the expression level of T cell-related genes including tcrb, cd3ε, zap-70, and lck in CD4-1+ and CD8α+ T cells was not different between kidney and spleen. Western blot analysis showed that CD3ε band was detected in the cell lysates of spleen but not kidney. To be interested, CD3ε-positive cells greatly increased after 24 h in in vitro culture of kidney leukocytes. Furthermore, expression of CD3ε in both transferred kidney and spleen leukocytes was not detected or very low in kidney, while both leukocytes expressed CD3ε at normal level in spleen when kidney and spleen leukocytes were injected into the isogeneic recipient. Lower expression of CD3ε was also found in kidney T lymphocytes of goldfish and carp. These results indicate that kidney lymphocytes express no or lower level of CD3ε protein in the kidney, although the mRNA of the gene was expressed. Here, we discuss this phenomenon from the point of function of kidney as reservoir for T lymphocytes in teleost, which lacks lymph node and bone marrow.
Collapse
Affiliation(s)
| | - Norifumi Murata
- Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Yuta Matsuura
- Research Center for Fish Diseases, National Research Institute of Aquaculture, Minami-ise, Japan
| | - Yasuhiro Shibasaki
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Takeshi Yabu
- Department of Applied Biological Science, Nihon University, Fujisawa, Japan
| | | |
Collapse
|
8
|
Tang X, Qin Y, Sheng X, Xing J, Zhan W. Characterization of CD3 + T lymphocytes of Japanese flounder (Paralichthys olivaceus) and its response after immunization with formalin-inactivated Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2017; 63:220-227. [PMID: 28232197 DOI: 10.1016/j.fsi.2017.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
The CD3 complex is an important cell surface marker of T lymphocytes and essential for T lymphocytes activation in higher vertebrates. In the present work, the CD3ε of Japanese flounder (Paralichthys olivaceus) was recombinantly expressed in E. coli BL21 (DE3) and used as an immunogen to produce mouse anti-rCD3ε polyclonal antibodies, which could specifically recognize a 20 kDa protein in the membrane proteins of peripheral blood lymphocytes (PBL) of Japanese flounder by co-immunoprecipitation assay. Mass spectrometric analysis showed the 20 kDa protein was the native CD3ε of Japanese flounder. Both the flow cytometric analysis and double immunofluorescence assay (DIFA) showed that the CD3+ T lymphocytes could be identified specifically by the mouse anti-rCD3ε polyclonal antibodies, which didn't cross-react with the sIgM+ lymphocytes. Immunohistochemistry showed that CD3+ T lymphocytes could be detected in gill, skin, stomach, intestine, spleen, liver, head-kidney and mid-kidney. Flow cytometric analysis showed the percentages of CD3+ T lymphocytes in the PBL, spleen lymphocytes (SL) and head-kidney lymphocytes (HKL) of Japanese flounder increased rapidly after immunization with formalin-inactivated Edwardsiella tarda, and reached their peak levels at 5th day with 12.6%, 9.7% and 8.7%, respectively, and then decreased gradually. These results suggested that CD3+ T lymphocytes play important roles in mucosal and cell-mediated immunity, and the results would deepen our understanding on the roles of teleost T lymphocytes in the immune response.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yinghui Qin
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266071, PR China.
| |
Collapse
|
9
|
Han YL, Hou CC, Du C, Zhu JQ. Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2017; 60:299-310. [PMID: 27908666 DOI: 10.1016/j.fsi.2016.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
Heat shock proteins 70 (HSP70s) are molecular chaperones that aid in protection against environmental stress. In this study, we cloned and characterized five members of the HSP70 family (designated as HSPa1a, HSC70-1, HSC70-2, HSPa4 and HSPa14) from Lateolabrax maculatus using rapid amplification cDNA ends (RACE). Multiple sequence alignment and structural analysis revealed that all members of the HSP70 family had a conserved domain architecture, with some distinguishing features unique to each HSP70. Quantitative real-time (qPCR) analysis revealed that all members of the HSP70 family were ubiquitously and differentially expressed in all major types of tissues, including testicular tissue. This indicated that HSP70s have vital and conserved biological functions, and may also function in the development of germinal cells. The expression of mRNA of the five HSP70 family members mRNA expression was significantly increased in the head kidney, intestine and gill after Vibrio harveyi challenge, suggesting that HSP70s play an important role in the immune response.
Collapse
Affiliation(s)
- Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China.
| |
Collapse
|
10
|
Marozzi C, Bertoni F, Randelli E, Buonocore F, Timperio AM, Scapigliati G. A monoclonal antibody for the CD45 receptor in the teleost fish Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:342-353. [PMID: 22504161 DOI: 10.1016/j.dci.2012.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 05/31/2023]
Abstract
The CD45 tyrosine phosphatase plays an important role in regulating T lymphocyte activation in vertebrate species. In this study we describe some molecular and functional features of the CD45 receptor molecule from the European sea bass Dicentrarchus labrax. Following immunization with fixed sea bass thymocytes, we obtained a murine monoclonal antibody (mAb) able to stain fish leucocytes both alive, by immunofluorescence of thymus and mucosal tissues, and fixed, by in situ immunohistochemistry of tissue sections. The selected IgG(2) mAb (DLT22) was able to recognise by western blots polypeptides mainly at 180 kDa and 130 kDa in thymus, spleen, intestine and gill leucocyte. Accordingly, a 130 kDa polypeptide immunoprecipitated with DLT22 from thymocytes and analysed by nano-RP-HPLC-ESI-MS/MS, gave peptide sequences homologous to Fugu CD45, that were employed for the homology cloning of a partial sea bass CD45 cDNA sequence. This cDNA sequence was employed to measure by quantitative PCR the transcription of the CD45 gene both in unstimulated and in in vitro stimulated leucocytes, showing that the gene transcription was specifically modulated by LPS, ConA, PHA, IL-1, and poly I:C. When splenocytes were stimulated in vitro with ConA and PHA, a cell proliferation paralleled by an increase of DLT22-positive leucocytes was also observed. These data indicate that the DLT22 mAb recognizes a putative CD45 molecule in sea bass, documenting the presence of CD45-like developing lymphocytes in thymus and CD45-associated functional stages of lymphocytes in this species, thus dating back to teleost fish the functional activities of these cell populations in vertebrates.
Collapse
Affiliation(s)
- Catia Marozzi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|