1
|
Recombinant Alpha-1 Antitrypsin as Dry Powder for Pulmonary Administration: A Formulative Proof of Concept. Pharmaceutics 2022; 14:pharmaceutics14122754. [PMID: 36559248 PMCID: PMC9784676 DOI: 10.3390/pharmaceutics14122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency is a genetic disorder associated with pulmonary emphysema and bronchiectasis. Its management currently consists of weekly infusions of plasma-purified human AAT, which poses several issues regarding plasma supplies, possible pathogen transmission, purification costs, and parenteral administration. Here, we investigated an alternative administration strategy for augmentation therapy by combining recombinant expression of AAT in bacteria and the production of a respirable powder by spray drying. The same formulation approach was then applied to plasma-derived AAT for comparison. Purified, active, and endotoxin-free recombinant AAT was produced at high yields and formulated using L-leucine and mannitol as excipients after identifying compromise conditions for protein activity and good aerodynamic performances. An oxygen-free atmosphere, both during formulation and powder storage, slowed down methionine-specific oxidation and AAT inactivation. This work is the first peer-reviewed report of AAT formulated as a dry powder, which could represent an alternative to current treatments.
Collapse
|
2
|
Brooks D, Barr LC, Wiscombe S, McAuley DF, Simpson AJ, Rostron AJ. Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation. Eur Respir J 2020; 56:13993003.01298-2019. [PMID: 32299854 DOI: 10.1183/13993003.01298-2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a key feature in the pathogenesis of sepsis and acute respiratory distress syndrome (ARDS). Sepsis and ARDS continue to be associated with high mortality. A key contributory factor is the rudimentary understanding of the early events in pulmonary and systemic inflammation in humans, which are difficult to study in clinical practice, as they precede the patient's presentation to medical services. Lipopolysaccharide (LPS), a constituent of the outer membrane of Gram-negative bacteria, is a trigger of inflammation and the dysregulated host response in sepsis. Human LPS models deliver a small quantity of LPS to healthy volunteers, triggering an inflammatory response and providing a window to study early inflammation in humans. This allows biological/mechanistic insights to be made and new therapeutic strategies to be tested in a controlled, reproducible environment from a defined point in time. We review the use of human LPS models, focussing on the underlying mechanistic insights that have been gained by studying the response to intravenous and pulmonary LPS challenge. We discuss variables that may influence the response to LPS before considering factors that should be considered when designing future human LPS studies.
Collapse
Affiliation(s)
- Daniel Brooks
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Laura C Barr
- Dept of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sarah Wiscombe
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel F McAuley
- School of Medicine, Dentistry and Biomedical Sciences, Institute for Health Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Anthony J Rostron
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
3
|
Viegas C, Caetano LA, Cox J, Korkalainen M, Haines SR, Dannemiller KC, Viegas S, Reponen T. The effects of waste sorting in environmental microbiome, THP-1 cell viability and inflammatory responses. ENVIRONMENTAL RESEARCH 2020; 185:109450. [PMID: 32244107 DOI: 10.1016/j.envres.2020.109450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Workers in the waste sorting industry are exposed to diverse bioaerosols. Characterization of these bioaerosols is necessary to more accurately assess the health risks of exposure. The use of high-throughput DNA sequencing for improved analysis of microbial composition of bioaerosols, in combination with their in vitro study in relevant cell cultures, represents an important opportunity to find answers on the biological effects of bioaerosols. This study aimed to characterize by high-throughput sequencing the biodiversity present in complex aerosol mixtures retained in forklift air conditioning filters of a waste-sorting industry and its effects on cytotoxicity and secretion of proinflammatory cytokines in vitro using human macrophages derived from monocytic THP-1 cells. Seventeen filters from the filtration system from forklifts operating in one waste sorting facility and one control filter (similar filter without prior use) were analyzed using high-throughput sequencing and toxicological tests in vitro. A trend of positive correlation was seen between the number of bacterial and fungal OTUs (r = 0.47, p = 0.06). Seven filters (39%) exhibited low or moderate cytotoxicity (p < 0.05). The highest cytotoxic responses had a reduction in cell viability between 17 and 22%. Filter samples evoked proinflammatory responses, especially the production of TNFα. No significant correlation was found between fungal richness and inflammatory responses in vitro. The data obtained stress the need of thorough exposure assessment in waste-sorting industry and to take immunomodulatory properties into consideration for bioaerosols hazard characterization. The broad spectrum of microbial contamination detected in this study demonstrates that adequate monitoring of bioaerosol exposure is necessary to evaluate and minimize risks. The combined techniques can support the implementation of effective environmental monitoring programs of public and occupational health importance.
Collapse
Affiliation(s)
- C Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - L A Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 649-003, Lisbon, Portugal
| | - J Cox
- Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH, 45242, USA
| | - M Korkalainen
- Finnish Institute for Health and Welfare (THL), Environmental Health, P.O. Box 95, FIN-70701, Kuopio, Finland
| | - S R Haines
- Department of Civil, Environmental, and Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - K C Dannemiller
- Department of Civil, Environmental, and Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - S Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal
| | - T Reponen
- Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH, 45242, USA
| |
Collapse
|
4
|
Morakinyo OM, Mokgobu MI, Mukhola MS, Godobedzha T. Biological Composition of Respirable Particulate Matter in an Industrial Vicinity in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E629. [PMID: 30795513 PMCID: PMC6406656 DOI: 10.3390/ijerph16040629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/15/2023]
Abstract
There is a growing concern that exposure to particulate matter of aerodynamic diameter of less than 2.5 µm (PM2.5) with biological composition (bioaerosols) may play a key role in the prevalence of adverse health outcomes in humans. This study determined the bacterial and fungal concentrations in PM2.5 and their inhalation health risks in an industrial vicinity in South Africa. Samples of PM2.5 collected on a 47-mm glass fiber filter during winter and summer months were analysed for bacterial and fungal content using standard methods. The health risks from inhalation of bioaerosols were done by estimating the age-specific dose rate. The concentration of bacteria (168⁻378 CFU/m³) was higher than fungi (58⁻155 CFU/m³). Bacterial and fungal concentrations in PM2.5 were lower in winter than in the summer season. Bacteria identified in summer were similar to those identified in winter: Staphylococcus sp., Bacillus sp., Micrococcus sp., Flavobacterium sp., Klebsiella sp. and Pseudomonas sp. Moreover, the fungal floras identified include Cladosporium spp., Aspergillus spp., Penicillium spp., Fusarium spp. and Alternaria spp. Children inhaled a higher dose of bacterial and fungal aerosols than adults. Bacteria and fungi are part of the bioaerosol components of PM2.5. Bioaerosol exposure may present additional health risks for children.
Collapse
Affiliation(s)
- Oyewale Mayowa Morakinyo
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria.
| | - Matlou Ingrid Mokgobu
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Murembiwa Stanley Mukhola
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Tshifhiwa Godobedzha
- Air Quality Management, Environment and Agriculture Management Department, City of Tshwane Municipality Private Bag 440, Pretoria 0001, South Africa.
| |
Collapse
|
5
|
Sources of Airborne Endotoxins in Ambient Air and Exposure of Nearby Communities—A Review. ATMOSPHERE 2018. [DOI: 10.3390/atmos9100375] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endotoxin is a bioaerosol component that is known to cause respiratory effects in exposed populations. To date, most research focused on occupational exposure, whilst much less is known about the impact of emissions from industrial operations on downwind endotoxin concentrations. A review of the literature was undertaken, identifying studies that reported endotoxin concentrations in both ambient environments and around sources with high endotoxin emissions. Ambient endotoxin concentrations in both rural and urban areas are generally below 10 endotoxin units (EU) m−3; however, around significant sources such as compost facilities, farms, and wastewater treatment plants, endotoxin concentrations regularly exceeded 100 EU m−3. However, this is affected by a range of factors including sampling approach, equipment, and duration. Reported downwind measurements of endotoxin demonstrate that endotoxin concentrations can remain above upwind concentrations. The evaluation of reported data is complicated due to a wide range of different parameters including sampling approaches, temperature, and site activity, demonstrating the need for a standardised methodology and improved guidance. Thorough characterisation of ambient endotoxin levels and modelling of endotoxin from pollution sources is needed to help inform future policy and support a robust health-based risk assessment process.
Collapse
|
6
|
Park WM, Park DU, Hwang SH. Factors affecting ambient endotoxin and particulate matter concentrations around air vents of subway stations in South Korea. CHEMOSPHERE 2018; 205:45-51. [PMID: 29679788 DOI: 10.1016/j.chemosphere.2018.04.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Levels of airborne endotoxins and particulate matter less than 10 μm and 2.5 μm in diameter (PM) were measured in the air vents of subway stations in Seoul, South Korea, and factors affecting both pollutants were analyzed. The measurements were completed from March 2016 to February 2017 for eight air vents situated at the ground level around the subway stations. A total of 166 air samples were collected and analyzed using the kinetic limulus amebocyte lysate assay. Endotoxin levels ranged from not detected to 1.986 EU m-3, with a mean of 0.227 EU m-3. The results showed significantly different PM levels from the measurements reported by AIRKOREA as part of the comprehensive air quality index. This can be attributed to different sampling sites in the same area. Endotoxin levels tended to be higher in fall compared to summer. Airborne bacteria levels showed a pattern similar to the endotoxin levels, but no significant association was reported between them. The levels of endotoxins around air vents with a glass cover and streets that allowed smoking were significantly higher than those not containing a walled barrier and streets in which smoking was prohibited. Multivariate regression analysis showed that the factors affecting endotoxin levels comprised air vents with a glass cover (coefficient = 0.106, p = 0.014) and season (coefficient = 0.062, p < 0.0001). Therefore, installing barriers on the air vents and prohibiting smoking in streets to which the vents open may be effective ways to lessen exposure to airborne endotoxin levels around air vents.
Collapse
Affiliation(s)
- Wha Me Park
- The Institute for Occupational Health, Yonsei University College of Medicine, South Korea; Graduate School of Public Health, Yonsei University, South Korea
| | - Dong Uk Park
- Department of Environmental Health, Korea National Open University, South Korea
| | - Sung Ho Hwang
- National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea.
| |
Collapse
|
7
|
Lexmond AJ, Singh D, Frijlink HW, Clarke GW, Page CP, Forbes B, van den Berge M. Realising the potential of various inhaled airway challenge agents through improved delivery to the lungs. Pulm Pharmacol Ther 2018; 49:27-35. [PMID: 29331645 DOI: 10.1016/j.pupt.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Inhaled airway challenges provoke bronchoconstriction in susceptible subjects and are a pivotal tool in the diagnosis and monitoring of obstructive lung diseases, both in the clinic and in the development of new respiratory medicines. This article reviews the main challenge agents that are in use today (methacholine, mannitol, adenosine, allergens, endotoxin) and emphasises the importance of controlling how these agents are administered. There is a danger that the optimal value of these challenge agents may not be realised due to suboptimal inhaled delivery; thus considerations for effective and reproducible challenge delivery are provided. This article seeks to increase awareness of the importance of precise delivery of inhaled agents used to challenge the airways for diagnosis and research, and is intended as a stepping stone towards much-needed standardisation and harmonisation in the administration of inhaled airway challenge agents.
Collapse
Affiliation(s)
- Anne J Lexmond
- King's College London, Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, United Kingdom; University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Dave Singh
- University of Manchester, Medicines Evaluation Unit, University Hospital of South Manchester Foundation Trust, The Langley Building, Southmoor Road, Wythenshawe, Manchester M23 9QZ, United Kingdom
| | - Henderik W Frijlink
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Graham W Clarke
- hVIVO, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London E1 2AX, United Kingdom; Imperial College, Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Guy Scadding Building, Cale Street, London SW3 6LY, United Kingdom
| | - Clive P Page
- King's College London, Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Ben Forbes
- King's College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Hanzeplein 1, 9700 RB Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
8
|
Viegas S, Caetano LA, Korkalainen M, Faria T, Pacífico C, Carolino E, Quintal Gomes A, Viegas C. Cytotoxic and Inflammatory Potential of Air Samples from Occupational Settings with Exposure to Organic Dust. TOXICS 2017; 5:E8. [PMID: 29051440 PMCID: PMC5606674 DOI: 10.3390/toxics5010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/27/2022]
Abstract
Organic dust and related microbial exposures are the main inducers of several respiratory symptoms. Occupational exposure to organic dust is very common and has been reported in diverse settings. In vitro tests using relevant cell cultures can be very useful for characterizing the toxicity of complex mixtures present in the air of occupational environments such as organic dust. In this study, the cell viability and the inflammatory response, as measured by the production of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-1 β (IL-1β), were determined in human macrophages derived from THP-1 monocytic cells. These cells were exposed to air samples from five occupational settings known to possess high levels of contamination of organic dust: poultry and swine feed industries, waste sorting, poultry production and slaughterhouses. Additionally, fungi and particle contamination of those settings was studied to better characterize the organic dust composition. All air samples collected from the assessed workplaces caused both cytotoxic and pro-inflammatory effects. The highest responses were observed in the feed industry, particularly in swine feed production. This study emphasizes the importance of measuring the organic dust/mixture effects in occupational settings and suggests that differences in the organic dust content may result in differences in health effects for exposed workers.
Collapse
Affiliation(s)
- Susana Viegas
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| | - Liliana Aranha Caetano
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 649-003 Lisbon, Portugal.
| | - Merja Korkalainen
- National Institute for Health and Welfare (THL), Department of Health Security, Chemicals and Health Unit, P.O. Box 95, FIN-70701 Kuopio, Finland.
| | - Tiago Faria
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
| | - Cátia Pacífico
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
| | - Elisabete Carolino
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
| | - Anita Quintal Gomes
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Institute of Molecular Medicine, Faculty of Medicine. University of Lisbon, 649-028 Lisbon, Portugal.
| | - Carla Viegas
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| |
Collapse
|
9
|
Morakinyo OM, Mokgobu MI, Mukhola MS, Hunter RP. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060592. [PMID: 27314370 PMCID: PMC4924049 DOI: 10.3390/ijerph13060592] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 02/04/2023]
Abstract
Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.
Collapse
Affiliation(s)
- Oyewale Mayowa Morakinyo
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Matlou Ingrid Mokgobu
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Murembiwa Stanley Mukhola
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Raymond Paul Hunter
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
10
|
Hwang SH, Park DJ, Park WM, Park DU, Ahn JK, Yoon CS. Seasonal variation in airborne endotoxin levels in indoor environments with different micro-environmental factors in Seoul, South Korea. ENVIRONMENTAL RESEARCH 2016; 145:101-108. [PMID: 26656510 DOI: 10.1016/j.envres.2015.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
This study evaluated the variation over a year in airborne endotoxin levels in the indoor environment of five university laboratories in Seoul, South Korea, and examined the micro-environmental factors that influenced endotoxin levels. These included temperature, relative humidity, CO2, CO, illumination, and wind velocity. A total of 174 air samples were collected and analyzed using the kinetic limulus amebocyte lysate assay. Endotoxin levels ranged from <0.001 to 8.90EU/m(3), with an overall geometric mean of 0.240EU/m(3). Endotoxin levels showed significantly negative correlation with temperature (r=-0.529, p<0.001), CO2 (r=-0.213, p<0.001) and illumination (r=-0.538, p<0.001). Endotoxin levels tended to be higher in winter. Endotoxin levels in laboratories with rabbits were significantly higher than those of laboratories with mice. Multivariate regression analysis showed that the environmental factors affecting endotoxin levels were temperature (coefficient=-0.388, p<0.001) and illumination (coefficient=-0.370, p<0.001). Strategies aimed at reducing airborne endotoxin levels in the indoor environments may be most effective if they focus on illumination.
Collapse
Affiliation(s)
- Sung Ho Hwang
- National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea
| | - Dong Jin Park
- Occupational Safety and Health Research, Ulsan, South Korea
| | - Wha Me Park
- Institute of Environmental and Industrial Medicine, Hanyang University, Seoul, South Korea
| | - Dong Uk Park
- Department of Environmental Health, Korea National Open University, Seoul, South Korea
| | - Jae Kyoung Ahn
- Research Institute of Standards for Environmental Testing, Seoul, South Korea
| | - Chung Sik Yoon
- Institute of Health and Environment, School of Public Health, Seoul National University, Gwanak ,1 Gwanak-ro, Seoul, South Korea.
| |
Collapse
|
11
|
Affiliation(s)
- Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Jin-Young Min
- Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Min KB, Min JY. Exposure to household endotoxin and total and allergen-specific IgE in the US population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:148-154. [PMID: 25656231 DOI: 10.1016/j.envpol.2014.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/01/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Although endotoxin has strong pro-inflammatory properties, endotoxin-allergy relationship in adults and children have been inconsistent. OBJECTIVES We investigated the association between household endotoxin levels and total immunoglobulin E (IgE) or specific IgE in the US general population, classified into three age ranges: children/adolescent, adults, and older adults. METHODS We analyzed the 2005-2006 National Health and Nutrition Examination Surveys. A total of 5220 participants for whom serum IgE and household endotoxin data were available was included in the analyses. RESULTS Exposure to endotoxin reduced the risk for allergic sensitization, especially in specific IgE to plants (OR in Quartile 3 = 0.58; 95% CI = 0.44-0.76) and pets (OR in Quartile 3 = 0.62; 95% CI = 0.41-0.92), for children/adolescents. In contrast, the risk among adults and older adults increased with increasing endotoxin levels. CONCLUSIONS Our findings suggest that the effect of endotoxin on allergic reaction is likely to depend on age.
Collapse
Affiliation(s)
- Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Min
- Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Zielen S, Trischler J, Schubert R. Lipopolysaccharide challenge: immunological effects and safety in humans. Expert Rev Clin Immunol 2015; 11:409-18. [DOI: 10.1586/1744666x.2015.1012158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
A role for mitogen kinase kinase 3 in pulmonary inflammation validated from a proteomic approach. Pulm Pharmacol Ther 2014; 27:156-63. [PMID: 24480516 DOI: 10.1016/j.pupt.2014.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/22/2022]
Abstract
Proteomics is a powerful tool to ascertain which proteins are differentially expressed in the context of disease. We have used this approach on inflammatory cells obtained from patients with asthma to ascertain whether novel drugs targets could be illuminated and to investigate the role of any such target in a range of in vitro and in vivo models of inflammation. A proteomic study was undertaken using peripheral blood mononuclear cells from mild asthmatic subjects compared with healthy subjects. The analysis revealed an increased expression of the intracellular kinase, mitogen activated protein kinase (MKK3), and the function of this protein was investigated further in preclinical models of inflammation using MKK3 knockout mice. We describe a 3.65 fold increase in the expression of MKK3 in CD8(+) T lymphocytes obtained from subjects with asthma compared with healthy subjects using a proteomic approach which we have confirmed in CD8(+), but not in CD4(+) T lymphocytes or human bronchial epithelial cells from asthmatic patients using a Western blot technique. In wild type mice, bacterial lipopolysaccharide (LPS) caused a significant increase in MKK3 expression and significantly reduced airway neutrophilia in MKK3(-/-) mice (median, 25, 75% percentile; wild/LPS; 5.3 (0.7-9.9) × 10(5) cells/mL vs MKK3(-/-)/LPS; 0 (0-1.9) × 10(5) cells/mL, P < 0.05). In contrast, eosinophilia in sensitized wild type mice challenged with allergen (0.5 (0.16-0.65) × 10(5) cells/mL) was significantly increased in MKK3(-/-) mice (2.2 (0.9-3.5) × 10(5) cells/mL, P < 0.05). Our results suggest that asthma is associated with MKK3 over-expression in CD8(+) cells. We have also demonstrated that MKK3 may be critical for airway neutrophilia, but not eosinophilia, suggesting that this may be a target worthy of further consideration in the context of diseases associated with neutrophil activation such as severe asthma and COPD.
Collapse
|
15
|
Leaker BR, Barnes PJ, O'Connor B. Inhibition of LPS-induced airway neutrophilic inflammation in healthy volunteers with an oral CXCR2 antagonist. Respir Res 2013; 14:137. [PMID: 24341382 PMCID: PMC3867427 DOI: 10.1186/1465-9921-14-137] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/12/2013] [Indexed: 01/21/2023] Open
Abstract
Background Inhaled lipopolysaccharide (LPS) induces a dose-dependent, acute neutrophilic response in the airways of healthy volunteers that can be quantified in induced sputum. Chemokines, such as CXCL1 and CXCL8, play an important role in neutrophilic inflammation in the lung through the activation of CXCR2 and small molecule antagonists of these receptors have now been developed. We investigated the effect of AZD8309, a CXCR2 antagonist, compared with placebo on LPS-induced inflammation measured in sputum of healthy volunteers. Methods Twenty healthy subjects were randomized in a double-blind placebo-controlled, cross-over study. AZD8309 (300 mg) or placebo was dosed twice daily orally for 3 days prior to challenge with inhaled LPS and induced sputum was collected 6 h later. Results Treatment with AZD8309 showed a mean 77% reduction in total sputum cells (p < 0.001) and 79% reduction in sputum neutrophils (p < 0.05) compared with placebo after LPS challenge. There was also a reduction in neutrophil elastase activity (p < 0.05) and CXCL1 (p < 0.05) and trends for reductions in sputum macrophages (47%), leukotriene B4 (39%) and CXCL8 (52%). Conclusions AZD8309 inhibited LPS-induced inflammation measured in induced sputum of normal volunteers, indicating that this treatment may be useful in the treatment of neutrophilic diseases of the airways, such as COPD, severe asthma and cystic fibrosis. Trial registration NCT00860821.
Collapse
Affiliation(s)
- Brian R Leaker
- Respiratory Clinical Trials Ltd, 20 Queen Anne Street, London W1G 8HU, UK.
| | | | | |
Collapse
|
16
|
Michel O, Doyen V, Leroy B, Bopp B, Dinh DHP, Corazza F, Wattiez R. Expression of calgranulin A/B heterodimer after acute inhalation of endotoxin: proteomic approach and validation. BMC Pulm Med 2013; 13:65. [PMID: 24237763 PMCID: PMC4225611 DOI: 10.1186/1471-2466-13-65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 11/11/2013] [Indexed: 12/04/2022] Open
Abstract
Background The acute inhalation of endotoxin mimicks several aspects of the inflammation related to chronic obstructive pulmonary disease (COPD). The aim of the current study was to identify and to validate biomarkers of endotoxin-induced airways’ inflammation. Methods The cellular count in the induced-sputum, was measured before and after an inhalation of 20 mcg endotoxin, in 8 healthy volunteers. A proteomic analysis was applied to identify the more relevant proteins expression, before measurement by ELISA. The amplitude and the repeatability of the markers were evaluated among another population of 12 healthy subjects. Results There was a significant rise of viable cells (p <0.01), macrophages (p <0.05), and neutrophils (p <0.02) 24 hours after endotoxin inhalation, and of neutrophils (p <0.02) and lymphocytes (p <0.05) at 6 hours. Among the highest amplitude responses, the two dimensional electrophoretic separation shown proteolytic activity and overexpression of protein spots. By MALDI-TOF mass spectrometry, the last were identified as calgranulin A and B. The expression of the bioactive A/B heterodimeric complex was confirmed by ELISA both in the sputum (p <0.01) and at the blood level (p <0.01). The intra-subject repeatability of the sputum calgranulin A/B was highly significant (p <0.0001). Conclusion In healthy subjects, the inhalation of endotoxin induced expression of sputum calgranulin A/B that could be a biomarker of the endotoxin response/exposure.
Collapse
Affiliation(s)
- Olivier Michel
- Clinic of Immuno-allergology, CHU Brugmann (ULB), pl Van Gehuchten 4, B-1020 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
17
|
Janssen O, Schaumann F, Holz O, Lavae-Mokhtari B, Welker L, Winkler C, Biller H, Krug N, Hohlfeld JM. Low-dose endotoxin inhalation in healthy volunteers--a challenge model for early clinical drug development. BMC Pulm Med 2013; 13:19. [PMID: 23537365 PMCID: PMC3635929 DOI: 10.1186/1471-2466-13-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inhalation of endotoxin (LPS) induces a predominantly neutrophilic airway inflammation and has been used as model to test the anti-inflammatory activity of novel drugs. In the past, a dose exceeding 15-50 μg was generally needed to induce a sufficient inflammatory response. For human studies, regulatory authorities in some countries now request the use of GMP-grade LPS, which is of limited availability. It was therefore the aim of this study to test the effect and reproducibility of a low-dose LPS challenge (20,000 E.U.; 2 μg) using a flow- and volume-controlled inhalation technique to increase LPS deposition. METHODS Two to four weeks after a baseline sputum induction, 12 non-smoking healthy volunteers inhaled LPS on three occasions, separated by at least 4 weeks. To modulate the inflammatory effect of LPS, a 5-day PDE4 inhibitor (Roflumilast) treatment preceded the last challenge. Six hours after each LPS inhalation, sputum induction was performed. RESULTS The low-dose LPS inhalation was well tolerated and increased the mean percentage of sputum neutrophils from 25% to 72%. After the second LPS challenge, 62% neutrophils and an increased percentage of monocytes were observed. The LPS induced influx of neutrophils and the cumulative inflammatory response compared with baseline were reproducible. Treatment with Roflumilast for 5 days did not have a significant effect on sputum composition. CONCLUSION The controlled inhalation of 2 μg GMP-grade LPS is sufficient to induce a significant neutrophilic airway inflammation in healthy volunteers. Repeated low-dose LPS challenges potentially result in a small shift of the neutrophil/monocyte ratio; however, the cumulative response is reproducible, enabling the use of this model for "proof-of-concept" studies for anti-inflammatory compounds during early drug development.
Collapse
Affiliation(s)
- Ole Janssen
- Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van der Merwe R, Molfino NA. Challenge models to assess new therapies in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2012; 7:597-605. [PMID: 23055710 PMCID: PMC3459659 DOI: 10.2147/copd.s30664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality. Current therapies confer partial benefits either by incompletely improving airflow limitation or by reducing acute exacerbations, hence new therapies are desirable. In the absence of robust early predictors of clinical efficacy, the potential success of novel therapeutic agents in COPD will not entirely be known until the drugs enter relatively large and costly clinical trials. New predictive models in humans, and new study designs are being sought to allow for confirmation of pharmacodynamic and potentially clinically meaningful effects in early development. This review focuses on human challenge models with lipopolysaccharide endotoxin, ozone, and rhinovirus, in the early clinical development phases of novel therapeutic agents for the treatment and reduction of exacerbations in COPD.
Collapse
|
19
|
Doyen V, Kassengera Z, Dinh DHP, Michel O. Time course of endotoxin-induced airways' inflammation in healthy subjects. Inflammation 2012; 35:33-8. [PMID: 21207124 DOI: 10.1007/s10753-010-9286-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Few data are available on the kinetic of the airways' inflammation induced by inhaled endotoxin in a given subject. The purpose of this study was to evaluate in healthy subjects the time-related endotoxin-induced airways' inflammation. The cells counts from the induced-sputum were evaluated before, 6 and 24 h, and 7 days after an exposure to 20 mcg inhaled endotoxin, in eight pre-selected volunteers. To avoid interference of the induced-sputum procedure on the response to endotoxin, each time-point was evaluated in randomized order at 2-weeks interval after three separate inhalations of endotoxin. A significant rise of the relative number of lymphocytes (p<0.05) and polymorphonuclear neutrophils (PMN; p<0.02) and of the absolute number of PMN (p<0.05) occurring at 6 h, followed by an increase of the absolute number of the total viable cells (p<0.01), macrophages (p<0.001), neutrophils (p<0.01), and lymphocytes (p<0.05) at 24 h after endotoxin inhalation. The inflammatory response recovered totally after 7 days. In human beings, the inhalation of endotoxin induced a transient airway inflammation after 6 h, peaked at 24 h and recovered after 7 days. When repeated endotoxin inhalations are used as a model of inflammation, a wash-out period of at least 7 days should be applied between each exposure in each subject.
Collapse
Affiliation(s)
- Virginie Doyen
- Clinics of Immuno-allergology, CHU Brugmann, Université Libre de Bruxelles-ULB, pl Van Gehuchten, 4, 1020, Brussels, Belgium
| | | | | | | |
Collapse
|
20
|
Sun L, Adams AA, Page AE, Betancourt A, Horohov DW. The effect of environment on interferon-gamma production in neonatal foals. Vet Immunol Immunopathol 2011; 143:170-5. [DOI: 10.1016/j.vetimm.2011.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/19/2011] [Accepted: 06/20/2011] [Indexed: 11/29/2022]
|