1
|
Oakes JM, Amirav I, Sznitman J. Pediatric inhalation therapy and the aerodynamic rationale for age-based aerosol sizes. Expert Opin Drug Deliv 2023; 20:1037-1040. [PMID: 37127917 DOI: 10.1080/17425247.2023.2209314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Israel Amirav
- Department of Pediatrics, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Yoshioka K, Kurashina Y, Ogawa A, Asakura T. Effect of the area of a lithium niobate transducer on the efficiency of ultrasonic atomization driven by resonance vibration. ULTRASONICS SONOCHEMISTRY 2022; 86:106019. [PMID: 35504139 PMCID: PMC9065876 DOI: 10.1016/j.ultsonch.2022.106019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
In recent years, individual control of one's personal environment has been drawing increasing attention due to the growing interest in health care. Wearable devices are especially useful because of their controllability regardless of location. Humidity is one of the inevitable factors in the personal environment as a preventive against infectious diseases. Although atomization devices are commonly used as a method of humidity control, at present, there are no wearable humidity control devices. Vibration of a lithium niobate (LN) device in the thickness mode is a promising piezoelectric method for miniaturization of atomization devices for humidity control. To miniaturize the atomization device, the transducer size needs to be small not so much as to decrease the atomization efficiency. However, the effect of the device area on the atomization efficiency of LN at a size suitable for mounting in wearable devices has not been studied. Here, we conducted an atomization demonstration of LN devices with different sizes to evaluate particle size and atomization efficiency. Furthermore, to reveal the relationship between vibration behavior and atomization efficiency, resonance vibration in the MHz frequency band was evaluated by the finite element method and an impedance analyzer. The results showed that the peak size of water particles atomized by each device was in the range of 3.2 to 4.2 µm, which is smaller than particles produced by typical piezoelectric ceramics. Moreover, the best LN size for efficient atomization was found to be 8 mm × 10 mm among the five LN device sizes used in experiments. From the relationship between vibration behavior and atomization efficiency, the size of the transducer was suggested to affect the vibration mode. The obtained result suggested that the LN device is suitable for small wearable nebulizer devices.
Collapse
Affiliation(s)
- Keisuke Yoshioka
- School of Mechanical Engineering, Graduate School of Science and Technology, Tokyo University of Science, Japan
| | - Yuta Kurashina
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Japan; Department of Mechanical Systems Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, Japan.
| | - Ami Ogawa
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takumi Asakura
- School of Mechanical Engineering, Graduate School of Science and Technology, Tokyo University of Science, Japan.
| |
Collapse
|
3
|
Anderson N, Clarke S, von Ungern-Sternberg BS. Aerosolized drug delivery in awake and anesthetized children to treat bronchospasm. Paediatr Anaesth 2022; 32:156-166. [PMID: 34862993 DOI: 10.1111/pan.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
Bronchospasm is a common respiratory adverse event in pediatric anesthesia. First-line treatment commonly includes inhaled salbutamol. This review focuses on the current best practice to deliver aerosolized medications to awake as well as anesthetized pediatric patients and discusses the advantages and disadvantages of various administration techniques. Additionally, we detail the differences between various airway devices used in anesthesia. We highlight the unmet need for innovation of orally inhaled drug products to deliver aerosolized medications during pediatric respiratory critical events such as bronchospasm. It is therefore important that clinicians remain up to date with the best clinical practice for aerosolized drug delivery in order to prevent and efficiently treat pediatric patients experiencing life-threatening respiratory emergencies.
Collapse
Affiliation(s)
- Natalie Anderson
- Perioperative Medicine, Telethon Kids Institute, Nedlands, WA, Australia.,School of Population Health, Curtin University, Bentley, WA, Australia
| | - Sarah Clarke
- Emergency Department, Perth Children's Hospital, Perth, WA, Australia
| | - Britta S von Ungern-Sternberg
- Perioperative Medicine, Telethon Kids Institute, Nedlands, WA, Australia.,Department of Anaesthesia and Pain Management, Perth Children's Hospital, Perth, WA, Australia.,Division of Emergency Medicine, Anaesthesia and Pain Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Lemaitre J, Naninck T, Delache B, Creppy J, Huber P, Holzapfel M, Bouillier C, Contreras V, Martinon F, Kahlaoui N, Pascal Q, Tricot S, Ducancel F, Vecellio L, Le Grand R, Maisonnasse P. Non-human primate models of human respiratory infections. Mol Immunol 2021; 135:147-164. [PMID: 33895579 PMCID: PMC8062575 DOI: 10.1016/j.molimm.2021.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
Respiratory pathogens represent a great burden for humanity and a potential source of new pandemics, as illustrated by the recent emergence of coronavirus disease 2019 (COVID-19). In recent decades, biotechnological advances have led to the development of numerous innovative therapeutic molecules and vaccine immunogens. However, we still lack effective treatments and vaccines against many respiratory pathogens. More than ever, there is a need for a fast, predictive, preclinical pipeline, to keep pace with emerging diseases. Animal models are key for the preclinical development of disease management strategies. The predictive value of these models depends on their ability to reproduce the features of the human disease, the mode of transmission of the infectious agent and the availability of technologies for monitoring infection. This review focuses on the use of non-human primates as relevant preclinical models for the development of prevention and treatment for human respiratory infections.
Collapse
Affiliation(s)
- Julien Lemaitre
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Thibaut Naninck
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Benoît Delache
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Justina Creppy
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France; Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Philippe Huber
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Marion Holzapfel
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Camille Bouillier
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Vanessa Contreras
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frédéric Martinon
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Quentin Pascal
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sabine Tricot
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frédéric Ducancel
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Laurent Vecellio
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France; Plateforme Scientifique et Technique Animaleries (PST-A), Université de Tours, Tours, France
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Pauline Maisonnasse
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
5
|
Corcoran TE. Measurements of deposited aerosol dose in infants and small children. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:595. [PMID: 33987293 PMCID: PMC8105848 DOI: 10.21037/atm-20-2045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/19/2020] [Indexed: 11/06/2022]
Abstract
Pediatric patients are very dependent on inhaled aerosol medications. There are significant differences in how these aerosols deposit in the lungs of children vs. adults that may affect the efficacy of the therapies. Inefficient aerosol delivery to children, caused by factors such as high mouth and throat deposition during oral inhalation, significant losses within adjunct devices such as masks, and high rates of nasal deposition during cannula delivery, can lead to dosing that is difficult to control. Here we discuss the methods, such as deposition scintigraphy, that are used to assess inhaled dose in vivo and review previous studies where these techniques have been applied to measure dosing in children. This includes studies of nebulizers and metered dose inhalers and delivery through adjuncts such as facemasks and nasal cannulas. We discuss the factors that can lead to inefficient inhaled drug delivery and high levels of mouth and throat deposition in children. Finally, we propose areas of innovation to improve inhaled drug delivery to this population. There is a need for child-specific technologies for inhaled drug delivery. This includes the use of smart devices that can guide pediatric breathing patterns and better engage children during treatments, the use of smaller aerosols which are less likely to deposit in the upper airways after inhalation, and the design of better nasal cannula interfaces for aerosol delivery to infants.
Collapse
Affiliation(s)
- Timothy E Corcoran
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Kwok PCL, Wallin M, Dolovich MB, Chan HK. Studies of Radioaerosol Deposition in the Respiratory Tract. Semin Nucl Med 2019; 49:62-70. [PMID: 30545519 DOI: 10.1053/j.semnuclmed.2018.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deposition of aerosols in the respiratory tract can be quantitatively and qualitatively studied by scintigraphy. The most commonly used radionuclide for this purpose is technetium-99m. The effects of various factors on particle deposition have been investigated by using radiolabeled aerosols in the past decade. Most of these studies were in vivo but some were in vitro or ex vivo. The factors examined include particle size, formulation, inhaler design, inhalation flowrate, body posture, and gravity. They have been shown to influence pulmonary deposition, nasal high flow nebulization, and intranasal delivery. A thorough understanding of the various factors is required for the advancement of respiratory-drug delivery. Scintigraphy is a powerful technique that can assist in this regard.
Collapse
Affiliation(s)
- Philip Chi Lip Kwok
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Martin Wallin
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Myrna B Dolovich
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Hak-Kim Chan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
Das P, Nof E, Amirav I, Kassinos SC, Sznitman J. Targeting inhaled aerosol delivery to upper airways in children: Insight from computational fluid dynamics (CFD). PLoS One 2018; 13:e0207711. [PMID: 30458054 PMCID: PMC6245749 DOI: 10.1371/journal.pone.0207711] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/03/2018] [Indexed: 11/28/2022] Open
Abstract
Despite the prevalence of inhalation therapy in the treatment of pediatric respiratory disorders, most prominently asthma, the fraction of inhaled drugs reaching the lungs for maximal efficacy remains adversely low. By and large drug delivery devices and their inhalation guidelines are typically derived from adult studies with child dosages adapted according to body weight. While it has long been recognized that physiological (e.g. airway sizes, breathing maneuvers) and physical transport (e.g. aerosol dynamics) characteristics are critical in governing deposition outcomes, such knowledge has yet to be extensively adapted to younger populations. Motivated by such shortcomings, the present work leverages in a first step in silico computational fluid dynamics (CFD) to explore opportunities for augmenting aerosol deposition in children based on respiratory physiological and physical transport determinants. Using an idealized, anatomically-faithful upper airway geometry, airflow and aerosol motion are simulated as a function of age, spanning a five year old to an adult. Breathing conditions mimic realistic age-specific inhalation maneuvers representative of Dry Powder Inhalers (DPI) and nebulizer inhalation. Our findings point to the existence of a single dimensionless curve governing deposition in the conductive airways via the dimensionless Stokes number (Stk). Most significantly, we uncover the existence of a distinct deposition peak irrespective of age. For the DPI simulations, this peak (∼ 80%) occurs at Stk ≈ 0.06 whereas for nebulizer simulations, the corresponding peak (∼ 45%) occurs in the range of Stk between 0.03-0.04. Such dimensionless findings hence translate to an optimal window of micron-sized aerosols that evolves with age and varies with inhalation device. The existence of such deposition optima advocates revisiting design guidelines for optimizing deposition outcomes in pediatric inhalation therapy.
Collapse
Affiliation(s)
- Prashant Das
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eliram Nof
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Israel Amirav
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Stavros C. Kassinos
- Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Shinta Devi NLP, Nurhaeni N, Hayati H. Effect of Audiovisual Distraction on Distress and Oxygenation Status in Children Receiving Aerosol Therapy. Compr Child Adolesc Nurs 2017; 40:14-21. [DOI: 10.1080/24694193.2017.1386966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Nani Nurhaeni
- Faculty of Nursing Universitas Indonesia, Jalan Bahder Djohan Campus, Depok, Indonesia
| | - Happy Hayati
- Faculty of Nursing Universitas Indonesia, Jalan Bahder Djohan Campus, Depok, Indonesia
| |
Collapse
|
9
|
Carrigy NB, Ruzycki CA, Golshahi L, Finlay WH. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation. J Aerosol Med Pulm Drug Deliv 2015; 27:149-69. [PMID: 24870701 DOI: 10.1089/jamp.2013.1075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Respiratory tract deposition models provide a useful method for optimizing the design and administration of inhaled pharmaceutical aerosols, and can be useful for estimating exposure risks to inhaled particulate matter. As aerosol must first pass through the extrathoracic region prior to reaching the lungs, deposition in this region plays an important role in both cases. Compared to adults, much less extrathoracic deposition data are available with pediatric subjects. Recently, progress in magnetic resonance imaging and computed tomography scans to develop pediatric extrathoracic airway replicas has facilitated addressing this issue. Indeed, the use of realistic replicas for benchtop inhaler testing is now relatively common during the development and in vitro evaluation of pediatric respiratory drug delivery devices. Recently, in vitro empirical modeling studies using a moderate number of these realistic replicas have related airway geometry, particle size, fluid properties, and flow rate to extrathoracic deposition. Idealized geometries provide a standardized platform for inhaler testing and exposure risk assessment and have been designed to mimic average in vitro deposition in infants and children by replicating representative average geometrical dimensions. In silico mathematical models have used morphometric data and aerosol physics to illustrate the relative importance of different deposition mechanisms on respiratory tract deposition. Computational fluid dynamics simulations allow for the quantification of local deposition patterns and an in-depth examination of aerosol behavior in the respiratory tract. Recent studies have used both in vitro and in silico deposition measurements in realistic pediatric airway geometries to some success. This article reviews the current understanding of pediatric in vitro and in silico deposition modeling via oral and nasal inhalation.
Collapse
Affiliation(s)
- Nicholas B Carrigy
- 1 Aerosol Research Laboratory of Alberta, Department of Mechanical Engineering, University of Alberta , Edmonton, Alberta, Canada T6G 2G8
| | | | | | | |
Collapse
|
10
|
Bousquet J, Bachert C, Bernstein J, Canonica GW, Carr W, Dahl R, Demoly P, Devillier P, Hellings P, Fokkens W, Klimek L, Lieberman P, Meltzer E, Price D, Ryan D, Wahn U. Advances in pharmacotherapy for the treatment of allergic rhinitis; MP29-02 (a novel formulation of azelastine hydrochloride and fluticasone propionate in an advanced delivery system) fills the gaps. Expert Opin Pharmacother 2015; 16:913-28. [PMID: 25747125 DOI: 10.1517/14656566.2015.1020789] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Effective pharmacologic treatment exists for most patients suffering from allergic rhinitis (AR). However, both in clinical trials and in real-life studies, many patients are dissatisfied with treatment. Physicians often use multiple therapies, in an attempt to improve symptom control, often with limited evidence of success. Novel treatment options are needed and must consider unmet medical needs. AREAS COVERED This article reviews the clinical data for a new AR treatment. MP29-02 (Dymista®, Meda, Solna, Sweden) contains azelastine hydrochloride (AZE) and fluticasone propionate (FP), in a novel formulation and delivered in an improved device as a single nasal spray. It has shown superior efficacy in AR patients than either commercially available AZE or FP monotherapy for both nasal and ocular symptom relief, regardless of disease severity. MP29-02 also provided more effective and rapid symptom relief than either AZE or FP monotherapy delivered in the MP29-02 formulation and device. However, the effect was less than that observed versus commercial comparators, suggesting the impact of formulation and device on clinical efficacy. EXPERT OPINION MP29-02 simplifies AR management, surpassing the efficacy of gold standard treatment, intranasal corticosteroids (INS), for the first time. It is indicated for the treatment of moderate-to-severe seasonal allergic rhinitis and perennial allergic rhinitis when monotherapy with either intranasal antihistamine or INS is NOT considered sufficient. Most patients present with moderate/severe disease, with evidence of current or previous treatment insufficiency. MP29-02 should be the treatment of choice for these patients.
Collapse
Affiliation(s)
- Jean Bousquet
- Hopital Arnaud de Villeneuve University Hospital and Inserm , Montpellier CSP1018 , France +33 467336105 ; +33 467416702 ;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Infancy is a time of marked and rapid changes in respiratory tract development. Infants (0-1 year of age) and young children (1- 3 years of age) are a unique subpopulation with regard to therapeutic aerosols. Anatomical, physiological and emotional factors, peculiar to these age groups, present significant challenges for aerosol delivery to the respiratory tract. Most studies with inhaled corticosteroids (ICS) have administered aerosols with relatively large particles, frequently > 3 μm in mass median aerodynamic diameter (MMAD). These drugs were designed for use in adults and older children and were administered with masks which were frequently rejected by children under age 3-4 years. We review the reasons that large-particle aerosols are likely to be less effective in infants and young children. We suggest that the benefit of inhaled medications in this age group requires further evaluation to determine if better therapeutic outcomes might be achieved using smaller particles and more patient-friendly delivery systems.
Collapse
Affiliation(s)
- Israel Amirav
- Pediatric Department, Ziv Medical Center, Safed, Faculty of Medicine, Technion, Haifa, Israel.
| | | |
Collapse
|
12
|
Abstract
At a 2010 Respiratory Symposium in Paris, chaired by Professors Bousquet and Roche of the University of Paris, recent trends in research, therapy and treatment guidelines for asthma and chronic obstructive pulmonary disease (COPD) were reviewed and discussed by a faculty of expert European and US respiratory physicians. This article reviews five key clinical presentations with particular emphasis given to the importance of small airways in the pathology and treatment of asthma and COPD. Further analysis of the economics of treatment in Europe and the US shows a wide variance in direct and indirect costs.
Collapse
|
13
|
Amirav I, Newhouse MT, Minocchieri S, Castro-Rodriguez JA, Schüepp KG. Factors that affect the efficacy of inhaled corticosteroids for infants and young children. J Allergy Clin Immunol 2010; 125:1206-11. [PMID: 20338620 DOI: 10.1016/j.jaci.2010.01.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 11/28/2022]
Abstract
Infants (0-1 years of age) and young children (1-3 years of age) are a unique subpopulation with regard to inhaled therapies. There are various anatomic, physiological, and emotional factors peculiar to this age group that present significant difficulties and challenges for aerosol delivery. Most studies of therapeutic aerosols that have been performed with patients of this age group, particularly recent studies with inhaled corticosteroids (ICSs), administered aerosols with relatively large particles (ie, >3 microm in mass median aerodynamic diameter). These drugs were designed for use in adults and older children and were administered with masks, which are frequently rejected by patients. Based on these studies, it was recently suggested that ICSs might not be as therapeutically effective in infants and young children as in adults. We review the reasons that large-particle corticosteroid aerosols are not likely to be effective in infants and young children. This patient population differs from adults in airway anatomy and physiology, as well as in behavior and adherence to therapy. We suggest that the benefit of ICSs in this age group requires further evaluation to determine whether better therapeutic outcomes might be achieved with smaller particles.
Collapse
Affiliation(s)
- Israel Amirav
- Pediatric Department, Ziv Medical Center, Safed, Faculty of Medicine, Technion, Haifa, Israel.
| | | | | | | | | |
Collapse
|
14
|
|