1
|
Reyes-Jiménez E, Ramírez-Hernández AA, Santos-Álvarez JC, Velázquez-Enríquez JM, Pina-Canseco S, Baltiérrez-Hoyos R, Vásquez-Garzón VR. Involvement of 4-hydroxy-2-nonenal in the pathogenesis of pulmonary fibrosis. Mol Cell Biochem 2021; 476:4405-4419. [PMID: 34463938 DOI: 10.1007/s11010-021-04244-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Pulmonary fibrosis is a chronic progressive disease with high incidence, prevalence, and mortality rates worldwide. It is characterized by excessive accumulation of extracellular matrix in the lung parenchyma. The cellular and molecular mechanisms involved in its pathogenesis are complex, and some are still unknown. Several studies indicate that oxidative stress, characterized by overproduction of 4-hydroxy-2-nonenal (4-HNE), is an important player in pulmonary fibrosis. 4-HNE is a highly reactive compound derived from polyunsaturated fatty acids that can react with proteins, phospholipids, and nucleic acids. Thus, many of the altered cellular mechanisms that contribute to this disease can be explained by the participation of 4-HNE. Here, we summarize the current knowledge on the molecular states and signal transduction pathways that contribute to the pathogenesis of pulmonary fibrosis. Furthermore, we describe the participation of 4-HNE in various mechanisms involved in pulmonary fibrosis development, with a focus on the cell populations involved in the initiation, development, and maintenance of the fibrotic process, mainly alveolar cells, endothelial cells, macrophages, and inflammatory cells. Due to its characteristic activity as a second messenger, 4-HNE, in addition to being a consequence of oxidative stress, can support maintenance of the inflammatory and fibrotic process by spreading the effects of reactive oxygen species (ROS). Thus, regulation of 4-HNE levels could be a viable strategy to reduce its effects on the mechanisms involved in pulmonary fibrosis development.
Collapse
Affiliation(s)
- Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | | - Rafael Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | |
Collapse
|
2
|
Interstitial Score and Concentrations of IL-4Rα, PAR-2, and MMP-7 in Bronchoalveolar Lavage Fluid Could Be Useful Markers for Distinguishing Idiopathic Interstitial Pneumonias. Diagnostics (Basel) 2021; 11:diagnostics11040693. [PMID: 33924683 PMCID: PMC8070528 DOI: 10.3390/diagnostics11040693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 01/28/2023] Open
Abstract
Idiopathic interstitial pneumonia (IIP) entails a variable group of lung diseases of unknown etiology. Idiopathic pulmonary fibrosis, nonspecific interstitial pneumonia, interstitial lung diseases related to connective tissue disease (CTD-ILD), and hypersensitivity pneumonitis (HP) can manifest with similar clinical, radiological, and histopathological features. In a differential diagnosis, biomarkers can play a significant role. We assume that levels of specific cyto- or chemokines or their receptors can signal pathogenetic processes in the lungs. Eighty patients with different types of idiopathic interstitial pneumonia were enrolled in this study. Cell counts and concentrations of tumor necrosis factor (TNF)-α, interleukin-4 receptor α, proteinase-activated receptor (PAR)-2, matrix metalloproteinase (MMP)-7, and B cell-activating factor were measured in bronchoalveolar lavage fluid using commercial ELISA kits. High resolution computer tomography results were evaluated using alveolar and interstitial (IS) score scales. Levels of TNF-α were significantly higher in HP compared to fibrosing IIP (p < 0.0001) and CTD-ILD (p = 0.0381). Concentrations of IL-4Rα, PAR-2, and MMP-7 were positively correlated with IS (p = 0.0009; p = 0.0256; p = 0.0015, respectively). Since TNF-α plays a major role in inflammation, our results suggest that HP is predominantly an inflammatory disease. From the positive correlation with IS we believe that IL-4Rα, PAR-2, and MMP-7 could serve as fibroproliferative biomarkers in differential diagnosis of IIP.
Collapse
|
3
|
Sterclova M, Smetakova M, Stehlik L, Skibova J, Vasakova M. Bronchoalveolar lavage cell profiles and proteins concentrations can be used to phenotype extrinsic allergic alveolitis patients. Multidiscip Respir Med 2019; 14:13. [PMID: 30911386 PMCID: PMC6413447 DOI: 10.1186/s40248-019-0175-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
Background Extrinsic allergic alveolitis (EAA) patients form heterogenous group with different clinical manifestation and different prognosis. We aimed to determine how to phenotype distinct EAA subgroups. Predictive role of the bronchoalveolar lavage fluid (BALF) IL-4Rα concentration at the time of diagnosis with regard to the clinical behavior in EAA patients was studied. Methods Concentrations of MMP-7, IL-4Rα, TNF-α, and PAR-2 were measured in the BALF od 71 EAA patients at the time of diagnosis. Lung functions and outcome data were assessed at 12 months after the diagnosis. Correlations between the BALF protein concentration, cell profile, lung functions and patient outcome were determined. Results We found positive correlations between BALF IL-4Rα concentration and BALF eosinophils (p = 0,006), negative correlation between IL-4Rα BALF concentration and diffusing capacity (DLco) (p = 0,003), negative correlation between IL-4Rα BALF concentration and forced vital capacity (FVC) (p = 0,004) and negative correlation between IL-4Rα concentration and BALF lymphocytes (p = 0,04). The BALF concentration of IL-4Rα was significantly higher in acute exacerbation patients (p = 0,0032) and in patients progressing despite corticosteroid treatment (p = 0,04). We observed a positive correlation between MMP-7 BALF concentration and the BALF lymphocytes (p = 0.05), negative correlation between the PAR-2 BALF concentration and DLco (p = 0.04) and a negative correlation between the BALF TNF-α concentration and DLco (p = 0.03). Conclusions Specific subgroup of EAA patients with more severe functional impact, distinct BALF cell profile and higher IL-4Rα BALF concentration can be differentiated. Correlations between the BALF concentrations of PAR-2, MMP-7 and TNF-α with clinical parameters may reflect the role of inflammation in the pathogenesis of EAA.
Collapse
Affiliation(s)
- Martina Sterclova
- 1Department of Respiratory Medicine, Thomayer Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| | - Magdalena Smetakova
- 2Department of Pathology and Molecular Medicine, Thomayer Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| | - Ludek Stehlik
- 1Department of Respiratory Medicine, Thomayer Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| | - Jelena Skibova
- 3Department of Statistics, Institute of Clinical and Experimental Medicine, Videnska 1958/9, 140 00 Prague 4, Czech Republic
| | - Martina Vasakova
- 1Department of Respiratory Medicine, Thomayer Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| |
Collapse
|
4
|
Cigarette smoke extract enhances neutrophil elastase-induced IL-8 production via proteinase-activated receptor-2 upregulation in human bronchial epithelial cells. Exp Mol Med 2018; 50:1-9. [PMID: 29980681 PMCID: PMC6035212 DOI: 10.1038/s12276-018-0114-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 11/08/2022] Open
Abstract
Although inflammation, oxidative stress, and protease-antiprotease imbalance have been referred to as a pathogenic triad in chronic obstructive pulmonary disease (COPD), little is known about how they interact. The objectives of this study were to elucidate the effect of cigarette smoke extract (CSE) on the neutrophil elastase (NE)-induced inflammatory response and its molecular mechanism in bronchial epithelial cells. We observed that NE activated extracellular signal-regulated kinase (ERK) and induced IL-8 production. Blocking ERK activation using a MEK inhibitor (U0126) suppressed NE-induced IL-8 secretion and knockdown of proteinase-activated receptor 2 (PAR2) using siRNAs inhibited both NE-induced ERK activation and subsequent IL-8 release, suggesting that NE-induced IL-8 production is dependent on PAR2-mediated ERK activation. Interestingly, pre-exposure to CSE markedly enhanced NE-induced IL-8 production. As PAR2 acts as a receptor for NE, we next investigated the effect of CSE on PAR2 expression as a molecular mechanism for the increased IL-8 production induced by NE in CSE exposed cells. CSE, but not NE, increased the expression of PAR2 mRNA and surface membrane protein. Inhibition of p38 MAPK reduced PAR2 expression induced by CSE while inhibition of the ERK and Akt pathway had no effect. Consequently, p38 inhibition significantly abrogated CSE-induced enhancement of IL-8 production in NE-treated cells. Of note, we observed increased PAR2 levels in lung homogenates and lung epithelial cells from CSE-treated mice and from both smokers and patients with COPD. Taken together, these results suggest that CSE upregulates PAR2 in normal human bronchial epithelial cells, thereby enhancing the inflammatory response to NE.
Collapse
|
5
|
Niu R, Liu Y, Zhang Y, Zhang Y, Wang H, Wang Y, Wang W, Li X. iTRAQ-Based Proteomics Reveals Novel Biomarkers for Idiopathic Pulmonary Fibrosis. PLoS One 2017; 12:e0170741. [PMID: 28122020 PMCID: PMC5266322 DOI: 10.1371/journal.pone.0170741] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a gradual lung disease with a survival of less than 5 years post-diagnosis for most patients. Poor molecular description of IPF has led to unsatisfactory interpretation of the pathogenesis of this disease, resulting in the lack of successful treatments. The objective of this study was to discover novel noninvasive biomarkers for the diagnosis of IPF. We employed a coupled isobaric tag for relative and absolute quantitation (iTRAQ)-liquid chromatography–tandem mass spectrometry (LC–MS/MS) approach to examine protein expression in patients with IPF. A total of 97 differentially expressed proteins (38 upregulated proteins and 59 downregulated proteins) were identified in the serum of IPF patients. Using String software, a regulatory network containing 87 nodes and 244 edges was built, and the functional enrichment showed that differentially expressed proteins were predominantly involved in protein activation cascade, regulation of response to wounding and extracellular components. A set of three most significantly upregulated proteins (HBB, CRP and SERPINA1) and four most significantly downregulated proteins (APOA2, AHSG, KNG1 and AMBP) were selected for validation in an independent cohort of IPF and other lung diseases using ELISA test. The results confirmed the iTRAQ profiling results and AHSG, AMBP, CRP and KNG1 were found as specific IPF biomarkers. ROC analysis indicated the diagnosis potential of the validated biomarkers. The findings of this study will contribute in understanding the pathogenesis of IPF and facilitate the development of therapeutic targets.
Collapse
Affiliation(s)
- Rui Niu
- Department of Respiratory Medicine, Second Hospital of Shandong University, Shandong, China
| | - Ying Liu
- Operating Room, Tianjin Chest Hospital, Tianjin, China
| | - Ying Zhang
- Department of Respiratory Medicine, Second Hospital of Shandong University, Shandong, China
| | - Yuan Zhang
- Department of Evidence-based Medicine, Second Hospital of Shandong University, Shandong, China
| | - Hui Wang
- Department of Respiratory Medicine, Second Hospital of Shandong University, Shandong, China
| | - Yongbin Wang
- Department of Respiratory Medicine, Second Hospital of Shandong University, Shandong, China
| | - Wei Wang
- Department of Respiratory Medicine, Second Hospital of Shandong University, Shandong, China
- * E-mail: (WW); (XL)
| | - Xiaohui Li
- Department of Nursing, Second Hospital of Shandong University, Shandong, China
- * E-mail: (WW); (XL)
| |
Collapse
|
6
|
Bardou O, Menou A, François C, Duitman JW, von der Thüsen JH, Borie R, Sales KU, Mutze K, Castier Y, Sage E, Liu L, Bugge TH, Fairlie DP, Königshoff M, Crestani B, Borensztajn KS. Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis. Am J Respir Crit Care Med 2016; 193:847-60. [PMID: 26599507 DOI: 10.1164/rccm.201502-0299oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. OBJECTIVES To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis. METHODS Matriptase expression was assessed in tissue specimens from patients with IPF versus control subjects using quantitative reverse transcriptase-polymerase chain reaction, immunohistochemistry, and Western blotting, while matriptase activity was monitored by fluorogenic substrate cleavage. Matriptase-induced fibroproliferative responses and the receptor involved were characterized in human primary pulmonary fibroblasts by Western blot, viability, and migration assays. In the murine model of bleomycin-induced pulmonary fibrosis, the consequences of matriptase depletion, either by using the pharmacological inhibitor camostat mesilate (CM), or by genetic down-regulation using matriptase hypomorphic mice, were characterized by quantification of secreted collagen and immunostainings. MEASUREMENTS AND MAIN RESULTS Matriptase expression and activity were up-regulated in IPF and bleomycin-induced pulmonary fibrosis. In cultured human pulmonary fibroblasts, matriptase expression was significantly induced by transforming growth factor-β. Furthermore, matriptase elicited signaling via protease-activated receptor-2 (PAR-2), and promoted fibroblast activation, proliferation, and migration. In the experimental bleomycin model, matriptase depletion, by the pharmacological inhibitor CM or by genetic down-regulation, diminished lung injury, collagen production, and transforming growth factor-β expression and signaling. CONCLUSIONS These results implicate increased matriptase expression and activity in the pathogenesis of pulmonary fibrosis in human IPF and in an experimental mouse model. Overall, targeting matriptase, or treatment by CM, which is already in clinical use for other diseases, may represent potential therapies for IPF.
Collapse
Affiliation(s)
- Olivier Bardou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Awen Menou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Charlène François
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Jan Willem Duitman
- 3 Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Raphaël Borie
- 2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Katiuchia Uzzun Sales
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,7 Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Kathrin Mutze
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Yves Castier
- 9 Assistance Publique-Hôpitaux de Paris, Department of Vascular and Thoracic Surgery, Bichat-Claude Bernard University Hospital, Denis Diderot University and Medical School Paris VII, France
| | - Edouard Sage
- 10 Department of Thoracic Surgery and Lung Transplantation, Hôpital Foch, Suresnes, France; and
| | - Ligong Liu
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Thomas H Bugge
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - David P Fairlie
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mélanie Königshoff
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Bruno Crestani
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Keren S Borensztajn
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| |
Collapse
|
7
|
Lin C, von der Thüsen J, Daalhuisen J, ten Brink M, Crestani B, van der Poll T, Borensztajn K, Spek CA. Pharmacological Targeting of Protease-Activated Receptor 2 Affords Protection from Bleomycin-Induced Pulmonary Fibrosis. Mol Med 2015; 21:576-83. [PMID: 26147947 DOI: 10.2119/molmed.2015.00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease that remains refractory to therapy. Despite increasing evidence that protease-activated receptor 2 (PAR-2) contributes to fibrosis, its importance in pulmonary fibrosis is under debate. We addressed whether PAR-2 deficiency persistently reduces bleomycin-induced pulmonary fibrosis or merely delays disease progression and whether pharmacological PAR-2 inhibition limits experimental pulmonary fibrosis. Bleomycin was instilled intranasally into wild-type or PAR-2-deficient mice in the presence/absence of a specific PAR-2 antagonist (P2pal-18S). Pulmonary fibrosis was consistently reduced in PAR-2-deficient mice throughout the fibrotic phase, as evident from reduced Ashcroft scores (29%) and hydroxyproline levels (26%) at d 28. Moreover, P2pal-18S inhibited PAR-2-induced profibrotic responses in both murine and primary human pulmonary fibroblasts (p < 0.05). Once daily treatment with P2pal-18S reduced the severity and extent of fibrotic lesions in lungs of bleomycin-treated wild-type mice but did not further reduce fibrosis in PAR-2-deficient mice. Importantly, P2pal-18S treatment starting even 7 d after the onset of fibrosis limits pulmonary fibrosis as effectively as when treatment was started together with bleomycin instillation. Overall, PAR-2 contributes to the progression of pulmonary fibrosis, and targeting PAR-2 may be a promising therapeutic strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Cong Lin
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan von der Thüsen
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joost Daalhuisen
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Marieke ten Brink
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Reference Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Keren Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,Département Hospitalo-universtaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Kaarteenaho R, Lappi-Blanco E. Tissue is an issue in the search for biomarkers in idiopathic pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2015; 8:3. [PMID: 25733981 PMCID: PMC4346107 DOI: 10.1186/s13069-015-0020-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/15/2015] [Indexed: 02/06/2023]
Abstract
Biological markers, i.e., biomarkers, in lung tissue may make it possible to connect cell biological phenomena to the pathogenetic mechanisms in idiopathic pulmonary fibrosis (IPF). This review focuses on the lung tissue biomarkers, which have been compared with relevant clinical endpoints or with the most common differential diagnostic lung diseases. In addition, studies conducted on lung tissue samples and investigated by transcriptomic or proteomic methodologies have been included. Several studies have observed changes in alveolar epithelium and extracellular matrix supporting the current hypotheses of the pathogenesis of IPF. In many studies, however, alterations in inflammatory cells have been revealed, a phenomenon not currently incorporated into pathogenetic theories. Combining lung tissue material with other non-solid organs with clinically meaningful endpoints may prove to be the most beneficial approach in the search for non-invasive biomarkers.
Collapse
Affiliation(s)
- Riitta Kaarteenaho
- Respiratory Research Unit, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland ; Respiratory Research Unit, Department of Internal Medicine, University of Oulu, Oulu, Finland ; Unit of Medicine and Clinical Research, Pulmonary Division, University of Eastern Finland, Kuopio, Finland ; Center for Medicine and Clinical Research, Division of Respiratory Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Lappi-Blanco
- Department of Pathology, Oulu University Hospital, Oulu, Finland ; Department of Pathology, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Lin C, von der Thüsen J, Daalhuisen J, ten Brink M, Crestani B, van der Poll T, Borensztajn K, Spek CA. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis. J Cell Mol Med 2015; 19:1346-56. [PMID: 25689283 PMCID: PMC4459848 DOI: 10.1111/jcmm.12520] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/20/2014] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease-activated receptor (PAR)-1 and PAR-2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin-induced lung fibrosis is diminished in both PAR-1 and PAR-2 deficient mice. We thus have been suggested that combined inactivation of PAR-1 and PAR-2 would be more effective in blocking pulmonary fibrosis. Human and murine fibroblasts were stimulated with PAR-1 and PAR-2 agonists in the absence or presence of specific PAR-1 or PAR-2 antagonists after which fibrotic markers like collagen and smooth muscle actin were analysed by Western blot. Pulmonary fibrosis was induced by intranasal instillation of bleomycin into wild-type and PAR-2 deficient mice with or without a specific PAR-1 antagonist (P1pal-12). Fibrosis was assessed by hydroxyproline quantification and (immuno)histochemical analysis. We show that specific PAR-1 and/or PAR-2 activating proteases induce fibroblast migration, differentiation and extracellular matrix production. Interestingly, however, combined activation of PAR-1 and PAR-2 did not show any additive effects on these pro-fibrotic responses. Strikingly, PAR-2 deficiency as well as pharmacological PAR-1 inhibition reduced bleomycin-induced pulmonary fibrosis to a similar extent. PAR-1 inhibition in PAR-2 deficient mice did not further diminish bleomycin-induced pulmonary fibrosis. Finally, we show that the PAR-1-dependent pro-fibrotic responses are inhibited by the PAR-2 specific antagonist. Targeting PAR-1 and PAR-2 simultaneously is not superior to targeting either receptor alone in bleomycin-induced pulmonary fibrosis. We postulate that the pro-fibrotic effects of PAR-1 require the presence of PAR-2.
Collapse
Affiliation(s)
- Cong Lin
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan von der Thüsen
- Department of Pathology, Medisch Centrum Haaglanden, Den Haag, The Netherlands
| | - Joost Daalhuisen
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Marieke ten Brink
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Bruno Crestani
- Faculté de Médecine Paris 7 Diderot, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Keren Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Faculté de Médecine Paris 7 Diderot, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Park JS, Park HJ, Park YS, Lee SM, Yim JJ, Yoo CG, Han SK, Kim YW. Clinical significance of mTOR, ZEB1, ROCK1 expression in lung tissues of pulmonary fibrosis patients. BMC Pulm Med 2014; 14:168. [PMID: 25358403 PMCID: PMC4233073 DOI: 10.1186/1471-2466-14-168] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/15/2014] [Indexed: 12/17/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease of unknown causes. Three proteins (mammalian target of rapamycin, mTOR; zinc finger E-box-binding homeobox 1, ZEB1; Rho-associated, coiled-coil containing protein kinase 1, ROCK1) may be related to pulmonary fibrosis. However, they have not been assessed in human pulmonary fibrosis. We assessed the clinical significance of mTOR, ZEB1, and ROCK1 expression in human pulmonary fibrosis of usual interstitial pneumonia (UIP) pattern. Methods The mTOR, ZEB1, and ROCK1 expression was evaluated by immunohistochemical staining of 30 surgical lung biopsy tissues from 26 IPF and 4 UIP pattern connective tissue disease related interstitial lung disease (CTD-ILD) patients. The expression scores correlated with the clinical features. Results The mTOR, ZEB1 and ROCK1 mainly expressed in alveolar epithelial cells of UIP lungs. The histological fibrosis scores and lung function decline in the strong mTOR expression group were higher than those in the weak and intermediate expression group. Patients with positive ZEB1 expression had higher fibrosis scores and greater decline in carbon monoxide diffusion capacity (DLCO) than patients with negative ZEB1 expression. Patients with positive mTOR or ZEB1 expression had poorer prognosis than that of patients with negative mTOR or ZEB1 expression, although it was not statistically significant. ROCK1 was not associated with the studied clinicopathological features. Conclusions The mTOR and ZEB1 expression in pulmonary fibrosis patients significantly correlated with the fibrosis score and lung function decline, indicating that it may be related to the prognosis of pulmonary fibrosis. Further studies involving large numbers of homogeneous IPF patients are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Young Whan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea.
| |
Collapse
|
11
|
Park YS, Yoo CG. The clinical assessment of protease-activated receptor-2 expression in inflammatory cells from peripheral blood and bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis. Tuberc Respir Dis (Seoul) 2013; 74:264-8. [PMID: 23814598 PMCID: PMC3695308 DOI: 10.4046/trd.2013.74.6.264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 11/24/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a lethal pulmonary fibrotic disease. In general, the exaggerated activation of the coagulation cascade has been observed during initiation or maintenance of the fibrotic disease. In our recent study, immunohistochemical expression of protease-activated receptor-2 (PAR-2), which plays a key role in coagulation cascade, was observed in surgical specimen of IPF patients, and associated with poor clinical outcome. The aim of this study was to evaluate the overexpression of PAR-2 in inflammatory cells from peripheral blood and bronchoalveolar lavage fluid in IPF patients. Methods From May 2011 to March 2012, IPF patients and controls were enrolled in Seoul National University Hospital. Peripheral blood and bronchoalveolar lavage fluid were collected for analysis of PAR-2 expression. Flow cytometry and reverse transcription polymerase chain reaction were used for PAR-2 receptor and mRNA assessment. Results Twelve IPF patients and 14 controls were included in this study. Among them, flow cytometry analysis was conducted from 26 peripheral blood (patient group, 11; control group, 13) and 7 bronchoalveolar lavage fluid (patient group, 5; control group, 2). The expression of PAR-2 receptor was not different between patient and control groups (p=0.074). Among all 24 population, PAR-2 mRNA assessment was performed in 19 persons (patient group, 10; control group, 9). The mRNA expression of PAR-2 was not significant different (p=0.633). Conclusion In IPF patients, PAR-2 receptor and mRNA expression were not different from control group.
Collapse
Affiliation(s)
- Young Sik Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|