1
|
Wu J, Yang F, Li J, Wang X, Yuan K, Xu L, Wu F, Tang B, Orlandini LC. Reproducibility and stability of voluntary deep inspiration breath hold and free breath in breast radiotherapy based on real-time 3-dimensional optical surface imaging system. Radiat Oncol 2024; 19:158. [PMID: 39529112 PMCID: PMC11556127 DOI: 10.1186/s13014-024-02549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The aim of this study was to evaluate the inter-fraction reproducibility and intra-fraction stability of breast radiotherapy using voluntary deep-inspiration breath hold (DIBH) and free breathing (FB) based on an optical surface imaging system (OSIS). METHODS Seventeen patients (510 breath-hold sessions) treated using a field-in-field (FiF) technique and twenty patients (600 breath-free sessions) treated with a volume-modulated arc therapy (VMAT) technique were included in this retrospective study. All the patients were positioned with the guidance of CBCT and OSIS, and also monitored with OSIS throughout the whole treatment session. Eight setup variations in three directions were extracted from the treatment reports of OSIS for all sessions and were subsequently manually introduced to treatment plans, resulting in a total of 296 perturbed plans. All perturbed plans were recalculated, and the dose volume histograms (DVH) for the target and organs at risk (OAR) were analyzed. RESULTS The OSIS and CBCT for both DIBH and FB treatments showed a good agreement of less than 0.30 cm in each direction. The intra-fraction respiratory motion data during DIBH were -0.06 ± 0.07 cm, 0.12 ± 0.15 cm, and 0.12 ± 0.12 cm in the lateral, longitudinal, and vertical directions, respectively; for FB, the respiratory motion data were -0.02 ± 0.12 cm, 0.08 ± 0.18 cm, and 0.14 ± 0.20 cm, respectively. For the target, DIBH plans were more sensitive to setup errors; the mean deviations in D95 for CTV were 39.78 Gy-40.17 Gy for DIBH and 38.46 Gy-40.52 Gy for FB, respectively. For the OARs, the mean deviations of V10, V20, and Dmean to the heart; V5, V20, and Dmean to the ipsilateral lung; and Dmean to the breast were lower for the FB plan compared with the DIBH plan. CONCLUSION Based on OSIS, our results indicate that both DIBH and FB can provide good reproducibility in the inter-fractions and stability in the intra-fractions. When the patient respiratory motion is large, the FB technology has greater possibility for the undercoverage of the target volume, while DIBH technology is more likely to result in increases in dose to OARs (the lung, heart, and contralateral breast).
Collapse
Affiliation(s)
- Junxiang Wu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Feng Yang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Jie Li
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Xianliang Wang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Ke Yuan
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Lipeng Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Fan Wu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China.
| | - Bin Tang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China.
| | - Lucia Clara Orlandini
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| |
Collapse
|
2
|
Hwang J, Chun J, Cho S, Kim JH, Cho MS, Choi SH, Kim JS. Personalized Deep Learning Model for Clinical Target Volume on Daily Cone Beam Computed Tomography in Breast Cancer Patients. Adv Radiat Oncol 2024; 9:101580. [PMID: 39258144 PMCID: PMC11381721 DOI: 10.1016/j.adro.2024.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/17/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose Herein, we developed a deep learning algorithm to improve the segmentation of the clinical target volume (CTV) on daily cone beam computed tomography (CBCT) scans in breast cancer radiation therapy. By leveraging the Intentional Deep Overfit Learning (IDOL) framework, we aimed to enhance personalized image-guided radiation therapy based on patient-specific learning. Methods and Materials We used 240 CBCT scans from 100 breast cancer patients and employed a 2-stage training approach. The first stage involved training a novel general deep learning model (Swin UNETR, UNET, and SegResNET) on 90 patients. The second stage used intentional overfitting on the remaining 10 patients for patient-specific CBCT outputs. Quantitative evaluation was conducted using the Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), mean surface distance (MSD), and independent samples t test with expert contours on CBCT scans from the first to 15th fractions. Results IDOL integration significantly improved CTV segmentation, particularly with the Swin UNETR model (P values < .05). Using patient-specific data, IDOL enhanced the DSC, HD, and MSD metrics. The average DSC for the 15th fraction improved from 0.9611 to 0.9819, the average HD decreased from 4.0118 mm to 1.3935 mm, and the average MSD decreased from 0.8723 to 0.4603. Incorporating CBCT scans from the initial treatments and first to third fractions further improved results, with an average DSC of 0.9850, an average HD of 1.2707 mm, and an average MSD of 0.4076 for the 15th fraction, closely aligning with physician-drawn contours. Conclusion Compared with a general model, our patient-specific deep learning-based training algorithm significantly improved CTV segmentation accuracy of CBCT scans in patients with breast cancer. This approach, coupled with continuous deep learning training using daily CBCT scans, demonstrated enhanced CTV delineation accuracy and efficiency. Future studies should explore the adaptability of the IDOL framework to diverse deep learning models, data sets, and cancer sites.
Collapse
Affiliation(s)
- Joonil Hwang
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Medical Image and Radiotherapy Lab (MIRLAB), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jaehee Chun
- OncoSoft, Seoul, Republic of Korea
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungryong Cho
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Medical Image and Radiotherapy Lab (MIRLAB), Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Joo-Ho Kim
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea
| | - Min-Seok Cho
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- OncoSoft, Seoul, Republic of Korea
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Laaksomaa M, Aula A, Sarudis S, Keyriläinen J, Ahlroth J, Murtola A, Pynnönen K, Lehtonen T, Björkqvist M, Järvinen L, Rossi M. Surface-guided radiotherapy systems in locoregional deep inspiration breath hold radiotherapy for breast cancer - a multicenter study on the setup accuracy. Rep Pract Oncol Radiother 2024; 29:176-186. [PMID: 39143974 PMCID: PMC11321775 DOI: 10.5603/rpor.99673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/29/2024] [Indexed: 08/16/2024] Open
Abstract
Background Daily image-guided radiotherapy (IGRT) and deep inspiration breath hold (DIBH) technique are recommended for locoregional RT of breast cancer. The optimal workflow for a combination of surface-guided RT (SGRT) with DIBH technique is of current clinical interest. Materials and methods The setup accuracy at three hospitals was evaluated using different SGRT workflows. A total of 150 patients (2269 image pairs) were analyzed in three groups: patient setup with the AlignRT® SGRT system in Tampere (Site 1, n = 50), the Catalyst™ SGRT system in Turku (Site 2, n = 50) and the Catalyst™ SGRT system in Jönköping (Site 3, n = 50). Each site used their routine workflow with SGRT-based setup and IGRT positioning. Residual errors of the bony chest wall, thoracic vertebra (Th 1) and humeral head were evaluated using IGRT images. Results Systematic residual errors in the cranio-caudal (CC) direction and in pitch were generally larger at Site 2 than those at Sites 1 and 3 (p = 0.01-0.7). With daily IGRT, only a small difference (p = 0.01-0.9) was observed in residual random errors of bony structures in other directions between sites. Conclusion The introduction of SGRT and the use of daily IGRT lead to small residual errors when combining the best workflow practices from different hospitals. Our multicenter evaluation led to improved workflow by tightening the SGRT tolerances on Site 2 and fixation modification. Because of mainly small random errors, systematic posture errors in the images need to be corrected after posture correction with new setup surfaces. We recommend tight SGRT tolerances, good fixation and correction of systematic errors.
Collapse
Affiliation(s)
- Marko Laaksomaa
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Antti Aula
- Department of Oncology, Tampere University Hospital, Tampere, Finland
- Department of Medical Physics, Tampere University Hospital, Tampere, Finland
| | - Sebastian Sarudis
- Department of Medical Physics, County Hospital Ryhov, Jönköping, Sweden
| | - Jani Keyriläinen
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Jenni Ahlroth
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Anna Murtola
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Kiira Pynnönen
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Turkka Lehtonen
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Mikko Björkqvist
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Lauri Järvinen
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Maija Rossi
- Department of Oncology, Tampere University Hospital, Tampere, Finland
- Department of Medical Physics, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
4
|
Rudat V, Shi Y, Zhao R, Yu W. Setup margins based on the inter- and intrafractional setup error of left-sided breast cancer radiotherapy using deep inspiration breath-hold technique (DIBH) and surface guided radiotherapy (SGRT). J Appl Clin Med Phys 2024; 25:e14271. [PMID: 38273673 PMCID: PMC11163505 DOI: 10.1002/acm2.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
PURPOSE The use of volumetric modulated arc therapy (VMAT), simultaneous integrated boost (SIB), and hypofractionated regimen requires adequate patient setup accuracy to achieve an optimal outcome. The purpose of this study was to assess the setup accuracy of patients receiving left-sided breast cancer radiotherapy using deep inspiration breath-hold technique (DIBH) and surface guided radiotherapy (SGRT) and to calculate the corresponding setup margins. METHODS The patient setup accuracy between and within radiotherapy fractions was measured by comparing the 6DOF shifts made by the SGRT system AlignRT with the shifts made by kV-CBCT. Three hundred and three radiotherapy fractions of 23 left-sided breast cancer patients using DIBH and SGRT were used for the analysis. All patients received pre-treatment DIBH training and visual feedback during DIBH. An analysis of variance (ANOVA) was used to test patient setup differences for statistical significance. The corresponding setup margins were calculated using the van Herk's formula. RESULTS The intrafractional patient setup accuracy was significantly better than the interfractional setup accuracy (p < 0.001). The setup margin for the combined inter- and intrafractional setup error was 4, 6, and 4 mm in the lateral, longitudinal, and vertical directions if based on SGRT alone. The intrafractional error contributed ≤1 mm to the calculated setup margins. CONCLUSION With SGRT, excellent intrafractional and acceptable interfractional patient setup accuracy can be achieved for the radiotherapy of left-sided breast cancer using DIBH and modern radiation techniques. This allows for reducing the frequency of kV-CBCTs, thereby saving treatment time and radiation exposure.
Collapse
Affiliation(s)
- Volker Rudat
- Department of Radiation OncologyJiahui International Cancer Center Shanghai, Jiahui HealthShanghaiChina
| | - Yanyan Shi
- Department of Radiation OncologyJiahui International Cancer Center Shanghai, Jiahui HealthShanghaiChina
| | - Ruping Zhao
- Department of Radiation OncologyJiahui International Cancer Center Shanghai, Jiahui HealthShanghaiChina
| | - Wei Yu
- Department of Radiation OncologyJiahui International Cancer Center Shanghai, Jiahui HealthShanghaiChina
| |
Collapse
|
5
|
Mankinen M, Virén T, Seppälä J, Koivumäki T. Interfractional variation in whole-breast VMAT irradiation: a dosimetric study with complementary SGRT and CBCT patient setup. Radiat Oncol 2024; 19:21. [PMID: 38347554 PMCID: PMC10863193 DOI: 10.1186/s13014-024-02418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The dosimetric effect of setup uncertainty and tissue deformations in left-sided whole-breast irradiation with complementary surface-guided radiotherapy (SGRT) and cone-beam computed tomography (CBCT) setup was evaluated. METHOD Treatment courses of 40.05 Gy prescribed dose in 15 fractions were simulated for 29 patients by calculating the dose on deformed CT images, that were based on daily CBCT images, and deforming and accumulating the dose onto the planning CT image. Variability in clinical target volume (CTV) position and shape was assessed as the 95% Hausdorff distance (HD95) between the planning CTV and deformed CTV structures. DVH metrics were evaluated between the planned and simulated cumulative dose distributions using two treatment techniques: tangential volumetric modulated arc therapy (tVMAT) and conventional 3D-conformal radiotherapy (3D-CRT). RESULTS Based on the HD95 values, the variations in CTV shape and position were enclosed by the 5 mm CTV-PTV margin in 85% of treatment fractions using complementary CBCT and SGRT setup. A residual error of 8.6 mm was observed between the initial SGRT setup and CBCT setup. The median CTV V95% coverage was 98.1% (range 93.1-99.8%) with tVMAT and 98.2% (range 84.5-99.7%) with 3D-CRT techniques with CBCT setup. With the initial SGRT-only setup, the corresponding coverages were 96.3% (range 92.6-99.4%) and 96.6% (range 84.2-99.4%), respectively. However, a considerable bias in vertical residual error between initial SGRT setup and CBCT setup was observed. Clinically relevant changes between the planned and cumulative doses to organs-at-risk (OARs) were not observed. CONCLUSIONS The CTV-to-PTV margin should not be reduced below 5 mm even with daily CBCT setup. Both tVMAT and 3D-CRT techniques were robust in terms of dose coverage to the target and OARs. Based on the shifts between setup methods, CBCT setup is recommended as a complementary method with SGRT.
Collapse
Affiliation(s)
- M Mankinen
- Deparment of Physics, University of Jyväskylä (JYU), Survontie 9 C, 40014, Jyväskylä, Finland.
- Deparment of Medical Physics, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, Jyväskylä, Finland.
| | - T Virén
- Center of Oncology, Kuopio University Hospital (KUH), The Wellbeing Services Country of North Savo, Kuopio, Finland
| | - J Seppälä
- Center of Oncology, Kuopio University Hospital (KUH), The Wellbeing Services Country of North Savo, Kuopio, Finland
| | - T Koivumäki
- Deparment of Physics, University of Jyväskylä (JYU), Survontie 9 C, 40014, Jyväskylä, Finland
- Deparment of Medical Physics, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| |
Collapse
|
6
|
Mast M, Leong A, Korreman S, Lee G, Probst H, Scherer P, Tsang Y. ESTRO-ACROP guideline for positioning, immobilisation and setup verification for local and loco-regional photon breast cancer irradiation. Tech Innov Patient Support Radiat Oncol 2023; 28:100219. [PMID: 37745181 PMCID: PMC10511493 DOI: 10.1016/j.tipsro.2023.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
- M.E. Mast
- Department of Radiation Oncology, Haaglanden Medical Center, Leidschendam, The Netherlands
| | - A. Leong
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
- Bowen Icon Cancer Centre, Wellington, New Zealand
| | - S.S. Korreman
- Department of Clinical Medicine, Aarhus University, Denmark
- Department of Oncology, Aarhus University Hospital, Denmark
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - G. Lee
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - H. Probst
- Sheffield Hallam University, Sheffield, United Kingdom
| | - P. Scherer
- Department of Radiotherapy and Radio-Oncology, LKH Salzburg, Paracelsus Medical University Clinics, Salzburg, Austria
| | - Y. Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Oku Y, Toyota M, Saigo Y. Characteristics of detection accuracy of the patient setup using InBore optical patient positioning system. Radiol Phys Technol 2023; 16:532-542. [PMID: 37812309 DOI: 10.1007/s12194-023-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
This study aimed to evaluate the detection accuracy of the AlignRT-InBore system in surface-guided radiation therapy using a phantom and to determine the feasibility of the system by conducting a comparative analysis with cone-beam computed tomography (CBCT) registration. The AlignRT-InBore system integrated with the ETHOS Therapy was used. A phantom and a QUASAR phantom were employed to examine the specific areas of interest relevant to clinical cases. The evaluation involved monitoring translations for approximately 30 min and assessing the position detection accuracy for static and moving objects. Fifty clinical cases were used to evaluate the position detection accuracy and its relationship with the localization accuracy of CBCT before treatment. The detection accuracy of static and moving objects was within 1.0 mm using the phantom. However, the longitudinal direction tended to be larger than the other directions. Regarding the accuracy of localization in clinical cases, a strong and statistically significant (p < 0.01) correlation was observed in each direction. A detection accuracy within 1.0 mm is possible for static and moving objects. The detection accuracy of the patient setup using the InBore optical patient positioning system was extremely high, and the patient could be detected with high precision, suggesting its usefulness.
Collapse
Affiliation(s)
- Yoshifumi Oku
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1, Sakuragaoka, Kagoshima-City, Kagoshima, 890-8520, Japan.
| | - Masahiko Toyota
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1, Sakuragaoka, Kagoshima-City, Kagoshima, 890-8520, Japan
| | - Yasumasa Saigo
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1, Sakuragaoka, Kagoshima-City, Kagoshima, 890-8520, Japan
| |
Collapse
|
8
|
Lu W, Hong LX, Yamada N, Berry SL, Song Y, Choi W, Cerviño LI, Tang X, Mechalakos JG, Romesser PB, Powell S, Li G. Comparison of setup accuracy of optical surface image versus orthogonal x-ray images for VMAT of the left breast using deep-inspiration breath-hold. J Appl Clin Med Phys 2023; 24:e14117. [PMID: 37535396 PMCID: PMC10691624 DOI: 10.1002/acm2.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
To compare the setup accuracy of optical surface image (OSI) versus orthogonal x-ray images (2DkV) using cone beam computed tomography (CBCT) as ground truth for radiotherapy of left breast cancer in deep-inspiration breath-hold (DIBH). Ten left breast DIBH patients treated with volumetric modulated arc therapy (VMAT) were studied retrospectively. OSI, 2DkV, and CBCT were acquired weekly at treatment setup. OSI, 2DkV, and CBCT were registered to planning CT or planning DRR based on a breast surface region of interest (ROI), bony anatomy (chestwall and sternum), and both bony anatomy and breast surface, respectively. These registrations provided couch shifts for each imaging system. The setup errors, or the difference in couch shifts between OSI and CBCT were compared to those between 2DkV and CBCT. A second OSI was acquired during last beam delivery to evaluate intrafraction motion. The median absolute setup errors were (0.21, 0.27, 0.23 cm, 0.6°, 1.3°, 1.0°) for OSI, and (0.26, 0.24, 0.18 cm, 0.9°, 1.0°, 0.6°) for 2DkV in vertical, longitudinal and lateral translations, and in rotation, roll and pitch, respectively. None of the setup errors was significantly different between OSI and 2DkV. For both systems, the systematic and random setup errors were ≤0.6 cm and ≤1.5° in all directions. Nevertheless, larger setup errors were observed in some sessions in both systems. There was no correlation between OSI and CBCT whereas there was modest correlation between 2DkV and CBCT. The intrafraction motion in DIBH detected by OSI was small with median absolute translations <0.2 cm, and rotations ≤0.4°. Though OSI showed comparable and small setup errors as 2DkV, it showed no correlation with CBCT. We concluded that to achieve accurate setup for both bony anatomy and breast surface, daily 2DkV can't be omitted following OSI for left breast patients treated with DIBH VMAT.
Collapse
Affiliation(s)
- Wei Lu
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Linda X. Hong
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Nelson Yamada
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Sean L. Berry
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Yulin Song
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Wookjin Choi
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Laura I. Cerviño
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiaoli Tang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - James G. Mechalakos
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Paul B. Romesser
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Simon Powell
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Guang Li
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| |
Collapse
|
9
|
Psarras M, Stasinou D, Stroubinis T, Protopapa M, Zygogianni A, Kouloulias V, Platoni K. Surface-Guided Radiotherapy: Can We Move on from the Era of Three-Point Markers to the New Era of Thousands of Points? Bioengineering (Basel) 2023; 10:1202. [PMID: 37892932 PMCID: PMC10604452 DOI: 10.3390/bioengineering10101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The surface-guided radiotherapy (SGRT) technique improves patient positioning with submillimeter accuracy compared with the conventional positioning technique of lasers using three-point tattoos. SGRT provides solutions to considerations that arise from the conventional setup technique, such as variability in tattoo position and the psychological impact of the tattoos. Moreover, SGRT provides monitoring of intrafractional motion. PURPOSE This literature review covers the basics of SGRT systems and examines whether SGRT can replace the traditional positioning technique. In addition, it investigates SGRT's potential in reducing positioning times, factors affecting SGRT accuracy, the effectiveness of live monitoring, and the impact on patient dosage. MATERIALS AND METHODS This study focused on papers published from 2016 onward that compared SGRT with the traditional positioning technique and investigated factors affecting SGRT accuracy and effectiveness. RESULTS/CONCLUSIONS SGRT provides the same or better results regarding patient positioning. The implementation of SGRT can reduce overall treatment time. It is an effective technique for detecting intrafraction patient motion, improving treatment accuracy and precision, and creating a safe and comfortable environment for the patient during treatment.
Collapse
Affiliation(s)
- Michalis Psarras
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Despoina Stasinou
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Theodoros Stroubinis
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Maria Protopapa
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
- Department of Radiation Oncology and Stereotactic Radiosurgery, Mediterraneo Hospital, 166 75 Athens, Greece
| |
Collapse
|
10
|
Mueller B, Song Y, Chia-Ko W, Hsu HY, Zhai X, Tamas P, Powell S, Cahlon O, McCormick B, Khan A, Gillespie E, Cervino L, Zhao B, Hong L, Braunstein LZ. Accuracy and Efficiency of Patient Setup Using Surface Imaging versus Skin Tattoos for Accelerated Partial Breast Irradiation. Adv Radiat Oncol 2023; 8:101183. [PMID: 36896216 PMCID: PMC9991531 DOI: 10.1016/j.adro.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Purpose Skin tattoos represent the standard approach for surface alignment and setup of breast cancer radiation therapy, yet permanent skin markings contribute to adverse cosmesis and patient dissatisfaction. With the advent of contemporary surface-imaging technology, we evaluated setup accuracy and timing between "tattoo-less" and traditional tattoo-based setup techniques. Methods and Materials Patients receiving accelerated partial breast irradiation (APBI) underwent traditional tattoo-based setup (TTB), alternating daily with a tattoo-less setup via surface imaging using AlignRT (ART). Following initial setup, position was verified via daily kV imaging, with matching on surgical clips representing ground truth. Translational shifts (TS) and rotational shifts (RS) were ascertained, as were setup time and total in-room time. Statistical analyses used the Wilcoxon signed rank test and Pitman-Morgan variance test. Results A total of 43 patients receiving APBI and 356 treatment fractions were analyzed (174 TTB fractions and 182 using ART). For tattoo-less setup via ART, the median absolute TS were 0.31 cm in the vertical (range, 0.08-0.82), 0.23 cm in the lateral (0.05-0.86), and 0.26 cm in the longitudinal (0.02-0.72) axes. For TTB setup, the corresponding median TS were 0.34 cm (0.05-1.98), 0.31 cm (0.09-1.84), and 0.34 cm (0.08-1.25), respectively. The median magnitude shifts were 0.59 (0.30-1.31) for ART and 0.80 (0.27-2.13) for TTB. ART was not statistically distinguishable from TTB in terms of TS, except in the longitudinal direction (P = .154, .059, and .021, respectively), and was superior to TTB for magnitude shift (P < .001). The variance of each TS variable was significantly narrower for ART compared with TTB (P ≤ .001 vertical, P = .001 lateral, P = .005 longitudinal). The median absolute RS for ART was 0.64° rotation (range, 0.00-1.90), 0.65° roll (0.05-2.90), and 0.30° pitch (0.00-1.50). The corresponding median RS for TTB were 0.80° (0.00-2.50), 0.64° (0.00-3.00), and 0.46° (0.00-2.90), respectively. ART setup was not statistically different from TTB in terms of RS (P = .868, .236, and .079, respectively). ART showed lower variance than TTB in terms of pitch (P = .009). The median total in-room time was shorter for ART than TTB (15.42 vs 17.25 minutes; P = .008), as was the median setup time (11.12 vs 13.00 minutes; P = .001). Moreover, ART had a narrower distribution of setup time with fewer lengthy outliers versus TTB. Conclusions These findings suggest that a tattoo-less setup approach with AlignRT may be sufficiently accurate and expeditious to supplant surface tattoos for patients receiving APBI. Further analyses with larger cohorts will determine whether tattoo-based approaches can be replaced by noninvasive surface imaging.
Collapse
Affiliation(s)
- Boris Mueller
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yulin Song
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wang Chia-Ko
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hao-Yun Hsu
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xingchen Zhai
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Tamas
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon Powell
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Oren Cahlon
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Beryl McCormick
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif Khan
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Erin Gillespie
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura Cervino
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bo Zhao
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Linda Hong
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lior Z Braunstein
- Departments of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
11
|
Dekker J, Essers M, Verheij M, Kusters M, de Kruijf W. Dose coverage and breath-hold analysis of breast cancer patients treated with surface-guided radiotherapy. Radiat Oncol 2023; 18:72. [PMID: 37081477 PMCID: PMC10116713 DOI: 10.1186/s13014-023-02261-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Surface-guided radiotherapy (SGRT) is used to ensure a reproducible patient set-up and for intra-fraction motion monitoring. The arm position of breast cancer patients is important, since this is related to the position of the surrounding lymph nodes. The aim of the study was to investigate the set-up accuracy of the arm of patients positioned using SGRT. Moreover, the actual delivered dose was investigated and an extensive breath-hold analysis was performed. METHODS 84 patients who received local or locoregional breast radiation therapy were positioned and monitored using SGRT. The accuracy of the arm position, represented by the clavicle position, was studied on the anterior-posterior kV-image. To investigate the effect of changes in anatomy and patient set-up, the actual delivered dose was calculated on cone-beam CT-scans (CBCT). A deformable registration of the CT to the CBCT was applied to deform the structures of the CT onto the CBCT. The minimum dose in percentage of the prescribed dose that was received by 98% of different CTV volumes (D98) was determined. An extensive breath-hold analysis was performed and definitions for relevant parameters were given. RESULTS The arm position of 77 out of 84 patients in total was successful, based on the clavicle rotation. The mean clavicle rotation was 0.4° (± 2.0°). For 89.8% of the patients who were irradiated on the whole-breast D98 was larger than 95% of the prescribed dose (D98 > 95%). D98 > 95% applied for 70.8% of the patients irradiated on the chest wall. Concerning the lymph node CTVs, D98 > 95% for at least 95% of the patients. The breath-hold analysis showed a mean residual setup error of - 0.015 (± 0.90), - 0.18 (± 0.82), - 0.58 (± 1.1) mm in vertical, lateral, and longitudinal direction, respectively. The reproducibility and stability of the breath-hold was good, with median 0.60 mm (95% confidence interval (CI) [0.66-0.71] mm) and 0.20 mm (95% CI 0.21-0.23] mm), respectively. CONCLUSIONS Using SGRT we were able to position breast cancer patients successfully, with focus on the arm position. The actual delivered dose calculated on the CBCT was adequate and no relation between clavicle rotation and actual delivered dose was found. Moreover, breath-hold analysis showed a good reproducibility and stability of the breath-hold. Trial registration CCMO register NL69214.028.19.
Collapse
Affiliation(s)
- Janita Dekker
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA, Tilburg, The Netherlands.
| | - Marion Essers
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA, Tilburg, The Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein 32, 6525 GA, Nijmegen, The Netherlands
| | - Martijn Kusters
- Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein 32, 6525 GA, Nijmegen, The Netherlands
| | - Willy de Kruijf
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA, Tilburg, The Netherlands
| |
Collapse
|
12
|
Kang S, Jin H, Chang JH, Jang BS, Shin KH, Choi CH, Kim JI. Evaluation of initial patient setup methods for breast cancer between surface-guided radiation therapy and laser alignment based on skin marking in the Halcyon system. Radiat Oncol 2023; 18:60. [PMID: 37016351 PMCID: PMC10071653 DOI: 10.1186/s13014-023-02250-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND This study was conducted to evaluate the efficiency and accuracy of the daily patient setup for breast cancer patients by applying surface-guided radiation therapy (SGRT) using the Halcyon system instead of conventional laser alignment based on the skin marking method. METHODS AND MATERIALS We retrospectively investigated 228 treatment fractions using two different initial patient setup methods. The accuracy of the residual rotational error of the SGRT system was evaluated by using an in-house breast phantom. The residual translational error was analyzed using the couch position difference in the vertical, longitudinal, and lateral directions between the reference computed tomography and daily kilo-voltage cone beam computed tomography acquired from the record and verification system. The residual rotational error (pitch, yaw, and roll) was also calculated using an auto rigid registration between the two images based on Velocity. The total setup time, which combined the initial setup time and imaging time, was analyzed to evaluate the efficiency of the daily patient setup for SGRT. RESULTS The average residual rotational errors using the in-house fabricated breast phantom for pitch, roll, and yaw were 0.14°, 0.13°, and 0.29°, respectively. The average differences in the couch positions for laser alignment based on the skin marking method were 2.7 ± 1.6 mm, 2.0 ± 1.2 mm, and 2.1 ± 1.0 mm for the vertical, longitudinal, and lateral directions, respectively. For SGRT, the average differences in the couch positions were 1.9 ± 1.2 mm, 2.9 ± 2.1 mm, and 1.9 ± 0.7 mm for the vertical, longitudinal, and lateral directions, respectively. The rotational errors for pitch, yaw, and roll without the surface-guided radiation therapy approach were 0.32 ± 0.30°, 0.51 ± 0.24°, and 0.29 ± 0.22°, respectively. For SGRT, the rotational errors were 0.30 ± 0.22°, 0.51 ± 0.26°, and 0.19 ± 0.13°, respectively. The average total setup times considering both the initial setup time and imaging time were 314 s and 331 s, respectively, with and without SGRT. CONCLUSION We demonstrated that using SGRT improves the accuracy and efficiency of initial patient setups in breast cancer patients using the Halcyon system, which has limitations in correcting the rotational offset.
Collapse
Affiliation(s)
- Seonghee Kang
- Department of Radiation Oncology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyeongmin Jin
- Department of Radiation Oncology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hwan Shin
- Department of Radiation Oncology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Nguyen D, Khodri M, Sporea C, Reinoso R, Jacob Y, Farah J. Investigating the robustness of the AlignRT InBore™ co-calibration process and determining the overall tracking errors. Phys Med 2023; 108:102567. [PMID: 36996575 DOI: 10.1016/j.ejmp.2023.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/05/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE To determine the overall tracking errors inherent to the co-calibration procedure of AlignRT InBore™'s (Vision RT Ltd., London, UK) ceiling-mounted and ring-mounted cameras. METHODS Extrinsic calibration errors related to the mismatch between ceiling and InBore cameras' isocentres and treatment isocentre were determined using MV images and the SRS package and compared to traditional plate-based error. Next, using a realistic anthropomorphic female phantom, intrinsic calibration errors were determined while varying source-skin distance (80 to 100 cm), breast board inclination (0° to 12.5°), room lighting conditions (0 to 258 lx), skin colour (dark, white and natural skin colour), and pod occlusion. RESULTS MV images of the cube proved plate-based calibration to suffer from large errors especially in the vertical direction (up to 2 mm). Intrinsic calibration errors were considerably lower. Indeed, RTD values of ceiling and InBore cameras showed little variability with isocentre depth (within 1.0 mm/0.4°), surface orientation and breast board inclination (within 0.7 mm/0.3°), changing lighting conditions (within 0.1 mm/0.2°), skin colour/tone (within 0.3 mm/0.3°) and camera pod occlusion (within 0.3 mm/0.2°). CONCLUSION The use of MV-images proved critical to maintain co-calibrating errors of ceiling and InBore cameras to Halcyon's treatment isocentre below 1 mm.
Collapse
|
14
|
Abubakar A, Shaukat SI, Karim NKA, Kassim MZ, Lim SY, Appalanaido GK, Zin HM. Accuracy of a time-of-flight (ToF) imaging system for monitoring deep-inspiration breath-hold radiotherapy (DIBH-RT) for left breast cancer patients. Phys Eng Sci Med 2023; 46:339-352. [PMID: 36847965 PMCID: PMC9969933 DOI: 10.1007/s13246-023-01227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023]
Abstract
Deep inspiration breath-hold radiotherapy (DIBH-RT) reduces cardiac dose by over 50%. However, poor breath-hold reproducibility could result in target miss which compromises the treatment success. This study aimed to benchmark the accuracy of a Time-of-Flight (ToF) imaging system for monitoring breath-hold during DIBH-RT. The accuracy of an Argos P330 3D ToF camera (Bluetechnix, Austria) was evaluated for patient setup verification and intra-fraction monitoring among 13 DIBH-RT left breast cancer patients. The ToF imaging was performed simultaneously with in-room cone beam computed tomography (CBCT) and electronic portal imaging device (EPID) imaging systems during patient setup and treatment delivery, respectively. Patient surface depths (PSD) during setup were extracted from the ToF and the CBCT images during free breathing and DIBH using MATLAB (MathWorks, Natick, MA) and the chest surface displacement were compared. The mean difference ± standard deviation, correlation coefficient, and limit of agreement between the CBCT and ToF were 2.88 ± 5.89 mm, 0.92, and - 7.36, 1.60 mm, respectively. The breath-hold stability and reproducibility were estimated using the central lung depth extracted from the EPID images during treatment and compared with the PSD from the ToF. The average correlation between ToF and EPID was - 0.84. The average intra-field reproducibility for all the fields was within 2.70 mm. The average intra-fraction reproducibility and stability were 3.74 mm, and 0.80 mm, respectively. The study demonstrated the feasibility of using ToF camera for monitoring breath-hold during DIBH-RT and shows good breath-hold reproducibility and stability during the treatment delivery.
Collapse
Affiliation(s)
- Auwal Abubakar
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
- Department of Medical Radiography, Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria.
| | - Shazril Imran Shaukat
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
- Oncology Unit, Pantai Hospital Sungai Petani, Bandar Amanjaya, 08000, Sungai Petani, Kedah, Malaysia
| | - Noor Khairiah A Karim
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
- Breast Cancer Translational Research Programme (BCTRP), Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Mohammed Zakir Kassim
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Siew Yong Lim
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Gokula Kumar Appalanaido
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Hafiz Mohd Zin
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
- Breast Cancer Translational Research Programme (BCTRP), Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
15
|
Carr MA, Gargett M, Stanton C, Zwan B, Byrne HL, Booth JT. A method for beam's eye view breath-hold monitoring during breast volumetric modulated arc therapy. Phys Imaging Radiat Oncol 2023; 25:100419. [PMID: 36875326 PMCID: PMC9975298 DOI: 10.1016/j.phro.2023.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Background and purpose Deep inspiration breath-hold (DIBH) is a technique that is widely utilised to spare the heart and lungs during breast radiotherapy. In this study, a method was developed to validate directly the intrafraction accuracy of DIBH during breast volumetric modulated arc therapy (VMAT) via internal chest wall (CW) monitoring. Materials and methods In-house software was developed to automatically extract and compare the treatment position of the CW in cine-mode electronic portal image device (EPID) images with the planned CW position in digitally reconstructed radiographs (DRR) for breast VMAT treatments. Feasibility of this method was established by evaluating the percentage of total dose delivered to the target volume when the CW was sufficiently visible for monitoring. Geometric accuracy of the approach was quantified by applying known displacements to an anthropomorphic thorax phantom. The software was used to evaluate (offline) the geometric treatment accuracy for ten patients treated using real-time position management (RPM)-guided DIBH. Results The CW could be monitored within the tangential sub-arcs which delivered a median 89% (range 73% to 97%) of the dose to target volume. The phantom measurements showed a geometric accuracy within 1 mm, with visual inspection showing good agreement between the software-derived and user-determined CW positions. For the RPM-guided DIBH treatments, the CW was found to be within ±5 mm of the planned position in 97% of EPID frames in which the CW was visible. Conclusion An intrafraction monitoring method with sub-millimetre accuracy was successfully developed to validate target positioning during breast VMAT DIBH.
Collapse
Affiliation(s)
- M A Carr
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, New South Wales, Australia
| | - M Gargett
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia.,School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - C Stanton
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - B Zwan
- Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| | - H L Byrne
- ACRF Image-X Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - J T Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Gnerucci A, Esposito M, Ghirelli A, Pini S, Paoletti L, Barca R, Fondelli S, Alpi P, Grilli B, Rossi F, Scoccianti S, Russo S. Surface-guided DIBH radiotherapy for left breast cancer: impact of different thresholds on intrafractional motion monitoring and DIBH stability. Strahlenther Onkol 2023; 199:55-66. [PMID: 36229656 DOI: 10.1007/s00066-022-02008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To compare two left breast cancer patient cohorts (tangential vs. locoregional deep-inspiration breath-hold - DIBH treatment) with different predefined beam gating thresholds and to evaluate their impact on motion management and DIBH stability. METHODS An SGRT-based clinical workflow was adopted for the DIBH treatment. Intrafractional monitoring was performed by tracking both the respiratory signal and the real-time displacement between the isocenter on the daily reference surface and on the live surface ("SGRT shift"). Beam gating tolerances were 5 mm/4 mm for the SGRT shifts and 5 mm/3 mm for the gating window amplitude for breast tangential and breast + lymph nodes locoregional treatments, respectively. A total of 24 patients, 12 treated with a tangential technique and 12 with a locoregional technique, were evaluated for a total number of 684 fractions. Statistical distributions of SGRT shift and respiratory signal for each treatment fraction, for each patient treatment, and for the two population samples were generated. RESULTS Lateral cumulative distributions of SGRT shifts for both locoregional and tangential samples were consistent with a null shift, whereas longitudinal and vertical ones were slightly negative (mean values < 1 mm). The distribution of the percentage of beam on time with SGRT shift > 3 mm, > 4 mm, or > 5 mm was extended toward higher values for the tangential sample than for the locoregional sample. The variability in the DIBH respiration signal was significantly greater for the tangential sample. CONCLUSION Different beam gating thresholds for surface-guided DIBH treatment of left breast cancer can impact motion management and DIBH stability by reducing the frequency of the maximum SGRT shift and increasing respiration signal stability when tighter thresholds are adopted.
Collapse
Affiliation(s)
- A Gnerucci
- Department of Physics and Astronomy, University of Florence, Florence, Italy.
| | - M Esposito
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - A Ghirelli
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Pini
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - L Paoletti
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - R Barca
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Fondelli
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - P Alpi
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - B Grilli
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - F Rossi
- Radiotherapy Unit, Azienda USL Toscana Sud Est, Grosseto, Italy
| | - S Scoccianti
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| |
Collapse
|
17
|
As Easy as 1, 2, 3? How to Determine CBCT Frequency in Adjuvant Breast Radiotherapy. Cancers (Basel) 2022; 14:cancers14174164. [PMID: 36077701 PMCID: PMC9454766 DOI: 10.3390/cancers14174164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The current study aims to assess the suitability of setup errors during the first three treatment fractions to determine cone-beam computed tomography (CBCT) frequency in adjuvant breast radiotherapy. For this, 45 breast cancer patients receiving non-hypofractionated radiotherapy after lumpectomy, including a simultaneous integrated boost (SIB) to the tumor bed and daily CBCT imaging, were retrospectively selected. In a first step, mean and maximum setup errors on treatment days 1–3 were correlated with the mean setup errors during subsequent treatment days. In a second step, dose distribution was estimated using a dose accumulation workflow based on deformable image registration, and setup errors on treatment days 1–3 were correlated with dose deviations in the clinical target volumes (CTV) and organs at risk (OAR). No significant correlation was found between mean and maximum setup errors on treatment days 1–3 and mean setup errors during subsequent treatment days. In addition, mean and maximum setup errors on treatment days 1–3 correlated poorly with dose coverage of the CTVs and dose to the OARs. Thus, CBCT frequency in adjuvant breast radiotherapy should not be determined solely based on the magnitude of setup errors during the first three treatment fractions.
Collapse
|
18
|
Costin IC, Marcu LG. Factors impacting on patient setup analysis and error management during breast cancer radiotherapy. Crit Rev Oncol Hematol 2022; 178:103798. [PMID: 36031175 DOI: 10.1016/j.critrevonc.2022.103798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is required to deliver an accurate dose to the tumor while protecting surrounding normal tissues. Breast cancer radiotherapy involves a number of factors that can influence patient setup and error management, including the immobilization device used, the verification system and the patient's treatment position. The aim of this review is to compile and discuss the setup errors that occur due to the above-mentioned factors. In view of this, a systematic search of the scientific literature in the Medline/PubMed databases was performed over the 1990-2021 time period, with 93 articles found to be relevant for the study. To be accessible to all, this study not only aims to identify factors impacting on patient setup analysis, but also seeks to evaluate the role of each verification device, board immobilization and position in influencing these errors.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; "Dr. Gavril Curteanu" County Hospital, Oradea 410469, Romania
| | - Loredana G Marcu
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania; Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
19
|
Li G. Advances and potential of optical surface imaging in radiotherapy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac838f. [PMID: 35868290 PMCID: PMC10958463 DOI: 10.1088/1361-6560/ac838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/22/2022] [Indexed: 11/12/2022]
Abstract
This article reviews the recent advancements and future potential of optical surface imaging (OSI) in clinical applications as a four-dimensional (4D) imaging modality for surface-guided radiotherapy (SGRT), including OSI systems, clinical SGRT applications, and OSI-based clinical research. The OSI is a non-ionizing radiation imaging modality, offering real-time 3D surface imaging with a large field of view (FOV), suitable for in-room interactive patient setup, and real-time motion monitoring at any couch rotation during radiotherapy. So far, most clinical SGRT applications have focused on treating superficial breast cancer or deep-seated brain cancer in rigid anatomy, because the skin surface can serve as tumor surrogates in these two clinical scenarios, and the procedures for breast treatments in free-breathing (FB) or at deep-inspiration breath-hold (DIBH), and for cranial stereotactic radiosurgery (SRS) and radiotherapy (SRT) are well developed. When using the skin surface as a body-position surrogate, SGRT promises to replace the traditional tattoo/laser-based setup. However, this requires new SGRT procedures for all anatomical sites and new workflows from treatment simulation to delivery. SGRT studies in other anatomical sites have shown slightly higher accuracy and better performance than a tattoo/laser-based setup. In addition, radiographical image-guided radiotherapy (IGRT) is still necessary, especially for stereotactic body radiotherapy (SBRT). To go beyond the external body surface and infer an internal tumor motion, recent studies have shown the clinical potential of OSI-based spirometry to measure dynamic tidal volume as a tumor motion surrogate, and Cherenkov surface imaging to guide and assess treatment delivery. As OSI provides complete datasets of body position, deformation, and motion, it offers an opportunity to replace fiducial-based optical tracking systems. After all, SGRT has great potential for further clinical applications. In this review, OSI technology, applications, and potential are discussed since its first introduction to radiotherapy in 2005, including technical characterization, different commercial systems, and major clinical applications, including conventional SGRT on top of tattoo/laser-based alignment and new SGRT techniques attempting to replace tattoo/laser-based setup. The clinical research for OSI-based tumor tracking is reviewed, including OSI-based spirometry and OSI-guided tumor tracking models. Ongoing clinical research has created more SGRT opportunities for clinical applications beyond the current scope.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States of America
| |
Collapse
|
20
|
A semi-automatic planning technique for whole breast irradiation with tangential IMRT fields. Phys Med 2022; 98:122-130. [DOI: 10.1016/j.ejmp.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022] Open
|
21
|
Naidoo W, Leech M. Feasibility of surface guided radiotherapy for patient positioning in breast radiotherapy versus conventional tattoo-based setups- a systematic review. Tech Innov Patient Support Radiat Oncol 2022; 22:39-49. [PMID: 35481261 PMCID: PMC9035716 DOI: 10.1016/j.tipsro.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background Traditionally tattoos are used for patient setup in radiotherapy. However they may pose challenges for the radiotherapists to achieve precise patient alignment, and serve as a permanent visual reminder of the patient’s diagnosis and often challenging cancer journey. The psychological impact of tattoos has been recognized in recent years. The increasing complexity of treatment techniques and the utilization of hypofractionated regimes, requires an enhanced level of accuracy and safety. Surface guided radiotherapy (SGRT) enables improvements in the accuracy and reproducibility of patient isocentric and postural alignment, enhanced efficiency, and safety in breast radiotherapy. Purpose The aim of this review was to compare the accuracy and reproducibility of SGRT to conventional tattoo-based setups in free-breathing breast radiotherapy and to determine if SGRT can reduce the frequency of routine image guided radiotherapy (IGRT). Materials and Methods A systematic literature review was performed as per PRISMA guidelines. Papers identified through PubMed, Embase, Web of Science and Google Scholar database searches between 2010 and 2021, were critically appraised. Systematic, random, mean residual errors and 3D vector shifts as determined by IGRT verification were analysed. Results A review of 13 full papers suggests SGRT improves the accuracy and reproducibility of patient setup in breast radiotherapy with consistent reductions in the residual errors. There appears to be a good correlation between SGRT setups and radiographic imaging. The frequency of IGRT and the corresponding dose could potentially be reduced. Additionally, SGRT improves treatment efficiency. Conclusion SGRT appears to have improved the accuracy and reproducibility of patient setup and treatment efficiency of breast radiotherapy compared to conventional tattoo/laser-based method, with the potential to reduce the frequency of routine IGRT. The reliance on tattoos in breast radiotherapy are likely to become obsolete with positive implications for both patients and clinical practice.
Collapse
|
22
|
Impact of Cold Weather on Setup Errors in Radiotherapy. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1463299. [PMID: 34804444 PMCID: PMC8601798 DOI: 10.1155/2021/1463299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Objective To investigate the influence of cold weather on setup errors of patients with chest and pelvic disease in radiotherapy. Methods The image-guided data of the patients were collected from the Radiotherapy Center of Cancer Hospital Affiliated to Guangxi Medical University from October 2020 to February 2021. During this period, the cold weather days were December 15, 16, and 17, 2020, and January 7 and 8, 2021. For body fixation in radiotherapy, an integrated plate and a thermoplastic mold were employed in 18 patients with chest disease, while an integrated plate and a vacuum pad were applied in 19 patients with pelvic disease. All patients underwent cone beam computed tomography (CBCT) scans in the first five treatments and once a week thereafter. The obtained data were registered to the planning CT image to get the setup errors of the patient in the translational direction including X, Y, and Z axes and rotational direction including R X , R Y , and R Z . Then, the Mann-Whitney U test was performed. The expansion boundary values of the chest and pelvis were calculated according to the formula M PTV=2.5∑+0.7δ. Results A total of 286 eligible results of CBCT scans were collected. There were 138 chest CBCT scans, including 26 taken in cold weather and 112 in usual weather, and 148 pelvic CBCT scans, including 33 taken in cold weather and 115 in usual weather. The X-, Y-, and Z-axis translational setup errors of patients with chest disease in the cold weather group were 0.16 (0.06, 0.32) cm, 0.25 (0.17, 0.52) cm, and 0.35 (0.21, 0.47) cm, respectively, and those in the usual weather group were 0.14 (0.08, 0.29) cm, 0.23 (0.13, 0.37) cm, and 0.18 (0.1, 0.35) cm, respectively. The results indicated that there was a statistical difference in the Z-axis translational error between the cold weather group and the usual weather group (U = 935.5; p=0.005 < 0.05), while there was no statistical difference in the rotational error between the two groups. The external boundary values of X, Y, and Z axes in the cold weather group were 0.57 cm, 0.92 cm, and 0.99 cm, respectively, and those in the usual weather group were 0.57 cm, 0.78 cm, and 0.68 cm, respectively. There was no significant difference in the translational and rotational errors of patients with pelvic disease between the cold weather group and the usual weather group (p < 0.05). The external boundary values of X, Y, and Z axes were 0.63 cm, 0.79 cm, and 0.68 cm in the cold weather group and 0.61 cm, 0.79 cm, and 0.61 cm in the usual weather group, respectively. Conclusion The setup error of patients undergoing radiotherapy with their bodies fixed by an integrated plate and a thermoplastic mold was greater in cold weather than in usual weather, especially in the ventrodorsal direction.
Collapse
|
23
|
Nazir S, Bert J, Fayad H, Visvikis D. Surface imaging for real-time patient positioning in external radiation therapy. Med Phys 2021; 48:8037-8044. [PMID: 34669989 DOI: 10.1002/mp.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In the last few years, there has been a growing interest in surface imaging for patient positioning in external radiation therapy. The aim of this study is to evaluate the accuracy of daily patient positioning using the Azure Kinect surface imaging. METHODS A total of 50 fractions in 10 patients including lung, pelvic, and head and neck tumors were analyzed in real time. A rigid registration algorithm, based on the iterative closest point (ICP) approach, is employed to estimate the patient position in 6 degrees of freedom (DOF). This position is compared to the reference values obtained by the radiograph imaging. The mean setup error and its standard deviation were calculated for all measured fractions. RESULTS The positioning error showed 1.1 ± 1.1 mm in lateral, 1.8 ± 2.1 mm in longitudinal, and 0.8 ± 1.1 mm in vertical, and 0.3°± 0.4° in yaw, 0.2°± 0.2° in pitch, and 0.2°± 0.2° in roll directions. The larger setup error occurred in pelvic regions. CONCLUSION We have evaluated in a radiotherapy set-up considering different patient anatomical locations, a depth measurement based surface imaging solution for patient positioning considering the 6 DOF couch motion. We showed that the proposed solution allows an accurate patient positioning without the need for patient markings or the use of additional radiation dose.
Collapse
Affiliation(s)
- Souha Nazir
- INSERM, UMR1101, LaTIM, University of Brest, Brest, France
| | - Julien Bert
- INSERM, UMR1101, LaTIM, University of Brest, Brest, France
| | - Hadi Fayad
- Hamad Medical Corporation OHS, PET/CT Center, Doha, Qatar
| | | |
Collapse
|
24
|
Borm KJ, Junker Y, Düsberg M, Devečka M, Münch S, Dapper H, Oechsner M, Combs SE. Impact of CBCT frequency on target coverage and dose to the organs at risk in adjuvant breast cancer radiotherapy. Sci Rep 2021; 11:17378. [PMID: 34462489 PMCID: PMC8405651 DOI: 10.1038/s41598-021-96836-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
The current study aims to assess the effect of cone beam computed tomography (CBCT) frequency during adjuvant breast cancer radiotherapy with simultaneous integrated boost (SIB) on target volume coverage and dose to the organs at risk (OAR). 50 breast cancer patients receiving either non-hypofractionated or hypofractionated radiotherapy after lumpectomy including a SIB to the tumor bed were selected for this study. All patients were treated in volumetric modulated arc therapy (VMAT) technique and underwent daily CBCT imaging. In order to estimate the delivered dose during the treatment, the applied fraction doses were recalculated on daily CBCT scans and accumulated using deformable image registration. Based on a total of 2440 dose recalculations, dose coverage in the clinical target volumes (CTV) and OAR was compared depending on the CBCT frequency. The estimated delivered dose (V95%) for breast-CTV and SIB-CTV was significantly lower than the planned dose distribution, irrespective of the CBCT-frequency. Between daily CBCT and CBCT on alternate days, no significant dose differences were found regarding V95% for both, breast-CTV and SIB-CTV. Dose distribution in the OAR was similar for both imaging protocols. Weekly CBCT though led to a significant decrease in dose coverage compared to daily CBCT and a small but significant dose increase in most OAR. Daily CBCT imaging might not be necessary to ensure adequate dose coverage in the target volumes while efficiently sparing the OAR during adjuvant breast cancer radiotherapy with SIB.
Collapse
Affiliation(s)
- Kai J Borm
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany.
| | - Yannis Junker
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Mathias Düsberg
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Michal Devečka
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Stefan Münch
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Hendrik Dapper
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Markus Oechsner
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Medical School, Technical University Munich, Ismaningerstraße 22, 81675, Munich, Germany.,Deutsches Konsortium Für Translationale Krebsforschung (DKTK)-Partner Site Munich, Munich, Germany.,Institute of Radiation Medicine, Helmholtzzentrum München, Munich, Germany
| |
Collapse
|
25
|
Laaksomaa M, Moser T, Kritz J, Pynnönen K, Rossi M. Comparison of three differently shaped ROIs in free breathing breast radiotherapy setup using surface guidance with AlignRT ®. Rep Pract Oncol Radiother 2021; 26:545-552. [PMID: 34434570 DOI: 10.5603/rpor.a2021.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background Setup accuracy within adjuvant radiotherapy of breast cancer treated in free breathing is well studied, but a comparison of the typical regions of interest (ROI) used in surface guided radiation therapy (SGRT) does not exist. The aim of this study was to estimate the setup accuracy obtained with differently shaped ROIs in SGRT. Materials and methods A total of 573 orthogonal image pairs were analyzed from free breathing breast patients in two groups: positioning using AlignRT® surface guidance system (Group A, n = 20), and setup using conventional laser and tattoo setup (Group L, n = 20). For SGRT, three different setup ROIs were used: a Breast-shaped, O-shaped and T-shaped (B-O and T-ROI). We evaluated the isocenter-, rotation-, pitch and arm position accuracy and residual errors for the chest wall and shoulder joint in kV orthogonal and tangential setup images with laser- or SGRT-based setup. Results Less isocenter variance was found in Group A than in Group L. Rotations and posture errors were larger in group L than in Group A (p ≤ 0.05). Rotation error was smaller with T-shaped ROI than with O- or B-shape (p = 0.01-0.04). Conclusion Setup with AlignRT® improves reproducibility compared to laser setup. Between the different ROI shapes only small differences were found in the patient posture or the isocenter position in the images. The T-ROI is recommended to set up the chest wall bony structure and an additional B-ROI may be used to fine-tune the soft tissue accuracy.
Collapse
Affiliation(s)
- Marko Laaksomaa
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | | | - Julia Kritz
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Kiira Pynnönen
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Maija Rossi
- Department of Oncology, Tampere University Hospital, Tampere, Finland.,Department of Medical Physics, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
26
|
Performance assessment of surface-guided radiation therapy and patient setup in head-and-neck and breast cancer patients based on statistical process control. Phys Med 2021; 89:243-249. [PMID: 34428608 DOI: 10.1016/j.ejmp.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To assess the effectiveness of SGRT in clinical applications through statistical process control (SPC). METHODS Taking the patients' positioning through optical surface imaging (OSI) as a process, the average level of process execution was defined as the process mean. Setup errors detected by cone-beam computed tomography (CBCT) and OSI were extracted for head-and-neck cancer (HNC) and breast cancer patients. These data were used to construct individual and exponentially weighted moving average (EWMA) control charts to analyze outlier fractions and small process shifts from the process mean. Using the control charts and process capability indices derived from this process, the patient positioning-related OSI performance and setup error were analyzed for each patient. RESULTS Outlier fractions and small shifts from the process mean that are indicative of setup errors were found to be widely prevalent, with the outliers randomly distributed between fractions. A systematic error of up to 1.6 mm between the OSI and CBCT results was observed in all directions, indicating a significantly degraded OSI performance. Adjusting this systematic error for each patient using setup errors of the first five fractions could effectively mitigate these effects. Process capability analysis following adjustment for systematic error indicated that OSI performance was acceptable (process capability index Cpk = 1.0) for HNC patients but unacceptable (Cpk < 0.75) for breast cancer patients. CONCLUSION SPC is a powerful tool for detecting the outlier fractions and process changes. Our application of SPC to patient-specific evaluations validated the suitability of OSI in clinical applications involving patient positioning.
Collapse
|
27
|
Zhou J, Li S, Ye C, Shen K, Li A, Chen G, Li X, Bai S, Wang W, Zhong R. Analysis of local setup errors of sub-regions in cone-beam CT-guided post-mastectomy radiation therapy. JOURNAL OF RADIATION RESEARCH 2021; 61:457-463. [PMID: 32100830 PMCID: PMC7299271 DOI: 10.1093/jrr/rraa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/27/2019] [Indexed: 02/05/2023]
Abstract
The purpose of the study was to quantify local setup errors and evaluate the planning target volume (PTV) margins for sub-regions in cone-beam computed tomography (CBCT)-guided post-mastectomy radiation therapy (PMRT). The local setup errors of 20 patients undergoing CBCT-guided PMRT were analysed retrospectively. Image registration between CBCT and planning CT was performed using four sub-regions of interest (ROIs): the supraclavicular area (SROI), ipsilateral chest wall region (CROI), ipsilateral chest wall plus supraclavicular region (SROI + CROI) and vertebral region (TROI). Bland–Altman analysis, correlation, local setup errors and PTV margins among these ROIs were evaluated. There was no significant consistency or correlation for registration results between the TROI and the CROI or SROI regions on any translational axis. When using the SROI + CROI as the ROI, the systematic error (Σ) and random error (σ) of the local setup errors for the CROI region were 1.81, 1.19 and 1.76 mm and 1.84, 2.64 and 3.00 mm along the medial–lateral (ML), superior–inferior (SI) and anterior–posterior (AP) directions, respectively. The PTV margins for the CROI region were 5.80, 4.82 and 6.50 mm. The Σ and σ of the local setup errors for the SROI region were 1.29, 1.15 and 0.77 mm and 1.96, 2.65 and 2.2 mm, respectively, and the PTV margins were 4.59, 4.73 and 3.47 mm. Large setup errors and local setup errors occur in PMRT. The vertebral body should not be a position surrogate for the supraclavicular region or chest wall. To compensate for the local setup errors, different PTV margins are required, even with CBCT guidance.
Collapse
Affiliation(s)
- Jidan Zhou
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Shuai Li
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Chengwei Ye
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Konglong Shen
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - An Li
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Gang Chen
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xiaoyu Li
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Sen Bai
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Weifeng Wang
- Department of Radiotherapy, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou 434020, P.R. China
| | - Renming Zhong
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
28
|
Shen K, Xiong J, Wang Z, Wang W, Li W, Zhou J, Deng Z, Li B, Zhong R. Design of a new breast vacuum bag to reduce the global and local setup errors and to reduce PTV margin in post-mastectomy radiation therapy. JOURNAL OF RADIATION RESEARCH 2020; 61:985-992. [PMID: 32823282 PMCID: PMC7674700 DOI: 10.1093/jrr/rraa066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Indexed: 02/05/2023]
Abstract
To design a new breast vacuum bag to reduce global and local setup errors in post-mastectomy radiation therapy (PMRT). A total of 24 PMRT patients were immobilized with an old vacuum bag and 26 PMRT patients were immobilized with a new vacuum bag. The registration results were analysed using four regions of interest (ROI): the global ROI [including the whole region of the planning target volume (PTV), GROI], the supraclavicular area (SROI), the ipsilateral chest wall region (CROI) and the ipsilateral arm region (AROI). The global and local setup errors of the two groups were compared. The global setup errors of the new vacuum group were significantly smaller than those in the old vacuum group with the exception of yaw axes (P < 0.05). The systematic error (Σ) and random error (σ) ranged from 1.21 to 2.13 mm. In the new vacuum group, the local setup errors in the medial-lateral (ML) direction and roll axes for CROI (the Σ and σ ranged from 0.65 to 1.35 mm), and the local setup errors in ML and superior-inferior (SI) directions for SROI were significantly smaller than those in the old vacuum group. The total required PTV margins for the chest wall in ML, SI, and anterior-posterior (AP) were 4.40, 3.12 and 3.77 mm respectively. The new vacuum bag can significantly reduce the global setup errors and local setup errors in PMRT. The respiratory motion of the chest wall was negligible, and the 5 mm PTV margin could cover the local setup errors in PMRT using the new vacuum bag with cone beam CT (CBCT) correction.
Collapse
Affiliation(s)
- Konglong Shen
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Xiong
- Radiology Department, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Zhiguo Wang
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Weifeng Wang
- Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jinzhou 121001, P.R. China
| | - Wan Li
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jidan Zhou
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Zhonghua Deng
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Bin Li
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Renming Zhong
- Department of Radiotherapy, Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
29
|
Pallotta S, Kugele M, Redapi L, Ceberg S. Validation of a commercial deformable image registration for surface-guided radiotherapy using an ad hoc-developed deformable phantom. Med Phys 2020; 47:6310-6318. [PMID: 33034065 DOI: 10.1002/mp.14527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The use of optical surface systems (OSSs) for patient setup verification in external radiation therapy is increasing. To manage potential deformations in a patient's anatomy, a novel deformable image registration (DIR) tool has been applied in a commercial OSS. In this study we investigate the accuracy of the DIR as compared to rigid image registration (RR). METHODS AND MATERIALS The positioning accuracy of the DIR and RR implemented in the OSS was investigated using an ad hoc-developed anthropomorphic deformable phantom, named Mary. The phantom consists of 33 slices of expanded polystyrene slabs shaped thus to simulate part of a female body. Anatomical details, simulating the ribs and spinal cord, together with 10 inner targets at different depths are included in thorax and abdominal parts. Mary is capable of realistic body movements and deformations, such as head and arm rotations, body torsion and moderate breast/abdomen swelling. The accuracy of DIR and RR was investigated for four internal targets after deliberately deforming the phantom nine times. Breast and abdomen enlargements and torsions around x, y, and z axes were applied. For reference purposes, rigid displacements (where Mary's anatomy was kept intact) were included. The phantom was positioned on the linac couch under the OSS guidance and for each target and displacement a CBCT was acquired. The accuracy of DIR and RR was assessed evaluating the difference in means of absolute values between CBCT and the OSS registration parameters (lateral, longitudinal, vertical, rot, pitch, and roll), using both a reference surface extracted from CT (CTr) or acquired with the OSS (OSSr). A comparison of the four different combinations, DIR + OSSr, DIR + CTr, RR + OSSr, and RR + CTr, was carried out to evaluate the position accuracy for the various combinations. Finally, the positioning accuracy of the different target positions using only OSSr was investigated for the DIR. A paired sample Wilcoxon signed-rank test (P < 0.05) and a two-tailed Mann-Whitney test (P < 0.05) were carried out. RESULTS The DIR in combination with OSSr showed significantly (P < 0.05) improved positioning accuracy in the lateral and longitudinal directions and in pitch, compared to RR, when deformations were applied to Mary. The positioning accuracy improved from 1.9 ± 1.5 mm, 1.1 ± 0.8 mm to 1.1 ± 1.2 mm, 0.6 ± 0.5 mm in lateral and longitudinal directions, respectively, and from 0.8 ± 0.6° to 0.4 ± 0.4° in pitch, using DIR compared to RR. Both the DIR and RR showed a similar positioning accuracy when rigid displacements of Mary were applied. For DIR, the OSSr generally showed improved calculation accuracy compared to CTr. Independent of the reference image used, the target position influenced the registration accuracy, and hence, one target could not be evaluated using RR due to its inability to calculate the correct position. CONCLUSIONS Improved positioning accuracy was observed for DIR with respect to RR when deformations of Mary's anatomy were applied. For both DIR and RR, improved positioning accuracy was observed using OSSr as compared to CTr. The position of the target inside the phantom influenced the positioning accuracy for DIR.
Collapse
Affiliation(s)
- Stefania Pallotta
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy.,Medical Physics Unit AOU Careggi, Florence, Italy
| | - Malin Kugele
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Laura Redapi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Sofie Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Kukolowicz P, Mietelska M, Kiprian D. Effectiveness of the No action level protocol for head & neck patients - Time considerations. Rep Pract Oncol Radiother 2020; 25:828-831. [PMID: 32999632 DOI: 10.1016/j.rpor.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/03/2020] [Accepted: 04/02/2020] [Indexed: 01/07/2023] Open
Abstract
Background The No Action Protocol (NAL) was used to diminish the systematic set-up error. Recently, owing to the development of image registration technologies, the on-line positioning control is more often used. This method significantly reduces the CTV-PTV margin at the expense of the lengthening of a treatment session. The efficiency of NAL in decreasing the total treatment time for Head&Neck patients was investigated. Methods Results of set-up control of 30 patients were analyzed. The set-up control was carried out on-line. For each patient and each fraction, the set-error and the time needed for making the set-up control procedure were measured. Next, retrospectively, the NAL was applied to this data. The number of initial errors (without interventions) and after NAL protocol were compared in terms of errors larger than 3 and 4 mm. The average and total time used for portal control was calculated and compared. Results The number of setup errors in the posterior-anterior, inferior-superior, and right-left directions ≥3 mm and ≥4 mm were 98, 79, and 91 sessions and 44, 38 and 30 sessions out of 884 sessions. After NAL protocol the number of errors ≥3 mm and ≥4 mm decreased to 84, 57, and 39 sessions and 31, 15 and 10 sessions, respectively. The average time needed for one set-up control was 5.1 min. NAL protocol allows saving 4049 min for the whole group. Conclusions For locations where the random set-up errors are small, the NAL enables a very precise treatment of patients. Implementation of this protocol significantly decreases the total treatment time.
Collapse
Affiliation(s)
- Pawel Kukolowicz
- Medical Department Physics Department, Maria Sklodowska - Curie Memorial Cancer Center and Institute of Oncology, 5 Roentgena Street, 02-81 Warsaw, Poland
| | - Monika Mietelska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland
| | - Dorota Kiprian
- Head and Neck Cancer Department, Maria Sklodowska - Curie Memorial Cancer Center and Institute of Oncology, 5 Roentgena Street, 02-81 Warsaw, Poland
| |
Collapse
|
31
|
Crawl positioning improves set-up precision and patient comfort in prone whole breast irradiation. Sci Rep 2020; 10:16376. [PMID: 33009448 PMCID: PMC7532156 DOI: 10.1038/s41598-020-72702-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/06/2020] [Indexed: 12/25/2022] Open
Abstract
Prone positioning for whole-breast irradiation (WBI) reduces dose to organs at risk, but reduces set-up speed, precision, and comfort. We aimed to improve these problems by placing patients in prone crawl position on a newly developed crawl couch (CrC). A group of 10 right-sided breast cancer patients requiring WBI were randomized in this cross-over trial, comparing the CrC to a standard prone breastboard (BB). Laterolateral (LL), craniocaudal (CC) and anterioposterior (AP) set-up errors were evaluated with cone beam CT. Comfort, preference and set-up time (SUT) were assessed. Forty left and right-sided breast cancer patients served as a validation group. For BB versus CrC, AP, LL and CC mean patient shifts were - 0.8 ± 2.8, 0.2 ± 11.7 and - 0.6 ± 4.4 versus - 0.2 ± 3.3, - 0.8 ± 2.5 and - 1.9 ± 5.7 mm. LL shift spread was reduced significantly. Nine out of 10 patients preferred the CrC. SUT did not differ significantly. The validation group had mean patient shifts of 1.7 ± 2.9 (AP), 0.2 ± 3.6 (LL) and - 0.2 ± 3.3 (CC) mm. Mean SUT in the validation group was 1 min longer (P < 0.05) than the comparative group. Median SUT was 3 min in all groups. The CrC improved precision and comfort compared to BB. Set-up errors compare favourably to other prone-WBI trials and rival supine positioning.
Collapse
|
32
|
Rigley J, Robertson P, Scattergood L. Radiotherapy without tattoos: Could this work? Radiography (Lond) 2020; 26:288-293. [PMID: 32245712 DOI: 10.1016/j.radi.2020.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/01/2022]
Abstract
INTRODUCTION An evaluation to compare the traditional tattoo based set up procedure with a surface guided method to assess the possibility of eliminating permanent tattoos in breast cancer patents who are undergoing radiotherapy to the breast/chest wall. METHODS Forty-three patients that were having radiotherapy to the breast or chest wall were included in this evaluation. The patients were divided into two groups and further divided into 2 sub-groups. The first group received standard dark ink tattoos and were positioned by aligning these tattoos with lasers. The second group had no tattoo's and were positioned using the Surface-Guided technology (SGRT). Within each group the patients were split into 2 sub-group; right and left sided treatment areas. The right side were treated using a Free-Breathing (FB) technique and the left sided were treated using a Deep-Inspiration Breath-Hold (DIBH) technique. RESULTS For the patients having right sided breast radiotherapy, the mean shift using the standard tattoos and laser set up was 0.52 cm, compared with using the SGRT method where the mean shift was 0.47 cm. (p-value 0.04) For patients having left sided breast radiotherapy with DIBH the mean shift using the standard tattoo's and laser set up was 0.76 cm, compared with a mean shift of 0.45 cm using SGRT alone (p-value < 0.001). CONCLUSION The elimination of tattoos together with SGRT offers a comparable set-up for right sided breast treatments against the traditional tattoo method. A significant set-up improvement was observed for the left sided breast DIBH treatments. IMPLICATIONS FOR PRACTICE To set up patients having breast Radiotherapy, with no tattoo's.
Collapse
Affiliation(s)
- J Rigley
- GenesisCare Nottingham, The Park Centre of Oncology, Sherwood Lodge Drive, Nottingham, NG5 8RX, UK.
| | - P Robertson
- GenesisCare Guildford, 46 Harvey Road, Guildford, GU1 3XL, UK
| | - L Scattergood
- GenesisCare Nottingham, The Park centre of oncology, Sherwood Lodge Drive, Nottingham, NG5 8RX, UK
| |
Collapse
|
33
|
Liang X, Bradley JA, Mailhot Vega RB, Rutenberg M, Zheng D, Getman N, Norton KW, Mendenhall N, Li Z. Using Robust Optimization for Skin Flashing in Intensity Modulated Radiation Therapy for Breast Cancer Treatment: A Feasibility Study. Pract Radiat Oncol 2020; 10:59-69. [PMID: 31627030 DOI: 10.1016/j.prro.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To study the feasibility and the effectiveness of a novel implementation of robust optimization on 2 sets of computed tomography (CT) data simultaneously for skin flashing in intensity modulated radiation therapy for breast cancer. METHOD AND MATERIALS Five patients who received treatment to the breast and regional lymphatics were selected for this study. For each patient, 3 plans were generated using 3 different skin-flashing methods, including (1) a manual flash plan with optimization on the nominal planning target volume (PTV) not extending beyond the skin that required manually postplanning the opening of the multi-leaf collimator and jaw to obtain flash; (2) an expanded PTV plan with optimization on an expanded PTV that included the target in the air beyond the skin; and (3) a robust-optimized (RO) plan using robust optimization that simultaneously optimizes on the nominal CT data set and a simulated geometry error CT data set. The feasibility and the effectiveness of the robust optimization approach was investigated by comparing it with the 2 other methods. The robustness of the plan against target position variations was studied by simulating 0-, 5-, 10-, and 15-mm geometry errors. RESULTS The RO plans were the only ones able to meet acceptable criteria for all patients in both the nominal and simulated geometry error scenarios. The expanded PTV plans developed major deviation on the maximum dose to the PTV for 1 patient. For the manual flash plans, every patient developed major deviation either on 95% of the dose to the PTV or the maximum dose to the PTV in the simulated geometry error scenarios. The RO plan demonstrated the best robustness against the target position variation among the 3 methods of skin flashing. The doses to the lung and heart were comparable for all 3 planning techniques. CONCLUSION Using robust optimization for skin flash in breast intensity modulated radiation therapy planning is feasible. Further investigation is warranted to confirm the clinical effectiveness of this novel approach.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida.
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Raymond B Mailhot Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Michael Rutenberg
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nataliya Getman
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Kelly W Norton
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Nancy Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Zuofeng Li
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| |
Collapse
|
34
|
Hattel SH, Andersen PA, Wahlstedt IH, Damkjaer S, Saini A, Thomsen JB. Evaluation of setup and intrafraction motion for surface guided whole-breast cancer radiotherapy. J Appl Clin Med Phys 2019; 20:39-44. [PMID: 31187538 PMCID: PMC6560238 DOI: 10.1002/acm2.12599] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
Surface Guided Radiotherapy (SGRT) is a relatively new technique for positioning patients and for monitoring patient movement during treatment. SGRT is completely non-invasive since it uses visible light for determining the position of the patient surface. A reduction in daily imaging for patient setup is possible if the accuracy of SGRT is comparable to imaging. It allows for monitoring of intrafraction motion and the radiation beam can be held beyond a certain threshold resulting in a more accurate irradiation. The purpose of this study was to investigate setup uncertainty and the intrafraction motion in non-gated whole breast cancer radiotherapy treatment using an integrated implementation of AlignRT (OSMS) system as SGRT. In initial setup, SGRT was compared to three-point setup using tattoos on the patient and orthogonal kV imaging. For the investigation of intrafraction motion, OSMS monitored the patient with six degrees of freedom during treatment. Using three-point setup resulted in a setup root-mean-square error from the isocenter of 5.4 mm. This was improved to 4.2 mm using OSMS. For the translational directions, OSMS showed improvements in the lateral direction (P = 0.0009, Wilcoxon rank-sum), but for the longitudinal direction and rotation it was not possible to show improvements (P = 0.96 and P = 0.46, respectively). The vertical direction proved more accurate for three-point setup than OSMS (P = 0.000004). Intrafraction motion was very limited with a translational median of 1.1 mm from the isocenter. While OSMS showed marked improvements over laser and tattoo setup, the system did not prove accurate enough to replace the daily orthogonal kV images aligned to bony anatomy.
Collapse
Affiliation(s)
- Sandra Helene Hattel
- Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | - Isak Hannes Wahlstedt
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark
| | - Sidsel Damkjaer
- Department of Clinical Oncology and Radiotherapy, Zealand University Hospital, Naestved, Denmark
| | - Arpit Saini
- Department of Clinical Oncology and Radiotherapy, Zealand University Hospital, Naestved, Denmark
| | - Jakob Borup Thomsen
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
35
|
Moser T, Creed M, Walker R, Meier G. Radiotherapy tattoos: Women's skin as a carrier of personal memory-What do we cause by tattooing our patients? Breast J 2019; 26:316-318. [PMID: 31524308 PMCID: PMC7065023 DOI: 10.1111/tbj.13591] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/28/2022]
|
36
|
Pazos M, Walter F, Reitz D, Schönecker S, Konnerth D, Schäfer A, Rottler M, Alongi F, Freislederer P, Niyazi M, Belka C, Corradini S. Impact of surface-guided positioning on the use of portal imaging and initial set-up duration in breast cancer patients. Strahlenther Onkol 2019; 195:964-971. [PMID: 31332457 DOI: 10.1007/s00066-019-01494-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/27/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The impact of optical surface guidance on the use of portal imaging and the initial set-up duration in patients receiving postoperative radiotherapy of the breast or chest wall was investigated. MATERIAL AND METHODS A retrospective analysis was performed including breast cancer patients who received postoperative radiotherapy between January 2016 and December 2016. One group of patients received treatment before the optical surface scanner was installed (no-OSS) and the other group was positioned using the additional information derived by the optical surface scanner (OSS). The duration of the initial set-up was recorded for each patient and a comparison of both groups was performed. Accordingly, the differences between planned and actually acquired portal images during the course of radiotherapy were compared between both groups. RESULTS A total of 180 breast cancer patients were included (90 no-OSS, 90 OSS) in this analysis. Of these, 30 patients with left-sided breast cancer received radiotherapy in deep inspiration breath hold (DIBH). The mean set-up time was 10 min and 18 s and no significant difference between the two groups of patients was found (p = 0.931). The mean set-up time in patients treated without DIBH was 9 min and 45 s compared to 13 min with DIBH (p < 0.001), as portal imaging was performed in DIBH. No significant difference was found in the number of acquired to the planned number of portal images during the entire radiotherapy treatment for both groups (p = 0.287). CONCLUSION Optical surface imaging is a valuable addition for primary patient set-up. The findings confirm that the addition of surface-based imaging did not prolong the clinical workflow and had no significant impact on the number of portal verification images carried out during the course of radiotherapy.
Collapse
Affiliation(s)
- Montserrat Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | - Daniel Reitz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Dinah Konnerth
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Annemarie Schäfer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Maya Rottler
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar-Verona, Italy.,University of Brescia, Brescia, Italy
| | - Philipp Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
37
|
Hamming VC, Visser C, Batin E, McDermott LN, Busz DM, Both S, Langendijk JA, Sijtsema NM. Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction monitoring. Radiat Oncol 2019; 14:125. [PMID: 31296245 PMCID: PMC6624957 DOI: 10.1186/s13014-019-1329-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/27/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To determine the accuracy of a surface guided radiotherapy (SGRT) system for positioning of breast cancer patients in breath-hold (BH) with respect to cone-beam computed tomography (CBCT). Secondly, to evaluate the thorax position stability during BHs with SGRT, when using an air-volume guidance system. METHODS AND MATERIALS Eighteen left-sided breast cancer patients were monitored with SGRT during CBCT and treatment, both in BH. CBCT scans were matched on the target volume and the patient surface. The setup error differences were evaluated, including with linear regression analysis. The intra-fraction variability and stability of the air-volume guided BHs were determined from SGRT measurements. The variability was determined from the maximum difference between the different BH levels within one treatment fraction. The stability was determined from the difference between the start and end position of each BH. RESULTS SGRT data correlated well with CBCT data. The correlation was stronger for surface-to-CBCT (0.61) than target volume-to-CBCT (0.44) matches. Systematic and random setup error differences were ≤ 2 mm in all directions. The 95% limits of agreement (mean ± 2SD) were 0.1 ± 3.0, 0.6 ± 4.1 and 0.4 ± 3.4 mm in the three orthogonal directions, for the surface-to-CBCT matches. For air-volume guided BHs, the variability detected with SGRT was 2.2, 2.8 and 2.3 mm, and the stability - 1.0, 2.1 and 1.5 mm, in three orthogonal directions. Furthermore, the SGRT system could detect unexpected patient movement, undetectable by the air-volume BH system. CONCLUSION With SGRT, left-sided breast cancer patients can be positioned and monitored continuously to maintain position errors within 5 mm. Low intra-fraction variability and good stability can be achieved with the air-volume BH system, however, additional patient position information is available with SGRT, that cannot be detected with air-volume BH systems.
Collapse
Affiliation(s)
- Vincent C. Hamming
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Christa Visser
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Estelle Batin
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Leah N. McDermott
- Department of Radiation Oncology, Northwest Clinics, Alkmaar, The Netherlands
| | - Dianne M. Busz
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nanna M. Sijtsema
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
38
|
Laaksomaa M, Sarudis S, Rossi M, Lehtonen T, Pehkonen J, Remes J, Luukkanen H, Skyttä T, Kapanen M. AlignRT ® and Catalyst™ in whole-breast radiotherapy with DIBH: Is IGRT still needed? J Appl Clin Med Phys 2019; 20:97-104. [PMID: 30861276 PMCID: PMC6414178 DOI: 10.1002/acm2.12553] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/16/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose Surface guided radiotherapy (SGRT) is reported as a feasible setup technique for whole‐breast radiotherapy in deep inspiration breath hold (DIBH), but position errors of bony structures related to deeper parts of the target are not fully known. The aim of this study was to estimate patient setup accuracy and margins obtained with two different SGRT workflows with and without daily kV‐ and/or MV‐based image guidance (IGRT). Methods A total of 50 breast cancer patients were treated in DIBH, using SGRT for the patient setup, and IGRT for isocenter corrections. The patients were treated at two different departments, one using AlignRT® (25 patients) and the other using Catalyst™ (25 patients). Inter‐fractional position errors were analyzed retrospectively in orthogonal and tangential setup images, and analyzed with and without IGRT. Results In the orthogonal kV‐kV images, the systematic residual errors of the bony structures were ≤ 3 mm in both groups with SGRT‐only. When fine‐adjusted by daily IGRT, the errors decreased to ≤ 2 mm; except for the shoulder joint. The residual errors of the ribs in tangential images were between 1 and 2 mm with both workflows. The heart planning margins were between 3 and 7 mm. Conclusions The frequency of IGRT may be considerably reduced with a well‐planned SGRT‐workflow for whole‐breast DIBH with residual errors ≤ 3 mm. This accuracy can be further improved with an IGRT scheme.
Collapse
Affiliation(s)
- Marko Laaksomaa
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Sebastian Sarudis
- Department of Medical Physics, Länssjukhuset Ryhov, Jönköping, Sweden
| | - Maija Rossi
- Department of Oncology, Tampere University Hospital, Tampere, Finland.,Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| | - Turkka Lehtonen
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Jani Pehkonen
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Jenny Remes
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Helmi Luukkanen
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Tanja Skyttä
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Mika Kapanen
- Department of Oncology, Tampere University Hospital, Tampere, Finland.,Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
39
|
Kost S, Guo B, Xia P, Shah C. Assessment of Setup Accuracy Using Anatomical Landmarks for Breast and Chest Wall Irradiation With Surface Guided Radiation Therapy. Pract Radiat Oncol 2019; 9:239-247. [DOI: 10.1016/j.prro.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/14/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
|
40
|
Kalet AM, Cao N, Smith WP, Young L, Wootton L, Stewart RD, Fang LC, Kim J, Horton T, Meyer J. Accuracy and stability of deep inspiration breath hold in gated breast radiotherapy – A comparison of two tracking and guidance systems. Phys Med 2019; 60:174-181. [DOI: 10.1016/j.ejmp.2019.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/14/2019] [Accepted: 03/24/2019] [Indexed: 01/22/2023] Open
|