1
|
Capon TR, Garner MG, Tapsuwan S, Roche S, Breed AC, Liu S, Miller C, Bradhurst R, Hamilton S. A Simulation Study of the Use of Vaccination to Control Foot-and-Mouth Disease Outbreaks Across Australia. Front Vet Sci 2021; 8:648003. [PMID: 34458348 PMCID: PMC8385296 DOI: 10.3389/fvets.2021.648003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/07/2021] [Indexed: 11/15/2022] Open
Abstract
This study examines the potential for foot-and-mouth disease (FMD) control strategies that incorporate vaccination to manage FMD spread for a range of incursion scenarios across Australia. Stakeholder consultation was used to formulate control strategies and incursion scenarios to ensure relevance to the diverse range of Australian livestock production regions and management systems. The Australian Animal Disease Spread model (AADIS) was used to compare nine control strategies for 13 incursion scenarios, including seven control strategies incorporating vaccination. The control strategies with vaccination differed in terms of their approaches for targeting areas and species. These strategies are compared with two benchmark strategies based on stamping out only. Outbreak size and duration were compared in terms of the total number of infected premises, the duration of the control stage of an FMD outbreak, and the number of vaccinated animals. The three key findings from this analysis are as follows: (1) smaller outbreaks can be effectively managed by stamping out without vaccination, (2) the size and duration of larger outbreaks can be significantly reduced when vaccination is used, and (3) different vaccination strategies produced similar reductions in the size and duration of an outbreak, but the number of animals vaccinated varied. Under current international standards for regaining FMD-free status, vaccinated animals need to be removed from the population at the end of the outbreak to minimize trade impacts. We have shown that selective, targeted vaccination strategies could achieve effective FMD control while significantly reducing the number of animals vaccinated.
Collapse
Affiliation(s)
| | | | | | - Sharon Roche
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, ACT, Australia
| | - Andrew C Breed
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, ACT, Australia.,School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Shuang Liu
- CSIRO Land & Water, Acton, ACT, Australia
| | - Corissa Miller
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, ACT, Australia
| | - Richard Bradhurst
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Melbourne, VIC, Australia
| | - Sam Hamilton
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, ACT, Australia
| |
Collapse
|
2
|
Sanson RL, Yu ZD, Rawdon TG, van Andel M. Informing adaptive management strategies: Evaluating a mechanism to predict the likely qualitative size of foot-and-mouth disease outbreaks in New Zealand using data available in the early response phase of simulated outbreaks. Transbound Emerg Dis 2020; 68:1504-1512. [PMID: 32894653 DOI: 10.1111/tbed.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022]
Abstract
The objective of the study was to define and then evaluate an early decision indicator (EDI) trigger that operated within the first 5 weeks of a response that would indicate a large and/or long outbreak of FMD was developing, to be able to inform control options within an adaptive management framework. To define the EDI trigger, a previous dataset of 10,000 simulated FMD outbreaks in New Zealand, controlled by the standard stamping-out approach, was re-analysed at various time points between Days 11 and 35 of each response to find threshold values of cumulative detected infected premises (IPs) that indicated upper quartile sized outbreaks and estimated dissemination rate (EDR) values that indicated sustained spread. Both sets of thresholds were then parameterized within the InterSpread Plus modelling framework, such that if either the cumulative IPs or the EDR exceeded the defined thresholds, the EDI trigger would fire. A new series of simulations were then generated. The EDI trigger was like two diagnostic tests interpreted in parallel, with the diagnostic outcome positive if either test was positive at any time point between Days 11 and 35 inclusive. The diagnostic result was then compared to the final size of each outbreak, to see if the outbreak was an upper quartile outbreak in terms of cumulative IPs and/or final duration. The performance of the EDI trigger was then evaluated across the population of outbreaks, and the sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) were calculated. The Se, Sp, PPV and NPV for predicting large outbreaks were 0.997, 0.513, 0.404 and 0.998, respectively. The study showed that the EDI trigger was very sensitive to detecting large outbreaks, although not all outbreaks predicted to be large were so, whereas outbreaks predicted to be small invariably were small. Therefore, it shows promise as a mechanism that could support an adaptive management approach to FMD control.
Collapse
Affiliation(s)
| | - Zhidong D Yu
- Food Science and Risk Assessment, Ministry for Primary Industries, Wellington, New Zealand
| | - Thomas G Rawdon
- Diagnostics and Surveillance Services Directorate, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Mary van Andel
- Office of the Chief Departmental Scientist, Ministry for Primary Industries, Wellington, New Zealand
| |
Collapse
|
3
|
Unraveling R0: Considerations for Public Health Applications. Am J Public Health 2018; 108:S445-S454. [PMCID: PMC6291768 DOI: 10.2105/ajph.2013.301704r] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2018] [Indexed: 09/29/2023]
Abstract
We assessed public health use of R 0, the basic reproduction number, which estimates the speed at which a disease is capable of spreading in a population. These estimates are of great public health interest, as evidenced during the 2009 influenza A (H1N1) virus pandemic. We reviewed methods commonly used to estimate R 0, examined their practical utility, and assessed how estimates of this epidemiological parameter can inform mitigation strategy decisions. In isolation, R 0 is a suboptimal gauge of infectious disease dynamics across populations; other disease parameters may provide more useful information. Nonetheless, estimation of R 0 for a particular population is useful for understanding transmission in the study population. Considered in the context of other epidemiologically important parameters, the value of R 0 may lie in better understanding an outbreak and in preparing a public health response.
Collapse
|
4
|
Ridenhour B, Kowalik JM, Shay DK. El número reproductivo básico (R0): consideraciones para su aplicación en la salud póblica. Am J Public Health 2018. [DOI: 10.2105/ajph.2013.301704s] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Benjamin Ridenhour
- División de Gripe, Centros para el Control y la Prevención de Enfermedades, Atlanta, Georgia, Estados Unidos de América
| | - Jessica M. Kowalik
- División de Gripe, Centros para el Control y la Prevención de Enfermedades, Atlanta, Georgia, Estados Unidos de América
| | - David K. Shay
- División de Gripe, Centros para el Control y la Prevención de Enfermedades, Atlanta, Georgia, Estados Unidos de América
| |
Collapse
|
5
|
Porphyre T, Rich KM, Auty HK. Assessing the Economic Impact of Vaccine Availability When Controlling Foot and Mouth Disease Outbreaks. Front Vet Sci 2018; 5:47. [PMID: 29594161 PMCID: PMC5859371 DOI: 10.3389/fvets.2018.00047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/23/2018] [Indexed: 11/26/2022] Open
Abstract
Predictive models have been used extensively to assess the likely effectiveness of vaccination policies as part of control measures in the event of a foot and mouth disease (FMD) outbreak. However, the availability of vaccine stocks and the impact of vaccine availability on disease control strategies represent a key uncertainty when assessing potential control strategies. Using an epidemiological, spatially explicit, simulation model in combination with a direct cost calculator, we assessed how vaccine availability constraints may affect the economic benefit of a “vaccination-to-live” strategy during a FMD outbreak in Scotland, when implemented alongside culling of infected premises and dangerous contacts. We investigated the impact of vaccine stock size and restocking delays on epidemiological and economic outcomes. We also assessed delays in the initial decision to vaccinate, maximum daily vaccination capacity, and vaccine efficacy. For scenarios with conditions conducive to large outbreaks, all vaccination strategies perform better than the strategy where only culling is implemented. A stock of 200,000 doses, enough to vaccinate 12% of the Scottish cattle population, would be sufficient to maximize the relative benefits of vaccination, both epidemiologically and economically. However, this generates a wider variation in economic cost than if vaccination is not implemented, making outcomes harder to predict. The probability of direct costs exceeding £500 million is reduced when vaccination is used and is steadily reduced further as the size of initial vaccine stock increases. If only a suboptimal quantity of vaccine doses is initially available (100,000 doses), restocking delays of more than 2 weeks rapidly increase the cost of controlling outbreaks. Impacts of low vaccine availability or restocking delays are particularly aggravated by delays in the initial decision to vaccinate, or low vaccine efficacy. Our findings confirm that implementing an emergency vaccination-to-live strategy in addition to the conventional stamping out strategy is economically beneficial in scenarios with conditions conducive to large FMD outbreaks in Scotland. However, the size of the initial vaccine stock available at the start of the outbreak and the interplay with other factors, such as vaccine efficacy and delays in restocking or implementing vaccination, should be considered in making decisions about optimal control strategies for FMD outbreaks.
Collapse
Affiliation(s)
- Thibaud Porphyre
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Karl M Rich
- Epidemiology Research Unit, Scotland's Rural College, Inverness, United Kingdom.,East and Southeast Asia Regional Office, International Livestock Research Institute, Hanoi, Vietnam
| | - Harriet K Auty
- Epidemiology Research Unit, Scotland's Rural College, Inverness, United Kingdom
| |
Collapse
|
6
|
Truong DB, Goutard FL, Bertagnoli S, Delabouglise A, Grosbois V, Peyre M. Benefit-Cost Analysis of Foot-and-Mouth Disease Vaccination at the Farm-Level in South Vietnam. Front Vet Sci 2018. [PMID: 29536018 PMCID: PMC5834816 DOI: 10.3389/fvets.2018.00026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to analyze the financial impact of foot-and-mouth disease (FMD) outbreaks in cattle at the farm-level and the benefit–cost ratio (BCR) of biannual vaccination strategy to prevent and eradicate FMD for cattle in South Vietnam. Production data were collected from 49 small-scale dairy farms, 15 large-scale dairy farms, and 249 beef farms of Long An and Tay Ninh province using a questionaire. Financial data of FMD impacts were collected using participatory tools in 37 villages of Long An province. The net present value, i.e., the difference between the benefits (additional revenue and saved costs) and costs (additional costs and revenue foregone), of FMD vaccination in large-scale dairy farms was 2.8 times higher than in small-scale dairy farms and 20 times higher than in beef farms. The BCR of FMD vaccination over 1 year in large-scale dairy farms, small-scale dairy farms, and beef farms were 11.6 [95% confidence interval (95% CI) 6.42–16.45], 9.93 (95% CI 3.45–16.47), and 3.02 (95% CI 0.76–7.19), respectively. The sensitivity analysis showed that varying the vaccination cost had more effect on the BCR of cattle vaccination than varying the market price. This benefit-cost analysis of biannual vaccination strategy showed that investment in FMD prevention can be financially profitable, and therefore sustainable, for dairy farmers. For beef cattle, it is less certain that vaccination is profitable. Additional benefit-cost analysis study of vaccination strategies at the national-level would be required to evaluate and adapt the national strategy to achieve eradication of this disease in Vietnam.
Collapse
Affiliation(s)
- Dinh Bao Truong
- CIRAD, UMR ASTRE, Montpellier, France.,Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh, Vietnam
| | - Flavie Luce Goutard
- CIRAD, UMR ASTRE, Montpellier, France.,Faculty Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | | | - Alexis Delabouglise
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | | | | |
Collapse
|
7
|
Thompson RN, Gilligan CA, Cunniffe NJ. Control fast or control smart: When should invading pathogens be controlled? PLoS Comput Biol 2018; 14:e1006014. [PMID: 29451878 PMCID: PMC5833286 DOI: 10.1371/journal.pcbi.1006014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/01/2018] [Accepted: 02/04/2018] [Indexed: 12/20/2022] Open
Abstract
The intuitive response to an invading pathogen is to start disease management as rapidly as possible, since this would be expected to minimise the future impacts of disease. However, since more spread data become available as an outbreak unfolds, processes underpinning pathogen transmission can almost always be characterised more precisely later in epidemics. This allows the future progression of any outbreak to be forecast more accurately, and so enables control interventions to be targeted more precisely. There is also the chance that the outbreak might die out without any intervention whatsoever, making prophylactic control unnecessary. Optimal decision-making involves continuously balancing these potential benefits of waiting against the possible costs of further spread. We introduce a generic, extensible data-driven algorithm based on parameter estimation and outbreak simulation for making decisions in real-time concerning when and how to control an invading pathogen. The Control Smart Algorithm (CSA) resolves the trade-off between the competing advantages of controlling as soon as possible and controlling later when more information has become available. We show-using a generic mathematical model representing the transmission of a pathogen of agricultural animals or plants through a population of farms or fields-how the CSA allows the timing and level of deployment of vaccination or chemical control to be optimised. In particular, the algorithm outperforms simpler strategies such as intervening when the outbreak size reaches a pre-specified threshold, or controlling when the outbreak has persisted for a threshold length of time. This remains the case even if the simpler methods are fully optimised in advance. Our work highlights the potential benefits of giving careful consideration to the question of when to start disease management during emerging outbreaks, and provides a concrete framework to allow policy-makers to make this decision.
Collapse
Affiliation(s)
- Robin N. Thompson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, United Kingdom
- Christ Church, University of Oxford, Oxford OX1 1DP, United Kingdom
| | | | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
8
|
Bolzoni L, Bonacini E, Soresina C, Groppi M. Time-optimal control strategies in SIR epidemic models. Math Biosci 2017; 292:86-96. [PMID: 28801246 PMCID: PMC7094293 DOI: 10.1016/j.mbs.2017.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/11/2017] [Accepted: 07/14/2017] [Indexed: 11/25/2022]
Abstract
We investigate the time-optimal control problem in SIR (Susceptible-Infected-Recovered) epidemic models, focusing on different control policies: vaccination, isolation, culling, and reduction of transmission. Applying the Pontryagin's Minimum Principle (PMP) to the unconstrained control problems (i.e. without costs of control or resource limitations), we prove that, for all the policies investigated, only bang-bang controls with at most one switch are admitted. When a switch occurs, the optimal strategy is to delay the control action some amount of time and then apply the control at the maximum rate for the remainder of the outbreak. This result is in contrast with previous findings on the unconstrained problems of minimizing the total infectious burden over an outbreak, where the optimal strategy is to use the maximal control for the entire epidemic. Then, the critical consequence of our results is that, in a wide range of epidemiological circumstances, it may be impossible to minimize the total infectious burden while minimizing the epidemic duration, and vice versa. Moreover, numerical simulations highlighted additional unexpected results, showing that the optimal control can be delayed also when the control reproduction number is lower than one and that the switching time from no control to maximum control can even occur after the peak of infection has been reached. Our results are especially important for livestock diseases where the minimization of outbreaks duration is a priority due to sanitary restrictions imposed to farms during ongoing epidemics, such as animal movements and export bans.
Collapse
Affiliation(s)
- Luca Bolzoni
- Risk Analysis Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via dei Mercati 13, Parma 43126, Italy.
| | - Elena Bonacini
- Department of Mathematics and Computer Science, University of Parma, Parco Area delle Scienze 53/A, Parma 43124, Italy
| | - Cinzia Soresina
- Department of Mathematics "F. Enriques", University of Milano, Via C. Saldini 50, Milano 20133, Italy
| | - Maria Groppi
- Department of Mathematics and Computer Science, University of Parma, Parco Area delle Scienze 53/A, Parma 43124, Italy
| |
Collapse
|
9
|
Willeberg PW, AlKhamis M, Boklund A, Perez AM, Enøe C, Halasa T. Semiquantitative Decision Tools for FMD Emergency Vaccination Informed by Field Observations and Simulated Outbreak Data. Front Vet Sci 2017; 4:43. [PMID: 28396862 PMCID: PMC5366315 DOI: 10.3389/fvets.2017.00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/09/2017] [Indexed: 11/13/2022] Open
Abstract
We present two simple, semiquantitative model-based decision tools, based on the principle of first 14 days incidence (FFI). The aim is to estimate the likelihood and the consequences, respectively, of the ultimate size of an ongoing FMD epidemic. The tools allow risk assessors to communicate timely, objectively, and efficiently to risk managers and less technically inclined stakeholders about the potential of introducing FMD suppressive emergency vaccination. To explore the FFI principle with complementary field data, we analyzed the FMD outbreaks in Argentina in 2001, with the 17 affected provinces as the units of observation. Two different vaccination strategies were applied during this extended epidemic. In a series of 5,000 Danish simulated FMD epidemics, the numbers of outbreak herds at day 14 and at the end of the epidemics were estimated under different control strategies. To simplify and optimize the presentation of the resulting data for urgent decisions to be made by the risk managers, we estimated the sensitivity, specificity, as well as the negative and positive predictive values, using a chosen day-14 outbreak number as predictor of the magnitude of the number of remaining post-day-14 outbreaks under a continued basic control strategy. Furthermore, during an ongoing outbreak, the actual cumulative number of detected infected herds at day 14 will be known exactly. Among the number of epidemics lasting >14 days out of the 5,000 simulations under the basic control scenario, we selected those with an assumed accumulated number of detected outbreaks at day 14. The distribution of the estimated number of detected outbreaks at the end of the simulated epidemics minus the number at day 14 was estimated for the epidemics lasting more than 14 days. For comparison, the same was done for identical epidemics (i.e., seeded with the same primary outbreak herds) under a suppressive vaccination scenario. The results indicate that, during the course of an FMD epidemic, simulated likelihood predictions of the remaining epidemic size and of potential benefits of alternative control strategies can be presented to risk managers and other stakeholders in objective and easily communicable ways.
Collapse
Affiliation(s)
- Preben William Willeberg
- Department of Diagnostic and Scientific Advice, National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Mohammad AlKhamis
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait; Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, USA
| | - Anette Boklund
- Department of Diagnostic and Scientific Advice, National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Andres M Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota , St. Paul , USA
| | - Claes Enøe
- Department of Diagnostic and Scientific Advice, National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Tariq Halasa
- Department of Diagnostic and Scientific Advice, National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| |
Collapse
|
10
|
Garner MG, East IJ, Stevenson MA, Sanson RL, Rawdon TG, Bradhurst RA, Roche SE, Van Ha P, Kompas T. Early Decision Indicators for Foot-and-Mouth Disease Outbreaks in Non-Endemic Countries. Front Vet Sci 2016; 3:109. [PMID: 27965969 PMCID: PMC5127847 DOI: 10.3389/fvets.2016.00109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/17/2016] [Indexed: 11/13/2022] Open
Abstract
Disease managers face many challenges when deciding on the most effective control strategy to manage an outbreak of foot-and-mouth disease (FMD). Decisions have to be made under conditions of uncertainty and where the situation is continually evolving. In addition, resources for control are often limited. A modeling study was carried out to identify characteristics measurable during the early phase of a FMD outbreak that might be useful as predictors of the total number of infected places, outbreak duration, and the total area under control (AUC). The study involved two modeling platforms in two countries (Australia and New Zealand) and encompassed a large number of incursion scenarios. Linear regression, classification and regression tree, and boosted regression tree analyses were used to quantify the predictive value of a set of parameters on three outcome variables of interest: the total number of infected places, outbreak duration, and the total AUC. The number of infected premises (IPs), number of pending culls, AUC, estimated dissemination ratio, and cattle density around the index herd at days 7, 14, and 21 following first detection were associated with each of the outcome variables. Regression models for the size of the AUC had the highest predictive value (R2 = 0.51-0.9) followed by the number of IPs (R2 = 0.3-0.75) and outbreak duration (R2 = 0.28-0.57). Predictability improved at later time points in the outbreak. Predictive regression models using various cut-points at day 14 to define small and large outbreaks had positive predictive values of 0.85-0.98 and negative predictive values of 0.52-0.91, with 79-97% of outbreaks correctly classified. On the strict assumption that each of the simulation models used in this study provide a realistic indication of the spread of FMD in animal populations. Our conclusion is that relatively simple metrics available early in a control program can be used to indicate the likely magnitude of an FMD outbreak under Australian and New Zealand conditions.
Collapse
Affiliation(s)
- Michael G Garner
- Animal Health Policy Branch, Department of Agriculture and Water Resources , Canberra, ACT , Australia
| | - Iain J East
- Animal Health Policy Branch, Department of Agriculture and Water Resources , Canberra, ACT , Australia
| | - Mark A Stevenson
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne , Parkville, VIC , Australia
| | | | - Thomas G Rawdon
- Investigation and Diagnostic Centre and Response Directorate, Ministry for Primary Industries , Wellington , New Zealand
| | - Richard A Bradhurst
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne , Parkville, VIC , Australia
| | - Sharon E Roche
- Animal Health Policy Branch, Department of Agriculture and Water Resources , Canberra, ACT , Australia
| | - Pham Van Ha
- Crawford School of Public Policy, Australian National University , Acton, ACT , Australia
| | - Tom Kompas
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
11
|
Halasa T, Boklund A. The impact of resources for clinical surveillance on the control of a hypothetical foot-and-mouth disease epidemic in Denmark. PLoS One 2014; 9:e102480. [PMID: 25014351 PMCID: PMC4094525 DOI: 10.1371/journal.pone.0102480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022] Open
Abstract
The objectives of this study were to assess whether current surveillance capacity is sufficient to fulfill EU and Danish regulations to control a hypothetical foot-and-mouth disease (FMD) epidemic in Denmark, and whether enlarging the protection and/or surveillance zones could minimize economic losses. The stochastic spatial simulation model DTU-DADS was further developed to simulate clinical surveillance of herds within the protection and surveillance zones and used to model spread of FMD between herds. A queuing system was included in the model, and based on daily surveillance capacity, which was 450 herds per day, it was decided whether herds appointed for surveillance would be surveyed on the current day or added to the queue. The model was run with a basic scenario representing the EU and Danish regulations, which includes a 3 km protection and 10 km surveillance zone around detected herds. In alternative scenarios, the protection zone was enlarged to 5 km, the surveillance zone was enlarged to 15 or 20 km, or a combined enlargement of the protection and surveillance zones was modelled. Sensitivity analysis included changing surveillance capacity to 200, 350 or 600 herds per day, frequency of repeated visits for herds in overlapping surveillance zones from every 14 days to every 7, 21 and 30 days, and the size of the zones combined with a surveillance capacity increased to 600 herds per day. The results showed that the default surveillance capacity is sufficient to survey herds on time. Extra resources for surveillance did not improve the situation, but fewer resources could result in larger epidemics and costs. Enlarging the protection zone was a better strategy than the basic scenario. Despite that enlarging the surveillance zone might result in shorter epidemic duration, and lower number of affected herds, it resulted frequently in larger economic losses.
Collapse
Affiliation(s)
- Tariq Halasa
- Section of Epidemiology, the National Veterinary Institutes, Technical University of Denmark, Copenhagen, Denmark
- * E-mail:
| | - Anette Boklund
- Section of Epidemiology, the National Veterinary Institutes, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
12
|
Corley CD, Pullum LL, Hartley DM, Benedum C, Noonan C, Rabinowitz PM, Lancaster MJ. Disease prediction models and operational readiness. PLoS One 2014; 9:e91989. [PMID: 24647562 PMCID: PMC3960139 DOI: 10.1371/journal.pone.0091989] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/19/2014] [Indexed: 11/18/2022] Open
Abstract
The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4), spatial (26), ecological niche (28), diagnostic or clinical (6), spread or response (9), and reviews (3). The model parameters (e.g., etiology, climatic, spatial, cultural) and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological) were recorded and reviewed. A component of this review is the identification of verification and validation (V&V) methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology Readiness Level definitions.
Collapse
Affiliation(s)
- Courtney D. Corley
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| | - Laura L. Pullum
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - David M. Hartley
- Georgetown University Medical Center, Washington, DC, United States of America
| | - Corey Benedum
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Christine Noonan
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Peter M. Rabinowitz
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mary J. Lancaster
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
13
|
Ridenhour B, Kowalik JM, Shay DK. Unraveling R0: considerations for public health applications. Am J Public Health 2013; 104:e32-41. [PMID: 24328646 DOI: 10.2105/ajph.2013.301704] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We assessed public health use of R0, the basic reproduction number, which estimates the speed at which a disease is capable of spreading in a population. These estimates are of great public health interest, as evidenced during the 2009 influenza A (H1N1) virus pandemic. We reviewed methods commonly used to estimate R0, examined their practical utility, and assessed how estimates of this epidemiological parameter can inform mitigation strategy decisions. In isolation, R0 is a suboptimal gauge of infectious disease dynamics across populations; other disease parameters may provide more useful information. Nonetheless, estimation of R0 for a particular population is useful for understanding transmission in the study population. Considered in the context of other epidemiologically important parameters, the value of R0 may lie in better understanding an outbreak and in preparing a public health response.
Collapse
Affiliation(s)
- Benjamin Ridenhour
- At the time of this study, Benjamin Ridenhour and Jessica M. Kowalik were with the Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN. David K. Shay was with the Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | | | | |
Collapse
|
14
|
Halasa T, Willeberg P, Christiansen L, Boklund A, AlKhamis M, Perez A, Enøe C. Decisions on control of foot-and-mouth disease informed using model predictions. Prev Vet Med 2013; 112:194-202. [DOI: 10.1016/j.prevetmed.2013.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022]
|
15
|
Boklund A, Halasa T, Christiansen L, Enøe C. Comparing control strategies against foot-and-mouth disease: Will vaccination be cost-effective in Denmark? Prev Vet Med 2013; 111:206-19. [DOI: 10.1016/j.prevetmed.2013.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
|
16
|
Hutber A, Kitching R, Fishwick J, Bires J. Foot-and-mouth disease: The question of implementing vaccinal control during an epidemic. Vet J 2011; 188:18-23. [DOI: 10.1016/j.tvjl.2010.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 11/27/2022]
|