1
|
Curone G, Filipe J, Inglesi A, Bronzo V, Pollera C, Comazzi S, Draghi S, Piccinini R, Ferlazzo G, Quattrone A, Vigo D, Amadori M, Riva F. Different Immune Control of Gram-Positive and Gram-Negative Mammary Infections in Dairy Cows. Vet Sci 2024; 11:166. [PMID: 38668433 PMCID: PMC11054201 DOI: 10.3390/vetsci11040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
In the dairy industry, bovine mastitis represents a major concern due to substantial production losses and costs related to therapies and early culling. The mechanisms of susceptibility and effective response to intra-mammary infections are still poorly understood. Therefore, we investigated innate immunity in acellular bovine skim milk through cytofluorimetric analyses of bacterial killing activity against both Gram-positive and Gram-negative pathogens. Freshly cultured E. coli and S. aureus strains were incubated with colostrum and milk samples at different lactation time points from two groups of cows, purportedly representing mastitis-resistant and mastitis-susceptible breeds; bacterial cells were analyzed for vitality by flow cytometry following incorporation of vital dyes. N-acetyl-β-D-glucosaminidase (NAGase) activity was also investigated in milk and colostrum samples. Our findings revealed that colostrum and milk bacterial killing activity was greater against S. aureus compared to E. coli., with this activity correlated with milk NAGase levels. Furthermore, both killing of S. aureus and NAGase activity were negatively correlated to the elapsed time of lactation. Interestingly, samples from the allegedly mastitis-resistant breed displayed higher bacterial killing and NAGase activities. Our study suggests that diverse control mechanisms are exerted against Gram-positive and Gram-negative pathogens in the mammary glands of cows, probably beyond those already described in the literature.
Collapse
Affiliation(s)
- Giulio Curone
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
| | - Joel Filipe
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
| | - Alessia Inglesi
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
| | - Valerio Bronzo
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
- Laboratorio di Malattie Infettive Degli Animali—MiLab, University of Milan, 26900 Lodi, Italy
| | - Claudia Pollera
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
| | - Stefano Comazzi
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
| | - Susanna Draghi
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
| | - Renata Piccinini
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
| | - Gianluca Ferlazzo
- Pellegrina Extention Service, Veronesi Holding, 37142 Verona, Italy;
| | - Alda Quattrone
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
| | - Daniele Vigo
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
| | - Massimo Amadori
- Rete Nazionale di Immunologia Veterinaria, 25125 Brescia, Italy;
| | - Federica Riva
- Dipartimento di Medicina Veterinaria e Scienze Animali, University of Milan, 26900 Lodi, Italy; (G.C.); (A.I.); (V.B.); (C.P.); (S.C.); (S.D.); (R.P.); (A.Q.); (D.V.)
| |
Collapse
|
2
|
Zhao X, Luo H, Lu H, Ma L, Li Y, Dou J, Zhang J, Ma Y, Li J, Wang Y. RNA-Seq Analysis of Peripheral Whole Blood from Dairy Bulls with High and Low Antibody-Mediated Immune Responses-A Preliminary Study. Animals (Basel) 2023; 13:2208. [PMID: 37444006 DOI: 10.3390/ani13132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Enhancing the immune response through breeding is regarded as an effective strategy for improving animal health, as dairy cattle identified as high immune responders are reported to have a decreased prevalence of economically significant diseases. The identification of differentially expressed genes (DEGs) associated with immune responses might be an effective tool for breeding healthy dairy cattle. In this study, antibody-mediated immune responses (AMIRs) were induced by the immunization of hen egg white lysozyme (HEWL) in six Chinese Holstein dairy bulls divided into high- and low-AMIR groups based on their HEWL antibody level. Then, RNA-seq was applied to explore the transcriptome of peripheral whole blood between the two comparison groups. As a result, several major upregulated and downregulated genes were identified and attributed to the regulation of locomotion, tissue development, immune response, and detoxification. In addition, the result of the KEGG pathway analysis revealed that most DEGs were enriched in pathways related to disease, inflammation, and immune response, including antigen processing and presentation, Staphylococcus aureus infection, intestinal immune network for IgA production, cytokine-cytokine receptor interaction, and complement and coagulation cascades. Moreover, six genes (BOLA-DQA5, C5, CXCL2, HBA, LTF, and COL1A1) were validated using RT-qPCR, which may provide information for genomic selection in breeding programs. These results broaden the knowledge of the immune response mechanism in dairy bulls, which has strong implications for breeding cattle with an enhanced AMIR.
Collapse
Affiliation(s)
- Xiuxin Zhao
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 23788, Gongyebei Road, Jinan 250100, China
- Shandong Ox Livestock Breeding Co., Ltd., Jinan 250100, China
| | - Hanpeng Luo
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haibo Lu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Beijing Consortium for Innovative Bio-Breeding, Beijing 101206, China
| | - Longgang Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanqin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 23788, Gongyebei Road, Jinan 250100, China
| | - Jinhuan Dou
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junxing Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yun Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 23788, Gongyebei Road, Jinan 250100, China
| | - Yachun Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Khan MZ, Wang J, Ma Y, Chen T, Ma M, Ullah Q, Khan IM, Khan A, Cao Z, Liu S. Genetic polymorphisms in immune- and inflammation-associated genes and their association with bovine mastitis resistance/susceptibility. Front Immunol 2023; 14:1082144. [PMID: 36911690 PMCID: PMC9997099 DOI: 10.3389/fimmu.2023.1082144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Bovine mastitis, the inflammation of the mammary gland, is a contagious disease characterized by chemical and physical changes in milk and pathological changes in udder tissues. Depressed immunity and higher expression of inflammatory cytokines with an elevated milk somatic cell count can be observed during mastitis in dairy cattle. The use of somatic cell count (SCC) and somatic cell score (SCS) as correlated traits in the indirect selection of animals against mastitis resistance is in progress globally. Traditional breeding for mastitis resistance seems difficult because of the low heritability (0.10-0.16) of SCC/SCS and clinical mastitis. Thus, genetic-marker-selective breeding to improve host genetics has attracted considerable attention worldwide. Moreover, genomic selection has been found to be an effective and fast method of screening for dairy cattle that are genetically resistant and susceptible to mastitis at a very early age. The current review discusses and summarizes the candidate gene approach using polymorphisms in immune- and inflammation-linked genes (CD4, CD14, CD46, TRAPPC9, JAK2, Tf, Lf, TLRs, CXCL8, CXCR1, CXCR2, C4A, C5, MASP2, MBL1, MBL2, LBP, NCF1, NCF4, MASP2, A2M, and CLU, etc.) and their related signaling pathways (Staphylococcus aureus infection signaling, Toll-like receptor signaling, NF-kappa B signaling pathway, Cytokine-cytokine receptor, and Complement and coagulation cascades, etc.) associated with mastitis resistance and susceptibility phenotypic traits (IL-6, interferon-gamma (IFN-γ), IL17, IL8, SCS, and SCC) in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Ahlawat S, Choudhary V, Singh T, Arora R, Kumar A, Kaur M, Chhabra P, Sharma R, Kumar Vijh R. First report on delineation of differentially expressed genes and pathways in milk somatic cells of mastitic and healthy Murrah buffaloes. Gene X 2022; 831:146575. [PMID: 35568339 DOI: 10.1016/j.gene.2022.146575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Despite immense contribution of buffaloes as dairy species, limited studies have addressed the bubaline mastitis as compared to cattle. This was the first differential transcriptomic study investigating the alterations induced by clinical mastitis in buffalo milk relative to healthy controls. Comparative gene expression profiling of three biological replicates of each group identified 1014 up-regulated and 999 down-regulated genes in the diseased buffaloes (Fold change > 2, FDR < 0.05). Activation of immune and inflammatory responses were the most enriched GO terms in the mastitic animals, with higher transcript abundance of many genes coding for anti-microbial proteins such as β-defensins, perforin, granzymes, granulysin, cathelicidins etc. Analysis of the gene regulatory interactions of the up-regulated DEGs identified many hub genes that govern the cellular and macromolecular metabolic processes (E2F4, E2F1, RBL2, FOXM1, IRF1 and MYB). This study contributes to an insightful understanding of molecular mechanisms governing immune response of buffaloes to mastitis.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Vikas Choudhary
- District Disease Diagnostic Laboratory, Karnal, Department of Animal Husbandry and Dairying, Haryana, India
| | - Tersem Singh
- District Disease Diagnostic Laboratory, Karnal, Department of Animal Husbandry and Dairying, Haryana, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | |
Collapse
|
5
|
Song X, Zhao M, Cao Q, Wang S, Li R, Zhang X, Zhang L, Shi K. Transcriptome provides insights into bovine mammary regulatory mechanisms during the lactation cycle. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2064865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xuyang Song
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Meng Zhao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Qiaoqiao Cao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Shengxuan Wang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Ranran Li
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Xuan Zhang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Letian Zhang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| |
Collapse
|
6
|
Effect of selected single nucleotide polymorphisms in SLC11A1, ANKRA2, IFNG and PGLYRP1 genes on host susceptibility to Mycobacterium avium subspecies paratuberculosis infection in Indian cattle. Vet Res Commun 2021; 46:209-221. [PMID: 34718924 DOI: 10.1007/s11259-021-09849-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/10/2021] [Indexed: 10/19/2022]
Abstract
Paratuberculosis (PTB) is a chronic infectious enteritis of ruminants, caused by Mycobacterium avium subspecies paratuberculosis (MAP) that brings huge economic loss to the dairy farmers. The study was conducted to explore the association of selected SNPs in IFNG, SLC11A1, ANKRA2 and PGLYRP1 genes with resistance to PTB disease in Indian cattle population. A case-control resource population was established based on the results of diagnostic tests used for detection of MAP infection status viz. ELISA, Johnin PPD test, faecal microscopy and IS900 blood PCR. The PCR-RFLP method was used for genotyping of SNPs. SNPs rs109453173 in SLC11A1, rs110853455 in IFNG and rs41933863 in ANKRA2 genes were significantly (P<0.05) associated with resistance to MAP infection. For SNP rs109453173, GG genotype and G allele was found to be associated with resistance against MAP infection than CC and CG genotypes and C allele, respectively. For SNP rs110853455, AG genotype was found to be associated with susceptibility to MAP infection than AA and GG genotype. For SNP rs41933863, the AG genotype provided three and six times more resistance against MAP infection than GG and AA genotype. The results of this study are suggestive of SNPs rs109453173, rs110853455 and rs41933863 as potential markers for screening MAP resistant cattle and a breeding programme favouring GG genotype and G allele for rs109453173, AG genotype for rs41933863 and against AG genotype for rs110853455 might confer resistance against MAP infection in Indian cattle. However, investigation of these SNPs in an independent and larger population will warrant the strength of association for resistance against MAP infection in cattle.
Collapse
|
7
|
Relationship between polymorphism within Peptidoglycan Recognition Protein 1 gene (PGLYRP1) and somatic cell counts in milk of Holstein cows. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Bovine peptidoglycan recognition protein 1 (PGLYRP1) is an important receptor that binds to murein peptidoglycans (PGN) of Gram-positive and Gram-negative bacteria and is, therefore, involved in innate immunity. The SNP T>C rs68268284 located in the 1st exon of the PGLYRP1 gene was identified by the PCR-RFLP method in a population of 319 Holstein cows. Somatic cell count (SCC) was measured 7–10 times in each of three completed lactations to investigate whether the PGLYRP1 polymorphism is associated with SCC. Using the GLM model, it was found that cows with the TT genotype showed significantly lower somatic cell counts than those with the CC genotype during the first lactation (P = 0.023). Moreover, during lactations 1–2 and 1–3, cows with the TT genotype reveal significantly lower SCC than CT heterozygotes, at P = 0.025 and P = 0.006, respectively. Computer-aided analysis showed that rs68268284 polymorphism could modify the PGLYRP1 functions because the mutated residue is located in a domain that is important for the binding of other molecules.
Collapse
|
8
|
McConnel CS, Crisp SA, Biggs TD, Ficklin SP, Parrish LM, Trombetta SC, Sischo WM, Adams-Progar A. A Fixed Cohort Field Study of Gene Expression in Circulating Leukocytes From Dairy Cows With and Without Mastitis. Front Vet Sci 2020; 7:559279. [PMID: 33195534 PMCID: PMC7554338 DOI: 10.3389/fvets.2020.559279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/03/2020] [Indexed: 12/04/2022] Open
Abstract
Specifically designed gene expression studies can be used to prioritize candidate genes and identify novel biomarkers affecting resilience against mastitis and other diseases in dairy cattle. The primary goal of this study was to assess whether specific peripheral leukocyte genes expressed differentially in a previous study of dairy cattle with postpartum disease, also would be expressed differentially in peripheral leukocytes from a diverse set of different dairy cattle with moderate to severe clinical mastitis. Four genes were selected for this study due to their differential expression in a previous transcriptomic analysis of circulating leukocytes from dairy cows with and without evidence of early postpartum disease. An additional 15 genes were included based on their cellular, immunologic, and inflammatory functions associated with resistance and tolerance to mastitis. This fixed cohort study was conducted on a conventional dairy in Washington state. Cows >50 days in milk (DIM) with mastitis (n = 12) were enrolled along with healthy cows (n = 8) selected to match the DIM and lactation numbers of mastitic cows. Blood was collected for a complete blood count (CBC), serum biochemistry, leukocyte isolation, and RNA extraction on the day of enrollment and twice more at 6 to 8-days intervals. Latent class analysis was performed to discriminate healthy vs. mastitic cows and to describe disease resolution. RNA samples were processed by the Primate Diagnostic Services Laboratory (University of Washington, Seattle, WA). Gene expression analysis was performed using the Nanostring System (Nanostring Technologies, Seattle, Washington, USA). Of the four genes (C5AR1, CATHL6, LCN2, and PGLYRP1) with evidence of upregulation in cows with mastitis, three of those genes (CATHL6, LCN2, and PGLYRP1) were investigated due to their previously identified association with postpartum disease. These genes are responsible for immunomodulatory molecules that selectively enhance or alter host innate immune defense mechanisms and modulate pathogen-induced inflammatory responses. Although further research is warranted to explain their functional mechanisms and bioactivity in cattle, our findings suggest that these conserved elements of innate immunity have the potential to bridge disease states and target tissues in diverse dairy populations.
Collapse
Affiliation(s)
- Craig S McConnel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sierra A Crisp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Tyler D Biggs
- Department of Horticulture, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| | - Stephen P Ficklin
- Department of Horticulture, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| | - Lindsay M Parrish
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sophie C Trombetta
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - William M Sischo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Amber Adams-Progar
- Department of Animal Sciences, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Jin Y, Yang Q, Zhang M, Zhang S, Cai H, Dang R, Lei C, Chen H, Lan X. Identification of a Novel Polymorphism in Bovine lncRNA ADNCR Gene and Its Association with Growth Traits. Anim Biotechnol 2018; 30:159-165. [DOI: 10.1080/10495398.2018.1456446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunyun Jin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Qing Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Meng Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Hanfang Cai
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, P.R. China
| |
Collapse
|
10
|
Xu H, Zhang S, Zhang X, Dang R, Lei C, Chen H, Lan X. Evaluation of novel SNPs and haplotypes within the <i>ATBF1</i> gene and their effects on economically important production traits in cattle. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-285-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. AT motif binding factor 1 (ATBF1) gene can promote the expression level of the growth hormone 1 (GH1) gene by binding to the enhancers of the POU1F1 and PROP1 genes; thus, it affects the growth and development of livestock. Considering that the ATBF1 gene also has a close relationship with the Janus kinase–signal transductor and activator of transcription (JAK–STAT) pathway, the objective of this work was to identify novel single-nucleotide polymorphism (SNP) variations and their association with growth traits in native Chinese cattle breeds. Five novel SNPs within the ATBF1 gene were found in 644 Qinchuan and Jinnan cattle for first time using 25 pairs of screening and genotyping primers. The five novel SNPs were named as AC_000175:g.140344C>G (SNP1), g.146573T>C (SNP2), g.205468C>T (SNP3), g.205575A>G (SNP4) and g.297690C<T (SNP5). Among them, SNP1 and SNP2 were synonymous coding SNPs, while SNP5 was a missense coding SNP, and the other SNPs were intronic. Haplotype analysis found 18 haplotypes in the two breeds, and three and five closely linked loci were revealed in Qinchuan and Jinnan breeds, respectively. Association analysis revealed that SNP1 was significantly associated with the height across the hip in Qinchuan cattle. SNP2 was found to be significantly related to chest circumference and body side length traits in Jinnan cattle. SNP3 was found to have significant associations with four growth traits in Qinchuan cattle. Moreover, the different combined genotypes, SNP1–SNP3, SNP1–SNP4 and SNP2–SNP5 were significantly associated with the growth traits in cattle. These findings indicated that the bovine ATBF1 gene had marked effects on growth traits, and the growth-trait-related loci can be used as DNA markers for maker-assisted selection (MAS) breeding programs in cattle.
Collapse
|
11
|
Prajapati BM, Gupta JP, Pandey DP, Parmar GA, Chaudhari JD. Molecular markers for resistance against infectious diseases of economic importance. Vet World 2017; 10:112-120. [PMID: 28246455 PMCID: PMC5301170 DOI: 10.14202/vetworld.2017.112-120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022] Open
Abstract
Huge livestock population of India is under threat by a large number of endemic infectious (bacterial, viral, and parasitic) diseases. These diseases are associated with high rates of morbidity and mortality, particularly in exotic and crossbred cattle. Beside morbidity and mortality, economic losses by these diseases occur through reduced fertility, production losses, etc. Some of the major infectious diseases which have great economic impact on Indian dairy industries are tuberculosis (TB), Johne's disease (JD), mastitis, tick and tick-borne diseases (TTBDs), foot and mouth disease, etc. The development of effective strategies for the assessment and control of infectious diseases requires a better understanding of pathogen biology, host immune response, and diseases pathogenesis as well as the identification of the associated biomarkers. Indigenous cattle (Bos indicus) are reported to be comparatively less affected than exotic and crossbred cattle. However, genetic basis of resistance in indigenous cattle is not well documented. The association studies of few of the genes associated with various diseases, namely, solute carrier family 11 member 1, Toll-like receptors 1, with TB; Caspase associated recruitment domain 15, SP110 with JD; CACNA2D1, CD14 with mastitis and interferon gamma, BoLA--DRB3.2 alleles with TTBDs, etc., are presented. Breeding for genetic resistance is one of the promising ways to control the infectious diseases. High host resistance is the most important method for controlling such diseases, but till today no breed is total immune. Therefore, work may be undertaken under the hypothesis that the different susceptibility to these diseases are exhibited by indigenous and crossbred cattle is due to breed-specific differences in the dealing of infected cells with other immune cells, which ultimately influence the immune response responded against infections. Achieving maximum resistance to these diseases is the ultimate goal, is technically possible to achieve, and is permanent. Progress could be enhanced through introgression of resistance genes to breeds with low resistance. The quest for knowledge of the genetic basis for infectious diseases in indigenous livestock is strongly warranted.
Collapse
Affiliation(s)
- B. M. Prajapati
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - J. P. Gupta
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - D. P. Pandey
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - G. A. Parmar
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - J. D. Chaudhari
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| |
Collapse
|
12
|
Thomas FC, Mullen W, Tassi R, Ramírez-Torres A, Mudaliar M, McNeilly TN, Zadoks RN, Burchmore R, David Eckersall P. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics. MOLECULAR BIOSYSTEMS 2016; 12:2735-47. [PMID: 27412456 PMCID: PMC5048397 DOI: 10.1039/c6mb00239k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
A peptidomic investigation of milk from an experimental model of Streptococcus uberis mastitis in dairy cows has incorporated a study of milk high abundance and acute phase (APP) proteins as well as analysis of low molecular weight peptide biomarkers. Intramammary infection (IMI) with S. uberis caused a shift in abundance from caseins, β-lactoglobulin and α-lactalbumin to albumin, lactoferrin and IgG with the increase in lactoferrin occurring last. The APP response of haptoglobin, mammary associated serum amyloid A3 and C-reactive protein occurred between 30-48 hours post challenge with peak concentrations of APPs at 72-96 hours post challenge and declined thereafter at a rate resembling the fall in bacterial count rather than the somatic cell count. A peptide biomarker panel for IMI based on capillary electrophoresis and mass spectrometry was developed. It comprised 77 identified peptides (IMI77) composed mainly of casein derived peptides but also including peptides of glycosylation dependent cell adhesion molecule and serum amyloid A. The panel had a biomarker classification score that increased from 36 hour to 81 hour post challenge, significantly differentiating infected from non-infected milk, thus suggesting potential as a peptide biomarker panel of bovine mastitis and specifically that of S. uberis origin. The use of omic technology has shown a multifactorial cross system reaction in high and low abundance proteins and their peptide derivatives with changes of over a thousand fold in analyte levels in response to S. uberis infection.
Collapse
Affiliation(s)
- Funmilola Clara Thomas
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Riccardo Tassi
- Moredun Research Institute, Pentlands Science Park/Bush Loan, Penicuik, UK
| | | | - Manikhandan Mudaliar
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK. and Glasgow Polyomics, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park/Bush Loan, Penicuik, UK
| | - Ruth N Zadoks
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK. and Moredun Research Institute, Pentlands Science Park/Bush Loan, Penicuik, UK
| | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - P David Eckersall
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
13
|
Karthikeyan A, Radhika G, Aravindhakshan TV, Anilkumar K. Expression Profiling of Innate Immune Genes in Milk Somatic Cells During Subclinical Mastitis in Crossbred Dairy Cows. Anim Biotechnol 2016; 27:303-9. [DOI: 10.1080/10495398.2016.1184676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A. Karthikeyan
- Department of Animal Breeding, Genetics and Biostatistics, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India
| | - G. Radhika
- Department of Animal Breeding, Genetics and Biostatistics, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India
| | - T. V. Aravindhakshan
- Center for Advanced Studies in Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India
| | - K. Anilkumar
- Center for Advanced Studies in Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India
| |
Collapse
|
14
|
Zhang S, Dang Y, Zhang Q, Qin Q, Lei C, Chen H, Lan X. Tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) rapidly identified a critical missense mutation (P236T) of bovine ACADVL gene affecting growth traits. Gene 2015; 559:184-8. [PMID: 25620159 DOI: 10.1016/j.gene.2015.01.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Acyl-CoA dehydrogenase, very long chain (ACADVL), encoding ACADVL protein, targets the inner mitochondrial membrane where it catalyzes the first step of the mitochondrial fatty acid beta-oxidation pathway and plays an important role in body metabolism and oxidation of long chain fatty acid releasing energy. Tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) is an easy-to-operate, rapid, inexpensive, and exact method for SNP genotyping. Herein, T-ARMS-PCR was carried out to detect a critical missense mutation (AC_000176:g.2885C>A; Pro236Thr) within the ACADVL gene in 644 individuals from two cattle breeds. In order to evaluate the accuracy of the T-ARMS-PCR at this locus, the genotype of the sampled individuals was also identified by PCR-RFLP. The concordance between these two methods was 98.76%. Statistical analysis showed that the bovine ACADVL gene had a significant effect on chest width (P<0.05), chest depth (P<0.05), and hip width (P<0.05) in the Qinchuan breed. The cattle with AA genotype had superior growth traits compared to cattle with AC and/or CC genotypes. The "A" allele had positive effects on growth traits. Therefore, T-ARMS-PCR can replace PCR-RFLP for rapid genotyping of this mutation, which could be used as a DNA marker for selecting individuals with superior growth traits in the Qinchuan breed. These findings contribute to breeding and genetics in beef cattle industry.
Collapse
Affiliation(s)
- Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| | - Yonglong Dang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Qingfeng Zhang
- College of Life Sciences, Heze University, Heze, Shangdong 274015, China
| | - Qiaomei Qin
- College of Life Sciences, Heze University, Heze, Shangdong 274015, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Muhasin Asaf VN, Kumar A, Rahim A, Sebastian R, Mohan V, Dewangan P, Panigrahi M. An overview on single nucleotide polymorphism studies in mastitis research. Vet World 2014. [DOI: 10.14202/vetworld.2014.416-421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|