1
|
Wei Q, Gao Y, Liu Y, Li Q, Jin Q, Chai S, Song Y, Xing G, Zhang G. Development of a unique sandwich enzyme-linked immunosorbent assay based on monoclonal antibodies for the specific detection of the egg drop syndrome virus. Avian Pathol 2024; 53:101-105. [PMID: 38018364 DOI: 10.1080/03079457.2023.2279131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
RESEARCH HIGHLIGHTS A sandwich ELISA was developed to detect EDSV using the mAbs 5G4 and HRP-6G6.The sandwich ELISA maintained high specificity and sensitivity.The sandwich ELISA had equivalent consistency with real-time PCR assay.
Collapse
Affiliation(s)
- Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Yanling Gao
- Department of Animal Husbandry Engineering, Henan Agricultural Vocational College, Zhengzhou, People's Republic of China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Qingmei Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Qianyue Jin
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Shujun Chai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Yapeng Song
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Wang XP, Wen B, Zhang XJ, Ma L, Liang XL, Zhang ML. Transcriptome Analysis of Genes Responding to Infection of Leghorn Male Hepatocellular Cells With Fowl Adenovirus Serotype 4. Front Vet Sci 2022; 9:871038. [PMID: 35774982 PMCID: PMC9237548 DOI: 10.3389/fvets.2022.871038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/13/2022] [Indexed: 12/29/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is a highly pathogenic virus with a broad host range that causes huge economic losses for the poultry industry worldwide. RNA sequencing has provided valuable and important mechanistic clues regarding FAdV-4–host interactions. However, the pathogenic mechanism and host's responses after FAdV-4 infection remains limited. In this study, we used transcriptome analysis to identify dynamic changes in differentially expressed genes (DEGs) at five characteristic stages (12, 24, 36, 48, and 60 h) post infection (hpi) with FAdV-4. A total of 8,242 DEGs were identified based on comparison of five infection stages: 0 and 12, 12 and 24, 24 and 36, 36 and 48, and 48 and 60 hpi. In addition, at these five important time points, we found 37 common upregulated or downregulated DEGs, suggesting a common role for these genes in host response to viral infection. The predicted function of these DEGs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these DEGs were associated with viral invasion, host metabolic pathways and host immunosuppression. Interestingly, genes involved in viral invasion, probably EGR1, SOCS3, and THBS1, were related to FAdV-4 infection. Validation of nine randomly selected DEGs using quantitative reverse-transcription PCR produced results that were highly consistent with those of RNA sequencing. This transcriptomic profiling provides valuable information for investigating the molecular mechanisms underlying host–FAdV-4 interactions. These data support the current molecular knowledge regarding FAdV-4 infection and chicken defense mechanisms.
Collapse
Affiliation(s)
- Xueping P. Wang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
- *Correspondence: Xueping P. Wang
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiao J. Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Lei Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Xiu L. Liang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Ming L. Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
3
|
Sun L, Sarath Babu V, Qin Z, Su Y, Liu C, Shi F, Zhao L, Li J, Chen K, Lin L. Snakehead vesiculovirus (SHVV) infection alters striped snakehead (Ophicephalus striatus) cells (SSN-1) glutamine metabolism and apoptosis pathways. FISH & SHELLFISH IMMUNOLOGY 2020; 102:36-46. [PMID: 32289513 DOI: 10.1016/j.fsi.2020.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Snakehead vesiculovirus (SHVV) causes enormous economic losses in snakehead fish (Ophicephalus striatus) culture. Understanding replication mechanisms of virus is considerable significance in preventing and treating viral disease. In our previous studies, we have reported that glutamine starvation could significant inhibit the replication of SHVV. Furthermore, we also showed that SHVV infection could cause apoptosis of striped snakehead fish cells (SSN-1). However, the underlying mechanisms remain enigmatic. To decipher the relationships among the viral infection, glutamine starvation and apoptosis, SSN-1 cells transcriptomic profilings of SSN-1 cells infected with or without SHVV under glutamine deprived condition were analyzed. RNA-seq was used to identify differentially expressed genes (DEGs). Our data revealed that 1215 up-regulated and 226 down-regulated genes at 24 h post-infection were involved in MAPK, apoptosis, RIG-1-like and toll-like receptors pathways and glutamine metabolism. Subsequently, DEGs of glutamine metabolism and apoptosis pathways were selected to validate the sequencing data by quantitative real-time PCR (qRT-PCR). The expression patterns of both transcriptomic data and qRT-PCR were consistent. We observed that lack of glutamine alone could cause mild cellular apoptosis. However, lack of glutamine together with SHVV infection could synergistically enhance cellular apoptosis. When the cells were cultured in complete medium with glutamine, overexpression of glutaminase (GLS), an essential enzyme for glutamine metabolism, could significantly enhance the SHVV replication. While, SHVV replication was decreased in cells when GLS was knocked down by specific siRNA, indicating that glutamine metabolism was essential for viral replication. Furthermore, the expression level of caspase-3 and Bax was significantly decreased in SHVV infected cells with GLS overexpression. By contrast, they were significantly increased in SHVV infected cells with GLS silence by SiRNA, indicating that SHVV infection activated the Bax and caspase-3 pathways to induce apoptosis independent of glutamine. Our results reveal that SHVV replication and starvation of glutamine could synergistically promote the cellular apoptosis, which will pave a new way for developing strategies against the vial infection.
Collapse
Affiliation(s)
- Lindan Sun
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - V Sarath Babu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Youlu Su
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Chun Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Keping Chen
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA.
| |
Collapse
|
4
|
Song Y, Wei Q, Liu Y, Bai Y, Deng R, Xing G, Zhang G. Development of novel subunit vaccine based on truncated fiber protein of egg drop syndrome virus and its immunogenicity in chickens. Virus Res 2019; 272:197728. [PMID: 31442468 DOI: 10.1016/j.virusres.2019.197728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Egg-drop syndrome virus (EDSV) is an avian adenovirus that causes markedly decrease in egg production and in the quality of the eggs when it infects chickens. In this report, we engineered truncated fiber protein containing the entire knob domain and part of the shaft region as a vaccine candidate. The protein was obtained in the soluble fraction in Escherichia coli (E. coli), and expression level after nickel-affinity purification was 126 mg/L. By means of multiple characterization methods, it is demonstrated that the recombinant protein retains the native trimeric structure. A single inoculation with the structure-stabilized recombinant protein, even at the lowest dose of 2 μg, stimulated hemagglutination inhibition (HI) antibody responses in chickens, for at least 16 weeks. Neutralizing titers in sera from the protein immunized groups was similar to that of inactivated vaccine immunized group. The lymphocyte proliferation response and cytokine secretion were also induced in immunized SPF chickens. In addition, immunization with the fiber protein also significantly reduced the viral load in the liver. Taken together, these results suggest the truncated fiber protein as an effective single dose, long lasting and rapidly effective vaccine to protect against EDSV.
Collapse
Affiliation(s)
- Yapeng Song
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
| |
Collapse
|
5
|
Song Y, Wei Q, Liu Y, Feng H, Chen Y, Wang Y, Bai Y, Xing G, Deng R, Zhang G. Unravelling the receptor binding property of egg drop syndrome virus (EDSV) from the crystal structure of EDSV fiber head. Int J Biol Macromol 2019; 139:587-595. [PMID: 31381914 DOI: 10.1016/j.ijbiomac.2019.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022]
Abstract
Egg drop syndrome virus (EDSV) is an avian adenovirus that causes markedly decrease in egg production, and in the quality of the eggs when it infects chickens. Until now, EDSV virus-cell interactions are poorly understood, and the cellular receptor is still unknown. In the present study, we determined the atomic structure of the fiber head of EDSV (residues 377-644) at 2.74 Å resolution. Structure comparison with the (chick embryo lethal orphan) CELO long fiber head and human adenovirus fiber heads reveals that the avian adenovirus may interact with the same attachment factor in a unique fashion. Based on the previous studies of CELO virus, we assumed that the chicken coxsackievirus and adenovirus receptor (CAR) may be the attachment factor. We then demonstrate that the chicken CAR serves as a cellular attachment factor for EDSV based on three lines of evidences. Taken together, the results presented here are helpful for further exploring the pathogenesis related to the interaction between EDSV and host cells, and may be used for vaccine development and intervention strategies against EDSV infection.
Collapse
Affiliation(s)
- Yapeng Song
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
6
|
Lin W, Chen T, Liao L, Wang Z, Xiao J, Lu J, Song C, Qin J, Chen F, Chang YF, Xie Q. A parrot-type Chlamydia psittaci strain is in association with egg production drop in laying ducks. Transbound Emerg Dis 2019; 66:2002-2010. [PMID: 31127977 DOI: 10.1111/tbed.13248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/10/2019] [Accepted: 05/20/2019] [Indexed: 01/27/2023]
Abstract
Chlamydophila psittaci (C. psittaci) is an avian pathogen associated with systemic wasting disease in birds, as well as a public health risk. Although duck-related cases of psittacosis have been reported, the pathogenicity and shedding status of C. psittaci in ducks are unclear. In this study, we reported that C. psittaci (genotype A) is responsible for a disease outbreak characterized by poor laying performance and severe lesions in multiple organs of ducks. Oral administration of antibiotic, doxycycline, was found to effectively control the C. psittaci infection in laying ducks. Collectively, our new findings provide evidence that C. psittaci was the major pathogen responsible for the outbreak of this disease in ducks. In order to reduce economic losses incurred by this disease, effective control measures must be taken to prevent infection in laying duck farms.
Collapse
Affiliation(s)
- Wencheng Lin
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Tong Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China.,Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Liqin Liao
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhanxin Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Junfang Xiao
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junpeng Lu
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Chuncheng Song
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Jianping Qin
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Feng Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China.,Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Qingmei Xie
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Wang XP, Qi XF, Yang B, Chen SY, Wang JY. RNA-Seq analysis of duck embryo fibroblast cell gene expression during the early stage of egg drop syndrome virus infection. Poult Sci 2019; 98:404-412. [PMID: 30690613 DOI: 10.3382/ps/pey318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Egg drop syndrome virus (EDSV), a member of the family Adenoviridae and an economically important pathogen with a broad host range, leads to markedly decreased egg production. However, the molecular mechanism underlying the host-EDSV interaction remains unclear. Here, we performed high-throughput RNA sequencing (RNA-Seq) to study the dynamic changes in host gene expression at 6, 12, and 24 hours post-infection in duck embryo fibroblasts (DEFs) infected with EDSV. Atotal of 441 differentially expressed genes (DEGs) were identified after EDSV infection. Gene Ontology category and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that these DEGs were associated with multiple biological functions, including signal transduction, host immunity, virus infection, cell apoptosis, cell proliferation, and pathogenicity-related and metabolic process signaling pathways. We screened and identified 12 DEGs for further examination by using qRT-PCR. The qRT-PCR and RNA-Seq results were highly consistent. This study analyzed viral infection and host immunity induced by EDSV infection from a novel perspective, and the results provide valuable information regarding the mechanisms underlying host-EDSV interactions, which will prove useful for the future development of antiviral drugs or vaccines for poultry, thus benefiting the entire poultry industry.
Collapse
Affiliation(s)
- X P Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - X F Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - B Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - S Y Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - J Y Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Wang X, Qi X, Yang B, Chen S, Wang J. Autophagy Benefits the Replication of Egg Drop Syndrome Virus in Duck Embryo Fibroblasts. Front Microbiol 2018; 9:1091. [PMID: 29896171 PMCID: PMC5986908 DOI: 10.3389/fmicb.2018.01091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Egg drop syndrome virus (EDSV) is an economically important pathogen with a broad host range, and it causes disease that leads to markedly decreased egg production. Although EDSV is known to induce apoptosis in duck embryo fibroblasts (DEFs), the interaction between EDSV and its host needs to be further researched. Here, we provide the first evidence that EDSV infection triggers autophagy in DEFs through increases in autophagosome-like double-membrane vesicles, the conversion of LC3-I to LC3-II, and LC3 colocalization with viral hexon proteins. Conversely, P62/SQSTM1 degradation, LC3-II turnover, and colocalization of LAMP and LC3 confirmed that EDSV infection triggers complete autophagy. Furthermore, we demonstrated that inhibition of autophagy by chloroquine (CQ) and 3-methyladenine (3MA) or RNA interference targeting ATG-7 decreased the yield of EDSV progeny. In contrast, induction of autophagy by rapamycin increased the EDSV progeny yield. In addition, we preliminarily demonstrated that the class I phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway contributes to autophagic induction following EDSV infection. Altogether, these finding lead us to conclude that EDSV infection induces autophagy, which benefits its own replication in host cells. These findings provide novel insights into EDSV-host interactions.
Collapse
Affiliation(s)
- Xueping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shuying Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|