1
|
Davin-Regli A, Pagès JM, Vergalli J. The contribution of porins to enterobacterial drug resistance. J Antimicrob Chemother 2024; 79:2460-2470. [PMID: 39205648 DOI: 10.1093/jac/dkae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
In Enterobacteriaceae, susceptibility to cephalosporins and carbapenems is often associated with membrane and enzymatic barrier resistance. For about 20 years, a large number of Klebsiella pneumoniae, Escherichia coli and Enterobacter cloacae presenting ß-lactam resistance have been isolated from medical clinics. In addition, some of the resistant isolates exhibited alterations in the outer membrane porin OmpC-OmpF orthologues, resulting in the complete absence of gene expression, replacement by another porin or mutations affecting channel properties. Interestingly, for mutations reported in OmpC-OmpF orthologues, major changes in pore function were found to be present in the gene encoding for OmpC. The alterations were located in the constriction region of the porin and the resulting amino acid substitutions were found to induce severe restriction of the lumen diameter and/or alteration of the electrostatic field that governs the diffusion of charged molecules. This functional adaptation through porins maintains the entry of solutes necessary for bacterial growth but critically controls the influx of harmful molecules such as β-lactams at a reduced cost. The data recently published show the importance of understanding the underlying parameters affecting the uptake of antibiotics by infectious bacteria. Furthermore, the development of reliable methods to measure the concentration of antibiotics within bacterial cells is key to combat impermeability-resistance mechanisms.
Collapse
|
2
|
Xi M, Hao G, Yao Q, Duan X, Ge W. Galactooligosaccharide Mediates NF-κB Pathway to Improve Intestinal Barrier Function and Intestinal Microbiota. Molecules 2023; 28:7611. [PMID: 38005333 PMCID: PMC10674247 DOI: 10.3390/molecules28227611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The use of antibiotics to treat diarrhea and other diseases early in life can lead to intestinal disorders in infants, which can cause a range of immune-related diseases. Intestinal microbiota diversity is closely related to dietary intake, with many oligosaccharides impacting intestinal microorganism structures and communities. Thus, oligosaccharide type and quantity are important for intestinal microbiota construction. Galactooligosaccharides (GOS) are functional oligosaccharides that can be supplemented with infant formula. Currently, information on GOS and its impact on intestinal microbiota diversity and disorders is lacking. Similarly, GOS is rarely reported within the context of intestinal barrier function. In this study, 16S rRNA sequencing, gas chromatography, and immunohistochemistry were used to investigate the effects of GOS on the intestinal microbiota and barrier pathways in antibiotic-treated mouse models. The results found that GOS promoted Bifidobacterium and Akkermansia proliferation, increased short-chain fatty acid levels, increased tight junction protein expression (occludin and ZO-1), increased secretory immunoglobulin A (SIgA) and albumin levels, significantly downregulated NF-κB expression, and reduced lipopolysaccharide (LPS), interleukin-IL-1β (IL-1β), and IL-6 levels. Also, a high GOS dose in ampicillin-supplemented animals provided resistance to intestinal damage.
Collapse
Affiliation(s)
- Menglu Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| | - Guo Hao
- Shaanxi Sheep Milk Product Quality Supervision and Inspection Center, Xi’an 710000, China;
| | - Qi Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| |
Collapse
|
3
|
Valiakos G, Kapna I. Colistin Resistant mcr Genes Prevalence in Livestock Animals (Swine, Bovine, Poultry) from a Multinational Perspective. A Systematic Review. Vet Sci 2021; 8:265. [PMID: 34822638 PMCID: PMC8619609 DOI: 10.3390/vetsci8110265] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/23/2022] Open
Abstract
The objective of this review is to collect and present the results of relevant studies on an international level, on the subject of colistin resistance due to mcr genes prevalence in livestock animals. After a literature search, and using PRISMA guidelines principles, a total of 40 swine, 16 bovine and 31 poultry studies were collected concerning mcr-1 gene; five swine, three bovine and three poultry studies referred to mcr-2 gene; eight swine, one bovine, two poultry studies were about mcr-3 gene; six swine, one bovine and one poultry manuscript studied mcr-4 gene; five swine manuscripts studied mcr-5 gene; one swine manuscript was about mcr-6, mcr-7, mcr-8, mcr-9 genes and one poultry study about mcr-10 gene was found. Information about colistin resistance in bacteria derived from animals and animal product foods is still considered limited and that should be continually enhanced; most of the information about clinical isolates are relative to enteropathogens Escherichia coli and Salmonella spp. This review demonstrates the widespread dispersion of mcr genes to livestock animals, indicating the need to further increase measures to control this important threat for public health issue.
Collapse
Affiliation(s)
- George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | | |
Collapse
|
4
|
da Costa Lima M, Magnani M, Dos Santos Lima M, de Sousa CP, Dubreuil JD, de Souza EL. Phenolic-rich extracts from acerola, cashew apple and mango by-products cause diverse inhibitory effects and cell damages on enterotoxigenic Escherichia coli. Lett Appl Microbiol 2021; 75:565-577. [PMID: 34687563 PMCID: PMC9539876 DOI: 10.1111/lam.13586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the inhibitory effects of phenolic-rich extracts from acerola (Malpighia emarginata D.C., PEA), cashew apple (Anacardium occidentale L., PEC) and mango (Mangifera indica L., PEM) by-products on distinct enterotoxigenic Escherichia coli (ETEC) strains. The capability of PEA and PEC of impairing various physiological functions of ETEC strains was investigated with multiparametric flow cytometry. Procyanidin B2 , myricetin and p-coumaric acid were the major phenolic compounds in PEA, PEC and PEM, respectively. PEA and PEC had lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) (MIC: 31·25 mg ml-1 ; MBC: 62·5 mg ml-1 ) on ETEC strains than PEM (MIC and MIC: >1000 mg ml-1 ). PEA and PEC (15·6, 31·2, 62·5 mg ml-1 ) caused viable count reductions (P < 0·05) on ETEC strains after 24 h of exposure, notably the ≥3 log reductions caused by 62·5 mg ml-1 . The 24 h exposure of ETEC strains to PEA and PEC (31·2, 62·5 mg ml-1 ) led to high sizes of cell subpopulations with concomitant impairments in cell membrane polarization and permeability, as well as in enzymatic, respiratory and efflux activities. PEA and PEC are effective in inhibiting ETEC through a multi-target action mode with disturbance in different physiological functions.
Collapse
Affiliation(s)
- M da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - M Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - M Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Pernambuco, Brazil
| | - C P de Sousa
- Department of Morphology and Pathology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - J D Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - E L de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
5
|
Herndon JL, Peters RE, Hofer RN, Simmons TB, Symes SJ, Giles DK. Exogenous polyunsaturated fatty acids (PUFAs) promote changes in growth, phospholipid composition, membrane permeability and virulence phenotypes in Escherichia coli. BMC Microbiol 2020; 20:305. [PMID: 33046008 PMCID: PMC7552566 DOI: 10.1186/s12866-020-01988-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The utilization of exogenous fatty acids by Gram-negative bacteria has been linked to many cellular processes, including fatty acid oxidation for metabolic gain, assimilation into membrane phospholipids, and control of phenotypes associated with virulence. The expanded fatty acid handling capabilities have been demonstrated in several bacteria of medical importance; however, a survey of the polyunsaturated fatty acid responses in the model organism Escherichia coli has not been performed. The current study examined the impacts of exogenous fatty acids on E. coli. RESULTS All PUFAs elicited higher overall growth, with several fatty acids supporting growth as sole carbon sources. Most PUFAs were incorporated into membrane phospholipids as determined by Ultra performance liquid chromatography-mass spectrometry, whereas membrane permeability was variably affected as measured by two separate dye uptake assays. Biofilm formation, swimming motility and antimicrobial peptide resistance were altered in the presence of PUFAs, with arachidonic and docosahexaenoic acids eliciting strong alteration to these phenotypes. CONCLUSIONS The findings herein add E. coli to the growing list of Gram-negative bacteria with broader capabilities for utilizing and responding to exogenous fatty acids. Understanding bacterial responses to PUFAs may lead to microbial behavioral control regimens for disease prevention.
Collapse
Affiliation(s)
- Joshua L. Herndon
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Rachel E. Peters
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Rachel N. Hofer
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Timothy B. Simmons
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Steven J. Symes
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - David K. Giles
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| |
Collapse
|
6
|
Xi M, Yao Q, Ge W, Chen Y, Cao B, Wang Z, Cui X, Sun Q. Effects of stachyose on intestinal microbiota and immunity in mice infected with enterotoxigenic Escherichia coli. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|