1
|
Cuccato M, Divari S, Giannuzzi D, Grange C, Moretti R, Rinaldi A, Leroux C, Sacchi P, Cannizzo FT. Extracellular vesicle miRNome during subclinical mastitis in dairy cows. Vet Res 2024; 55:112. [PMID: 39300590 DOI: 10.1186/s13567-024-01367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Bovine mastitis is one of the main inflammatory diseases that can affect the udder during lactation. Somatic cell counts and sometimes microbiological tests are routinely adopted during monitoring diagnostics in dairy herds. However, subclinical mastitis is challenging to identify, reducing the possibility of early treatments. The main aim of this study was to investigate the miRNome profile of extracellular vesicles isolated from milk as potential biomarkers of subclinical mastitis. Milk samples were collected from a total of 60 dairy cows during routine monitoring tests. Small RNA sequencing technology was applied to extracellular vesicles of milk samples collected from cows classified according to the somatic cell count to identify differences in the miRNome between mastitic and healthy cows. A total of 1997 miRNAs were differentially expressed between both groups. Among them, 68 miRNAs whose FDRs were < 0.05 were mostly downregulated, with only one upregulated miRNA (i.e., miR-361). Functional analysis revealed that miR-455-3p, miR-503-3p, miR-1301-3p and miR-361-5p are involved in the regulation of several biological processes related to mastitis, including immune system-related processes. This study suggests the involvement of extracellular vesicle-derived miRNAs in the regulation of mastitis. Moreover, these findings provide evidence that miRNAs from milk extracellular vesicles can be used to identify biomarkers of mastitis. However, further studies must be conducted to validate these miRNAs, especially for subclinical diagnosis.
Collapse
Affiliation(s)
- Matteo Cuccato
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Turin, Italy
| | - Sara Divari
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Turin, Italy.
| | - Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020, Padua, Italy
| | - Cristina Grange
- Department of Medical Sciences, VEXTRA Facility, University of Turin, 10126, Turin, Italy
| | - Riccardo Moretti
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Turin, Italy
| | - Andrea Rinaldi
- Faculty of Biomedical Sciences, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Christine Leroux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Paola Sacchi
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, Turin, Italy
| | | |
Collapse
|
2
|
Scaramele NF, Troiano JA, Felix JDS, Costa SF, Almeida MC, Florencio de Athayde FR, Soares MF, Lopes MFDS, Furlan ADO, de Lima VMF, Lopes FL. Leishmania infantum infection modulates messenger RNA, microRNA and long non-coding RNA expression in human neutrophils in vitro. PLoS Negl Trop Dis 2024; 18:e0012318. [PMID: 39028711 PMCID: PMC11259272 DOI: 10.1371/journal.pntd.0012318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/25/2024] [Indexed: 07/21/2024] Open
Abstract
In the Americas, L. infantum (syn. chagasi) is the main cause of human visceral leishmaniasis. The role of neutrophils as part of the innate response to Leishmania spp. infection is dubious and varies according to the species causing the infection. Global expression of coding RNAs, microRNAs and long non-coding RNAs changes as part of the immune response against pathogens. Changes in mRNA and non-coding RNA expression resulting from infection by Leishmania spp. are widely studied in macrophages, but scarce in neutrophils, the first cell to encounter the trypanosomatid, especially following infection by L. infantum. Herein, we aimed to understand the expression patterns of coding and non-coding transcripts during acute in vitro infection of human neutrophils by L. infantum. We isolated neutrophils from whole blood of healthy male donors (n = 5) and split into groups: 1) infected with L. infantum (MOI = 5:1), and 2) uninfected controls. After 3 hours of exposure of infected group to promastigotes of L. infantum, followed by 17 hours of incubation, total RNA was extracted and total RNA-Seq and miRNA microarray were performed. A total of 212 genes were differentially expressed in neutrophils following RNA-Seq analysis (log2(FC)±0.58, FDR≤0.05). In vitro infection with L. infantum upregulated the expression of 197 and reduced the expression of 92 miRNAs in human neutrophils (FC±2, FDR≤0.01). Lastly, 5 downregulated genes were classified as lncRNA, and of the 10 upregulated genes, there was only 1 lncRNA. Further bioinformatic analysis indicated that changes in the transcriptome and microtranscriptome of neutrophils, following in vitro infection with L. infantum, may impair phagocytosis, apoptosis and decrease nitric oxide production. Our work sheds light on several mechanisms used by L. infantum to control neutrophil-mediated immune response and identifies several targets for future functional studies, aiming at the development of preventive or curative treatments for this prevalent zoonosis.
Collapse
Affiliation(s)
- Natália Francisco Scaramele
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jéssica Antonini Troiano
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Juliana de Souza Felix
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Sidnei Ferro Costa
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Mariana Cordeiro Almeida
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flávia Regina Florencio de Athayde
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Matheus Fujimura Soares
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Maria Fernanda da Silva Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Amanda de Oliveira Furlan
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flavia Lombardi Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| |
Collapse
|
3
|
Varvil MS, dos Santos AP. A review on microRNA detection and expression studies in dogs. Front Vet Sci 2023; 10:1261085. [PMID: 37869503 PMCID: PMC10585042 DOI: 10.3389/fvets.2023.1261085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function by post-transcriptional regulation of gene expression. Their stability and abundance in tissue and body fluids makes them promising potential tools for both the diagnosis and prognosis of diseases and attractive therapeutic targets in humans and dogs. Studies of miRNA expression in normal and disease processes in dogs are scarce compared to studies published on miRNA expression in human disease. In this literature review, we identified 461 peer-reviewed papers from database searches using the terms "canine," "dog," "miRNA," and "microRNA"; we screened 244 for inclusion criteria and then included a total of 148 original research peer-reviewed publications relating to specific miRNA expression in canine samples. We found an overlap of miRNA expression changes between the four groups evaluated (normal processes, non-infectious and non-inflammatory conditions, infectious and/or inflammatory conditions, and neoplasia) in 39 miRNAs, 83 miRNAs in three of the four groups, 110 miRNAs in two of the three groups, where 158 miRNAs have only been reported in one of the groups. Additionally, the mechanism of action of these overlapping miRNAs varies depending on the disease process, elucidating a need for characterization of the mechanism of action of each miRNA in each disease process being evaluated. Herein we also draw attention to the lack of standardization of miRNA evaluation, consistency within a single evaluation method, and the need for standardized methods for a direct comparison.
Collapse
Affiliation(s)
- Mara S. Varvil
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Soares MF, Costa SF, de Freitas JH, Rebech GT, Dos Santos MO, de Lima VMF. MiR-150 regulates the Leishmania infantum parasitic load and granzyme B levels in peripheral blood mononuclear cells of dogs with canine visceral leishmaniosis. Vet Parasitol 2023; 320:109958. [PMID: 37269731 DOI: 10.1016/j.vetpar.2023.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Leishmania infantum causes visceral leishmaniosis, a neglected tropical disease that can modulate the host immune response by altering the expression of small non-coding RNAs called microRNAs (miRNAs). Some miRNAs are differentially expressed in peripheral blood mononuclear cells (PBMCs) of dogs with canine visceral leishmaniosis (CanL), like the down-regulated miR-150. Even though miR-150 is negatively correlated with L. infantum parasitic load, it is unclear if miR-150 directly affects L. infantum parasitic load and (if so) how this miRNA would contribute to infection. Here, we isolated PBMCs from 14 naturally infected dogs (CanL group) and six healthy dogs (Control group) and treated them in vitro with miR-150 mimic or inhibitor. We measured L. infantum parasitic load using qPCR and compared treatments. We also measured miR-150 in silico predicted target protein levels (STAT1, TNF-α, HDAC8, and GZMB) using flow cytometry or enzyme-linked immunosorbent assays. Increasing miR-150 activity diminished L. infantum parasitic load in CanL PBMCs. We also found that inhibition of miR-150 reduced GZMB (granzyme B) levels. These findings demonstrate that miR-150 plays an important role in L. infantum infection in canine PBMCs, and they merit further studies aiming at drug development.
Collapse
Affiliation(s)
- Matheus Fujimura Soares
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil
| | - Sidnei Ferro Costa
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil
| | - Jéssica Henrique de Freitas
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil
| | - Gabriela Torres Rebech
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil
| | - Marilene Oliveira Dos Santos
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil.
| |
Collapse
|
5
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Karimazar M, Muro A, Nguewa P, Manzano-Román R. miRNAs in the regulation of mTOR signaling and host immune responses: The case of Leishmania infections. Acta Trop 2022; 231:106431. [PMID: 35367408 DOI: 10.1016/j.actatropica.2022.106431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/01/2022]
Abstract
Micro RNAs (miRNAs), as regulators of gene expression at the post-transcriptional level, can respond to/or interact with cell signaling and affect the pathogenesis of different diseases/infections. The interaction/crosstalk of miRNAs with various cellular signaling networks including mTOR (as a master regulator of signaling relevant to different cellular mechanisms) might lead to the initiation, progression or restriction of certain disease processes. There are numerous studies that have identified the crosstalk between regulatory miRNA expression and the mTOR pathway (or mTOR signaling regulated by miRNAs) in different diseases which has a dual function in pathogenesis. However, the corresponding information in parasitic infections remains scarce. miRNAs have been suggested as specific targets for therapeutic strategies in several disorders such as parasitic infections. Thus, the targeting of miRNAs (as the modulators/regulators of mTOR) by small molecules and RNA-based therapeutics and consequently managing and modulating mTOR signaling and the downstream/related cell signaling/pathways might shed some light on the design of new therapeutic strategies against parasitic diseases, including Leishmaniasis. Accordingly, the present study attempts to highlight the importance of the crosstalk between regulatory miRNAs and mTOR signaling, and to review the relevant insights into parasitic infections by focusing specifically on Leishmania.
Collapse
|