1
|
Liu Y, Zhang Q, Zhao L, Hua L, Xu K, Shi Y, Chen S, Zhao H, Zhu H, Wang S. Unraveling the contribution of melamine tableware for human internal exposure to melamine and its derivatives: Insights from crossover and biomonitoring studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176971. [PMID: 39419215 DOI: 10.1016/j.scitotenv.2024.176971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Melamine tableware can release melamine in daily-use; however, currently there is insufficient evidence to support whether the amount released could pose human exposure risk. We therefore conducted two studies, one is 8-day randomized crossover trial involving 27 volunteers who used melamine and stainless-steel tableware in turn (n = 648) and the other is cross-sectional study including 113 college students and 200 residents (n = 313) to further provide population-based evidence. The crossover study results showed that using melamine tableware could promote urinary concentrations of melamine, cyanuric acid (CYA), and ammelide by 42.1 %, 66.9 %, and 36.2 %, respectively. In the biomonitoring survey, students who are more accessible to melamine tableware in the canteen had 1.47-fold higher median urinary concentrations of melamine-related compounds than that of common residents (393 vs 267 nmol/L, p < 0.01). Additionally, positive associations between exposure to melamine and an oxidative stress indicator, 8-oxo-7,8-dihydroguanine (β = 1.13, 95 % CI: 0.32, 1.94), and CYA and 8-hydroxy-2'-deoxyguanosine (β = 0.87, 95 % CI: 0.22, 1.53) were observed in students (p < 0.01), indicating long-term chronic exposure to these chemicals may induce molecular damage to nucleic acids. Our findings provide compelling evidence that frequent use of melamine tableware continues to be a potential threat to human health.
Collapse
Affiliation(s)
- Yarui Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liting Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ke Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shucong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Habotta OA, Abdeen A, Roomi AB, Elgndy AI, Sorour SM, Morsi MH, Kamal KM, Ibrahim SF, Abdelrahaman D, Fericean L, Banatean-Dunea I, Ghamry HI, El-Nablaway M, Atawia RT, Abdelhady D. Nootkatone Mitigated Melamine-Evoked Hepatotoxicity by Featuring Oxidative Stress and Inflammation Interconnected Mechanisms: In Vivo and In Silico Approaches. TOXICS 2023; 11:784. [PMID: 37755794 PMCID: PMC10535958 DOI: 10.3390/toxics11090784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Melamine (ML) is a common environmental contaminant, commonly used in food fraud, representing a serious health hazard and jeopardizing human and animal health. Recently, nootkatone (NK), a naturally occurring sesquiterpenoid, has garnered considerable attention due to its potential therapeutic advantages. We investigated the potential mechanisms underlying the protective effects of NK against ML-induced liver injury in rats. Five groups were utilized: control, ML, NK10, ML-NK5, and ML-NK10. ML induced substantial hepatotoxicity, including considerable alterations in biochemical parameters and histology. The oxidative distress triggered by ML increased the generation of malondialdehyde (MDA) and nitric oxide (NO) and decreased levels of reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities. In addition, decreased expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased nuclear factor kappa beta (NF-κB) expression levels were observed in hepatocytes, which indicated the occurrence of inflammatory changes following ML exposure. These alterations were alleviated by NK supplementation in a dose-dependent manner. The data revealed that the favorable effects of NK were attributed, at least in part, to its antioxidant and anti-inflammatory properties. Moreover, our results were supported by molecular docking studies that revealed a good fit and interactions between NK and antioxidant enzymes. Thus, the current study demonstrated that NK is a potential new food additive for the prevention or treatment of ML-induced toxicity.
Collapse
Affiliation(s)
- Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Ali B. Roomi
- Department of Quality Assurance, University of Thi-Qar, Thi-Qar, Nasiriyah 64001, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, Nasiriyah 64001, Iraq
| | - Afnan I. Elgndy
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Safwa M. Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Maha H. Morsi
- Department of Clinical and Chemical Pathology, Faculty of Applied Health Sciences Technology, Misr University for Science and Technology, Giza 3236101, Egypt
| | - Kamal M. Kamal
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Doaa Abdelrahaman
- Department of Basic Sciences, Faculty of Medicine, Al-Azhar University, Cairo 11751, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Calea Aradului 119, CUI 3487181, 300645 Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Calea Aradului 119, CUI 3487181, 300645 Timisoara, Romania
| | - Heba I. Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Reem T. Atawia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Dania Abdelhady
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| |
Collapse
|
3
|
Kim WI, Pak SW, Lee SJ, Moon C, Shin IS, Lee IC, Kim JC. Effects of melamine and cyanuric acid on placental and fetal development in rats. Food Chem Toxicol 2023:113862. [PMID: 37247804 DOI: 10.1016/j.fct.2023.113862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Melamine or cyanuric acid alone has low toxicity, but combined exposure to melamine and cyanuric acid was reported to cause unexpected toxicological effects. This study investigated the potential effects and toxic mechanism of combined exposure to melamine and cyanuric acid on placental and fetal development in rats. Exposure to melamine and cyanuric acid caused maternal toxicity manifested by increased abnormal symptoms and decreased body weight gain. Developmental toxic effects included a decrease in placental and fetal weights with increased fetal deaths and post-implantation loss. Melamine and cyanuric acid induced oxidative stress in the developing placenta and fetus. The placentas from rats treated with melamine and cyanuric acid showed shortening of the placental layers with histological changes, decreased cell proliferation, increased apoptotic changes, and decreased insulin-like growth factor (IGF)/IGF-binding proteins (IGFBPs) and placental lactogen (PL) expression levels. Fetuses from melamine- and cyanuric acid-treated dams showed increased apoptotic changes and suppressed cellular proliferation in their livers and vertebrae. Consequently, combined exposure to melamine and cyanuric acid resulted in high levels of oxidative stress and impaired placental development associated with impairment of the IGF/IGFBP and PL systems, resulting in increased apoptotic changes and reduced fetal cell proliferation.
Collapse
Affiliation(s)
- Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Sun W, Chen X, Mei Y, Li X, Yang Y, An L. Co-exposure of melamine and cyanuric acid as a risk factor for oxidative stress and energy metabolism: Adverse effects on hippocampal neuronal and synaptic function induced by excessive ROS production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114230. [PMID: 36306617 DOI: 10.1016/j.ecoenv.2022.114230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Melamine (MEL) and cyanuric acid (CA) alone have relatively low toxicity, but together they may cause serious damage to multiple organs, including the central nervous system, however, the underlying mechanism is unknown. This study aimed to determine and compare the neurotoxic effects of MEL (20 μg/mL), CA (20 μg/mL) and their combination (10 μg/mL MEL and 10 μg/mL CA) on cultured hippocampal neurons. The cell viability, apoptosis, anti-oxidative and energy metabolic indices were detected following 24 h of incubations. The miniature excitatory postsynaptic currents (mEPSCs), miniature inhibitory postsynaptic currents (mIPSCs) and synaptic plasticity in the hippocampal CA1 neurons were recorded. Moreover, ROS scavenger NAC was co-infused to investigate the potential mechanism. We found the complex of MEL and CA but not their alone caused severe cell death and disturbed energy production through activation caspase-3-mediated apoptosis. Meanwhile, the combination significantly reduced the amplitude, decay time and frequency of mEPSCs but not mIPSCs, indicating the pre- and post-synaptic inhibitory actions on neuronal activity. Paired-pulsed ratio (PPR) and long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses were critically depressed. However, the co-application of NAC could effectively mitigate the cellular apoptosis, energy metabolism dysfunction and the impairments in neuronal and synaptic function. Our findings provide the first evidence that the combination of MEL and CA can exert more prominently neurotoxic effects than their alone and certify that one of the potential mechanisms for neuronal and synaptic dysfunction is the ROS-mediated signaling pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China; Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| |
Collapse
|
5
|
Prenatal cyanuric acid exposure disrupts cognitive flexibility and mGluR1-mediated hippocampal long-term depression in male rats. Toxicol Lett 2022; 370:74-84. [PMID: 36152796 DOI: 10.1016/j.toxlet.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
Cyanuric acid is one of the most widely used classes of industrial chemicals and is now well known as food adulterant and contaminant in pet food and infant formula. Previously, it was reported that animals prenatally exposed to cyanuric acid showed neurotoxic effects that impaired memory consolidating and suppressed long-term potentiation (LTP) in the hippocampus. However, it is not clear if prenatal exposure to cyanuric acid induces deficits in reversal learning and long-term depression (LTD), which is required for the developmental reorganization of synaptic circuits and updating learned behaviors. Here, pregnant rats were i.p. injected with cyanuric acid (20 mg/kg) during the whole of gestation, and male offspring were selected to examine the levels of hippocampal mGluR1 and mGluR2/3 in young adulthood. The LTD at the Schaffer collateral-CA1 pathway was induced by low-frequency stimulation (LFS) and recorded. Reversal learning and hippocampus-dependent learning strategy were tested in Morris-water maze (MWM) and T-maze tasks, respectively. To further confirm the potential mechanism, selective agonists of mGluR1 and mGluR2/3 and antagonists of mGluR were intra-hippocampal infused before behavioral and neuronal recording. We found the levels of alkaline phosphatase were markedly increased in the maternal placenta and fetal brain following prenatal exposure. The expression of mGluR1 but not mGluR2/3 was significantly decreased and mGluR1-mediated LTD was selectively weakened. Prenatal cyanuric acid impaired reversal learning ability, without changing place learning strategy. The mGluR1 agonist could effectively enhance LFS-induced LTD and mitigate reversal learning deficits. Meanwhile, the reductions in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-mediated spontaneous excitatory postsynaptic currents (sEPSCs) amplitude and frequency of cyanuric acid offspring were simultaneously alleviated by mGluR1 agonist infusions. Therefore, the results indicate the cognitive and synaptic impairments induced by prenatal cyanuric acid exposure are attributed to the disruption of the hippocampal mGluR1 signaling. Our findings provided the first evidence for the deteriorated effects of cyanuric acid on synaptic depression and advanced cognitive performance.
Collapse
|
6
|
Liu S, Zhao Q, Huang F, Yang Q, Wang Y, Wang H, Sun Y, Yan Y, He G, Zhao G, Dong R, Chen B. Exposure to melamine and its derivatives in Chinese adults: The cumulative risk assessment and the effect on routine blood parameters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113714. [PMID: 35660378 DOI: 10.1016/j.ecoenv.2022.113714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Melamine (MEL) and its derivatives, ammeline (AMN), ammelide (AMD), cyanuric acid (CYA) are widely existed in environmental media. Animal studies have reported the cumulative risk assessment (CRA) of simultaneous exposure to MEL and its derivatives and explored the associations between exposure and routine blood parameters. Such information is largely unknown in human studies. In this study, we detected the urinary concentrations of MEL and its derivatives in 239 Chinese adults to conduct the CRA by evaluating their hazard quotients (HQ) and hazard Index (HI), and also explored the possible associations between exposure and measured routine blood parameters in study population. The detectable frequencies of MEL, AMN, AMD and CYA were 96.65%, 41.00%, 97.91% and 97.07%, respectively. The median values of creatinine (Cr)-adjusted MEL, AMN, AMD, CYA and the total concentrations of MEL and its derivatives (∑MEL) were 11.41 μg/g Cr, not detected (ND), 2.64 μg/g Cr, 15.30 μg/g Cr, 35.02 μg/g Cr, respectively. There were 9 (3.77%) participants with estimated daily intakes (EDIs) of CYA exceeding the tolerable daily intake (TDI) of 2500 ng/kg bw/day, and 12 (5.02%) participants with HI of ∑MEL exposure exceeding 1 based on the strictest TDI value. Urinary concentrations of MEL and its derivatives were positively associated with specific routine blood parameters, including hematocrit, hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, white blood cell, neutrophil count (P < 0.05). Meanwhile, exposure to MEL and its derivatives increased the risk of red blood cell abnormality (P < 0.05). Our study is the first study to provide evidence-based data on the CRA of exposure to MEL and its derivatives in Chinese adults, and to propose a possible association between such exposure and routine blood parameters in human.
Collapse
Affiliation(s)
- ShaoJie Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Qi Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - FeiFei Huang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - QiFan Yang
- Chemical Laboratory, Jing'an District Center for Disease Control and Prevention, Shanghai 200041, China
| | - YiFei Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - HangWei Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - YongYun Sun
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - YuJia Yan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - GengSheng He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - GenMing Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - RuiHua Dong
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Bo Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|