1
|
Probing conformational transitions of PIN1 from L. major during chemical and thermal denaturation. Int J Biol Macromol 2020; 154:904-915. [PMID: 32209371 DOI: 10.1016/j.ijbiomac.2020.03.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023]
Abstract
PIN1 proteins are a class of peptidyl prolyl cis-trans isomerases (PPIases), which have been implicated in numerous cellular functions like cell cycle progression, transcriptional control, signal transduction, promotion of oncogenesis and host-parasite interactions. In this work, the unfolding mechanism of a single domain PIN1 from Leishmania major (LmPIN1) has been characterized during thermal and denaturant-induced unfolding by differential scanning calorimetry (DSC), fluorescence and circular dichroism. Further, MD simulations have been performed to structurally probe the possible stages of its unfolding process. Both the fluorescence and CD data confirm classical two-state unfolding transitions for urea and GdnHCl. The thermal unfolding of LmPIN1, characterized by DSC, could optimally be fitted to a non two-state transition curve exhibiting two Tm's (53 °C and 57 °C) suggesting the possibility of an intermediate. Thermal unfolding of the modeled LmPIN1 by MD simulation shows that the unfolding process is initiated by increased fluctuations (dynamics) spanning residues 70-80, followed by perturbations in the sheet system and disjuncture of helix-sheet packing. Importantly, simulation and fluorescence quenching studies clearly suggest the possibility of the presence of residual structures of LmPIN1 even after complete denaturation.
Collapse
|
2
|
Wang W, Xi L, Xiong X, Li X, Zhang Q, Yang W, Du L. Insight into the structural stability of wild-type and histidine mutants in Pin1 by experimental and computational methods. Sci Rep 2019; 9:8413. [PMID: 31182777 PMCID: PMC6557836 DOI: 10.1038/s41598-019-44926-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/28/2019] [Indexed: 01/21/2023] Open
Abstract
Pin1, a polypeptide proline isomerase parvulin, plays a key role in Alzheimer's disease (AD), common tumors and cancers. Two conservative histidine residues, His59 and His157, are important for maintaining the stability of the PPIase domain. Hence multiple spectral and computational techniques were performed to investigate the potential mechanism of two histidine residues. Thermal denaturation indicated that both residues His59 and His157 are not sensitive to the lower temperatures, while residue His59 is more sensitive to the higher temperatures than residue His157. Acidic denaturation suggested that influences of both residues His59 and His157 to acidic stability were the difference from Pin1-WT. ANS and RLS spectra hinted that there was no significant effect on hydrophobic change and aggregation by histidine mutations. The GndHCl-induced denaturation implied that residues His59 and His157 contributed the most to the chemical stability. MD simulations revealed that residues His59 and His157 mutations resulted in that the hydrogen bond network of the dual histidine motif was destroyed wholly. In summary, these histidine residues play an important role in maintaining the structural stability of the PPIase domain.
Collapse
Affiliation(s)
- Wang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Lei Xi
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Xiuhong Xiong
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Xue Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Qingyan Zhang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Wentao Yang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Linfang Du
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China.
| |
Collapse
|
3
|
Ursache FM, Aprodu I, Nistor OV, Bratu M, Botez E, Stănciuc N. Probing the heat-induced structural changes in bovine serum albumin by fluorescence spectroscopy and molecular modelling. INT J DAIRY TECHNOL 2016. [DOI: 10.1111/1471-0307.12351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florentina-Mihaela Ursache
- Faculty of Food Science and Engineering; Dunarea de Jos University of Galati; Street 111 800201 Galati Romania
| | - Iuliana Aprodu
- Faculty of Food Science and Engineering; Dunarea de Jos University of Galati; Street 111 800201 Galati Romania
| | - Oana-Viorela Nistor
- Faculty of Food Science and Engineering; Dunarea de Jos University of Galati; Street 111 800201 Galati Romania
| | - Mihaela Bratu
- Faculty of Food Science and Engineering; Dunarea de Jos University of Galati; Street 111 800201 Galati Romania
| | - Elisabeta Botez
- Faculty of Food Science and Engineering; Dunarea de Jos University of Galati; Street 111 800201 Galati Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering; Dunarea de Jos University of Galati; Street 111 800201 Galati Romania
| |
Collapse
|
4
|
Xiao QJ, Li ZG, Yang J, He Q, Xi L, Du LF. Heat-induced unfolding of apo-CP43 studied by fluorescence spectroscopy and CD spectroscopy. PHOTOSYNTHESIS RESEARCH 2015; 126:427-435. [PMID: 26071019 DOI: 10.1007/s11120-015-0166-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
CP43 is a chlorophyll-binding protein, which acts as a conduit for the excitation energy transfer. The thermal stability of apo-CP43 was studied by intrinsic fluorescence, exogenous ANS fluorescence, and circular dichroism spectroscopy. Under heat treatment, the structure of apo-CP43 changed and existed transition state occurred between 56 and 62 °C by the intrinsic, exogenous ANS fluorescence and the analysis of hydrophobicity. Besides, the isosbestic point of the sigmoidal curve was 58.10 ± 1.02 °C by calculating α-helix transition and the Tm was 56.45 ± 0.52 and 55.59 ± 0.68 °C by calculating the unfolded fraction of tryptophan and tyrosine fluorescence, respectively. During the process of unfolding, the hydrophobic structure of C-terminal segment firstly started to expose at 40 °C, and then the hydrophobic cluster adjacent to the N-terminal segment also gradually exposed to hydrophilic environment with increasing temperature. Our results indicated that heat treatment, especially above 40 °C, has an important impact on the structural stability of apo-CP43.
Collapse
Affiliation(s)
- Qing-Jie Xiao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Zai-Geng Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Jiao Yang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Qing He
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Lei Xi
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Lin-Fang Du
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
5
|
The structural and functional role of the three tryptophan residues in Pin1. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 146:58-67. [DOI: 10.1016/j.jphotobiol.2015.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 11/23/2022]
|
6
|
Folding membrane proteins in vitro: A table and some comments. Arch Biochem Biophys 2014; 564:314-26. [DOI: 10.1016/j.abb.2014.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/23/2022]
|
7
|
Interaction Between Ginkgolic Acid and Human Serum Albumin by Spectroscopy and Molecular Modeling Methods. J SOLUTION CHEM 2014. [DOI: 10.1007/s10953-014-0200-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Wang JZ, Ren SY, Zhu GF, Xi L, Han YG, Luo Y, Du LF. Hg2+ interference with the structure of tobacco etch virus protease (TEVp) and its implications for biological engineering. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.08.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
Wang JZ, Li SR, Li YL, Zhang YZ, Zhang T, Zhao CX, Yao CX, Du LF. Could Pin1 help us conquer essential hypertension at an earlier stage? A promising early-diagnostic biomarker and its therapeutic implications for the disease. Med Hypotheses 2013; 81:931-5. [DOI: 10.1016/j.mehy.2013.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/07/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
10
|
Aluminum(III) interferes with the structure and the activity of the peptidyl-prolyl cis-trans isomerase (Pin1): A new mechanism contributing to the pathogenesis of Alzheimer's disease and cancers? J Inorg Biochem 2013; 126:111-7. [DOI: 10.1016/j.jinorgbio.2013.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/25/2022]
|
11
|
Focusing on the structure and the function of Pin1: New insights into the opposite effects of fever on cancers and Alzheimer’s disease. Med Hypotheses 2013; 81:282-4. [DOI: 10.1016/j.mehy.2013.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022]
|
12
|
Wang JZ, Xi L, Zhu GF, Han YG, Luo Y, Wang M, Du LF. The acidic pH-induced structural changes in Pin1 as revealed by spectral methodologies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 98:199-206. [PMID: 22986147 DOI: 10.1016/j.saa.2012.07.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
Pin1 is closely associated with the pathogenesis of cancers and Alzheimer's disease (AD). Previously, we have shown the characteristics of the thermal denaturation of Pin1. Herein, the acid-induced denaturation of Pin1 was determined by means of fluorescence emission, synchronous fluorescence, far-UV CD, ANS fluorescence and RLS spectroscopies. The fluorescence emission spectra and the synchronous fluorescence spectra suggested the partially reversible unfolding (approximately from pH 7.0 to 4.0) and refolding (approximately from pH 4.0 to 1.0) of the structures around the chromophores in Pin1, apparently with an intermediate state at about pH 4.0-4.5. The far-UV CD spectra indicated that acidic pH (below pH 4.0) induced the structural transition from α-helix and random coils to β-sheet in Pin1. The ANS fluorescence and the RLS spectra further suggested the exposure of the hydrophobic side-chains of Pin1 and the aggregation of it especially below pH 2.3, and the aggregation possibly resulted in the formation of extra intermolecular β-sheet. The present work primarily shows that acidic pH can induce kinds of irreversible structural changes in Pin1, such as the exposure of the hydrophobic side-chains, the transition from α-helix to β-sheet and the aggregation of Pin1, and also explains why Pin1 loses most of its activity below pH 5.0. The results emphasize the important role of decreased pH in the pathogenesis of some Pin1-related diseases, and support the therapeutic approach for them by targeting acidosis and modifying the intracellular pH gradients.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Xu Y, Wang JZ, Li JS, Huang XH, Xing ZH, Du LF. Heat treatment-induced functional and structural aspects of Mus musculus TAp63γ. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.03.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|