1
|
Fan P, Zhang S, Wang Y, Li T, Zhang H, Zhang P, Huang S. Nanopore analysis of salvianolic acids in herbal medicines. Nat Commun 2024; 15:1970. [PMID: 38443335 PMCID: PMC10915175 DOI: 10.1038/s41467-024-45543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Natural herbs, which contain pharmacologically active compounds, have been used historically as medicines. Conventionally, the analysis of chemical components in herbal medicines requires time-consuming sample separation and state-of-the-art analytical instruments. Nanopore, a versatile single molecule sensor, might be suitable to identify bioactive compounds in natural herbs. Here, a phenylboronic acid appended Mycobacterium smegmatis porin A (MspA) nanopore is used as a sensor for herbal medicines. A variety of bioactive compounds based on salvianolic acids, including caffeic acid, protocatechuic acid, protocatechualdehyde, salvianic acid A, rosmarinic acid, lithospermic acid, salvianolic acid A and salvianolic acid B are identified. Using a custom machine learning algorithm, analyte identification is performed with an accuracy of 99.0%. This sensing principle is further used with natural herbs such as Salvia miltiorrhiza, Rosemary and Prunella vulgaris. No complex sample separation or purification is required and the sensing device is highly portable.
Collapse
Affiliation(s)
- Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, 215163, Suzhou, China
| | - Tian Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Hanhan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
2
|
Wang J, Xu Q, Yang Y, Liu J, Kong W, Shi L. An electrochemical sensor founded on heterogeneous MXene & MOF composite for tanshinol sensing. Talanta 2024; 268:125344. [PMID: 37918243 DOI: 10.1016/j.talanta.2023.125344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
A new kind of electrochemical sensor based on the MXene & MOF composite-modified carbon cloth was prepared firstly by self-assembly through hydrogen bonds, and then by air-annealing process for detection. The preparation processing introduced chemical bonds between MXene and MOF, which remarkably enhanced the electron transfer ability. Accordingly, combing the unique features of MXene and MOF themselves, the novel electrochemical sensor exhibited exceptional performance to detect tanshinol. Via differential pulse voltammetry, we could obtain a linear tanshinol concentration range of 0.08-8 μM and the limit of detection is 0.034 μM. Furthermore, this developed electrochemical sensor could determine concentrations of tanshinol in real Chinese herbal samples, confirming its practicability and reliability.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Qingbin Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yang Yang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jinxin Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Linchun Shi
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
3
|
Sarmento CO, Pinheiro BFA, Abrahão J, Chaves OA, Moreira MB, Nikolaou S. Interactions of a Ruthenium‐Ketoprofen Compound with Human Serum Albumin and DNA: Insights from Spectrophotometric Titrations and Molecular Docking Calculations. ChemistrySelect 2022. [DOI: 10.1002/slct.202104020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Caroline O. Sarmento
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABIQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| | - Bruno F. A. Pinheiro
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABIQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| | - Josielle Abrahão
- Departamento de Bioquímica Universidade Estadual de Maringá-UEM 87020-900 Maringá PR Brasil
| | - Otávio A. Chaves
- Departamento de Química Centro de Química de Coimbra Universidade de Coimbra Rua Larga s/n 3004-535 Coimbra Portugal
| | - Mariete B. Moreira
- Departamento de Química Universidade Estadual de Londrina-UEL 86051-990 Londrina PR Brasil
| | - Sofia Nikolaou
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABIQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| |
Collapse
|
4
|
Dasari S, Singh S, Abbas Z, Sivakumar S, Patra AK. Luminescent lanthanide(III) complexes of DTPA-bis(amido-phenyl-terpyridine) for bioimaging and phototherapeutic applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119709. [PMID: 33823402 DOI: 10.1016/j.saa.2021.119709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/31/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
We report here a series of coordinatively-saturated and thermodynamically stable luminescent [Ln(dtntp)(H2O)] [Ln(III) = Eu (1), Tb (2), Gd (3), Sm (4) and Dy (5)] complexes using an aminophenyl-terpyridine appended-DTPA (dtntp) chelating ligand as cell imaging and photocytotoxic agents. The N,N″-bisamide derivative of H5DTPA named as dtntp is based on 4'-(4-aminophenyl)-2,2':6',2″-terpyridine conjugated to diethylenetriamine-N,N',N″-pentaacetic acid. The structure, physicochemical properties, detailed photophysical aspects, interaction with DNA and serum proteins, and photocytotoxicity were studied. The intrinsic luminescence of Eu(III) and Tb(III) complexes due to f → f transitions used to evaluate their cellular uptake and distribution in cancer cells. The solid-state structure of [Eu(dtntp)(DMF)] (1·DMF) shows a discrete mononuclear molecule with nine-coordinated {EuN3O6} distorted tricapped-trigonal prism (TTP) coordination geometry around the Eu(III). The {EuN3O6} core results from three nitrogen atoms and three carboxylate oxygen atoms, and two carbonyl oxygen atoms of the amide groups of dtntp ligand. The ninth coordination site is occupied by an oxygen atom of DMF as a solvent from crystallization. The designed probes have two aromatic pendant phenyl-terpyridine (Ph-tpy) moieties as photo-sensitizing antennae to impart the desirable optical properties for cellular imaging and photocytotoxicity. The photostability, coordinative saturation, and energetically rightly poised triplet states of dtntp ligand allow the efficient energy transfer (ET) from Ph-tpy to the emissive excited states of the Eu(III)/Tb(III), makes them luminescent cellular imaging probes. The Ln(III) complexes show significant binding tendency to DNA (K ~ 104 M-1), and serum proteins (BSA and HSA) (K ~ 105 M-1). The luminescent Eu(III) (1) and Tb(III) (2) complexes were utilized for cellular internalization and cytotoxicity studies due to their optimal photophysical properties. The cellular uptake studies using fluorescence imaging displayed intracellular (cytosolic and nuclear) localization in cancer cells. The complexes 1 and 2 displayed significant photocytotoxicity in HeLa cells. These results offer a modular design strategy with further scope to utilize appended N,N,N-donor tpy moiety for developing light-responsive luminescent Ln(III) bioprobes for theranostic applications.
Collapse
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Swati Singh
- Department of Chemical Engineering and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Zafar Abbas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Sri Sivakumar
- Department of Chemical Engineering and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
5
|
Lin L, Liao X, Li C, Abdel-Samie MA, Siva S, Cui H. Cold nitrogen plasma modified cuminaldehyde/β-cyclodextrin inclusion complex and its application in vegetable juices preservation. Food Res Int 2021; 141:110132. [PMID: 33641999 DOI: 10.1016/j.foodres.2021.110132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/13/2022]
Abstract
E. coli O157:H7 is one of the most common food-borne pathogens and usually related to contaminated vegetables. This study was to prepare an effective antibacterial agent and applied in vegetable juices. In this study, β-cyclodextrin inclusion complexof CUM (CUM /βCD-IC) was prepared using ultrasonication technique and then treated with cold nitrogen plasma (CNP) to observe its effect in the physicochemical and antibacterial properties of CUM/βCD-IC. Various characterization techniques such as fluorescence, fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) confirmed the formation of IC between CUM and βCD. Phase solubility and double reciprocal profiles studies proved the enhanced solubility of CUM with increasing amount of βCD and the guest/host stoichiometry of 1:1. Computational modeling and FT-IR indicated that the phenyl ring with isopropyl chain of CUM is inserted in the hydrophobic βCD. Investigations of thermal properties proved that the βCD-IC formation improved the stability of CUM. Antibacterial test results indicated that CNP-CUM/βCD-IC exhibited better antibacterial activity than CUM/βCD-IC. After CNP-CUM/βCD-IC treatment, it was observed by TEM that the cell membrane of E. coli O157:H7 was broken. In addition, the antibacterial activity of CNP-CUM/βCD-IC in vegetable juices was carried out and the findings revealed that CNP-CUM/βCD-IC has an excellent antibacterial effect on vegetable juices.
Collapse
Affiliation(s)
- Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Xue Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Mohamed A Abdel-Samie
- Department of Food and Dairy Sciences and Technology, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Subramanian Siva
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Yang Q, Liu Y, Zhang Z, Zhou F, Wang Z, Zheng B, Lu T. Probing the halogen bond donation ability of multivalent At-center in AtXn (X = Cl, Br, I; n = 1, 3, 5)⋯H2O/H2S complexes. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Zhang Z, Lu T, Ding L, Wang G, Wang Z, Zheng B, Liu Y, Ding XL. Cooperativity effects between regium-bonding and pnicogen-bonding interactions in ternary MF···PH3O···MF (M = Cu, Ag, Au): an ab initio study. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1784478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing, People’s Republic of China
| | - Luyang Ding
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Guanyu Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Yuan Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Xun Lei Ding
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Papaemmanouil C, Chatziathanasiadou MV, Chatzigiannis C, Chontzopoulou E, Mavromoustakos T, Grdadolnik SG, Tzakos AG. Unveiling the interaction profile of rosmarinic acid and its bioactive substructures with serum albumin. J Enzyme Inhib Med Chem 2020; 35:786-804. [PMID: 32200650 PMCID: PMC7144280 DOI: 10.1080/14756366.2020.1740923] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Rosmarinic acid, a phytochemical compound, bears diverse pharmaceutical profile. It is composed by two building blocks: caffeic acid and a salvianic acid unit. The interaction profile, responsible for the delivery of rosmarinic acid and its two substructure components by serum albumin remains unexplored. To unveil this, we established a novel low-cost and efficient method to produce salvianic acid from the parent compound. To probe the interaction profile of rosmarinic acid and its two substructure constituents with the different serum albumin binding sites we utilised fluorescence spectroscopy and competitive saturation transfer difference NMR experiments. These studies were complemented with transfer NOESY NMR experiments. The thermodynamics of the binding profile of rosmarinic acid and its substructures were addressed using isothermal titration calorimetry. In silico docking studies, driven by the experimental data, have been used to deliver further atomic details on the binding mode of rosmarinic acid and its structural components.
Collapse
Affiliation(s)
- Christina Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Maria V. Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Christos Chatzigiannis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Eleni Chontzopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Simona Golic Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
9
|
Probing Au⋯O and Au⋯P regium bonding interaction in AuX (X = F, Cl, Br)⋯RPHOH (R = CH3, F, CF3, NH2, CN) complexes. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Zhang C, Ren J, Xing Y, Cui M, Li N, Liu P, Wen X, Li M. Fabrication of hollow ZnO-Co3O4 nanocomposite derived from bimetallic-organic frameworks capped with Pd nanoparticles and MWCNTs for highly sensitive detection of tanshinol drug. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110214. [DOI: 10.1016/j.msec.2019.110214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
|
11
|
Tong W, Yang Y. Spectroscopic studies on the interaction of a novel porphyrin derivative (PFP) and bovine serum albumin. MEDICINE IN DRUG DISCOVERY 2019. [DOI: 10.1016/j.medidd.2020.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Kanwar R, Gradzielski M, Prevost S, Kaur G, Appavou MS, Mehta SK. Physicochemical stimuli as tuning parameters to modulate the structure and stability of nanostructured lipid carriers and release kinetics of encapsulated antileprosy drugs. J Mater Chem B 2019; 7:6539-6555. [PMID: 31584603 DOI: 10.1039/c9tb01330j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To unveil the effect of electrolyte concentration, pH and polymer addition on Tween 80 stabilized nanostructured lipid carriers (NLCs, based on dialkyldimethylammonium bromides DxDAB and Na oleate), an in-depth scattering analysis was performed. Dynamic and static light scattering (DLS/SLS) and small-angle neutron scattering (SANS) techniques along with zeta potential studies were exploited to understand the structural evolution and physical stability of NLCs. In these experiments, we varied the salt concentration, pH, and the admixture of Pluronic F127 in order to elucidate their effect on NLC morphologies. In most cases, two populations of different sizes are present which differ by one order of magnitude. The antileprosy drugs (ALD) Rifampicin and Dapsone were encapsulated in NLCs and the vector properties were assessed for a series of DxDAB (where x = 12, 14, 16 and 18) NLCs. The influence of composition on the entrapment and release behavior of NLCs was investigated: The size of NLCs correlates with the release rate of the incorporated drug. The interaction of drug-loaded NLCs with bovine serum albumin was studied to understand the release of ALD in the plasma.
Collapse
Affiliation(s)
- Rohini Kanwar
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sylvain Prevost
- Institut Max von Laue - Paul Langevin (ILL), 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Gurpreet Kaur
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - S K Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
13
|
Copper (II)-ploy-L-histidine functionalized multi walled carbon nanotubes as efficient mimetic enzyme for sensitive electrochemical detection of salvianic acid A. Biosens Bioelectron 2018; 121:257-264. [DOI: 10.1016/j.bios.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 11/23/2022]
|
14
|
The role of ancillary ligand substituents in the biological activity of triruthenium-NO complexes. J Inorg Biochem 2018; 186:197-205. [DOI: 10.1016/j.jinorgbio.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 11/19/2022]
|
15
|
Bayram SS, Green P, Blum AS. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:21-24. [PMID: 29367022 DOI: 10.1016/j.saa.2018.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.
Collapse
Affiliation(s)
- Serene S Bayram
- Department of Chemistry, Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Philippe Green
- Department of Chemistry, Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Amy Szuchmacher Blum
- Department of Chemistry, Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
16
|
Gao B, Chen T, Cui K. Constituting of a new surface-initiating system on polymeric microspheres and preparation of basic protein surface-imprinted material in aqueous solution. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baojiao Gao
- Department of Chemical Engineering; North University of China; Taiyuan 030051 China
| | - Tao Chen
- Department of Chemical Engineering; North University of China; Taiyuan 030051 China
| | - Kunli Cui
- Department of Chemical Engineering; North University of China; Taiyuan 030051 China
| |
Collapse
|
17
|
Kumar R, Kaur K, Uppal S, Mehta SK. Ultrasound processed nanoemulsion: A comparative approach between resveratrol and resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. ULTRASONICS SONOCHEMISTRY 2017; 37:478-489. [PMID: 28427660 DOI: 10.1016/j.ultsonch.2017.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 05/28/2023]
Abstract
Resveratrol is a naturally occurring therapeutic molecule used for treatment of diseases caused by oxidative stress. This investigation elucidates the advantages of fabrication of size controlled resveratrol inclusion complex. This has been done by encapsulating resveratrol-cyclodextrin inclusion complex in a phospholipid stabilized nanoemulsion formulated by ultrasonication emulsification method. The prepared nanoemulsion has been compared with resveratrol encapsulated nanoemulsion system. The morphology of the resveratrol nanoemulsion and inclusion complex nanoemulsion have been observed using transmission electron microscopy with average size 20.41±3.41 and 24.48±5.70nm respectively. The nanoemulsion showed good loading and release efficiency. The radical diminishing potential of resveratrol and its inclusion complex has been compared in nanoemulsion. The effect of UV irradiation (365nm) on resveratrol in different solvent systems (ethanol, water and nanoemulsion) indicated that nanoemulsion prevents degradation of resveratrol. Efforts have also been made to explore the interactions between bovine serum albumin and resveratrol in nanoemulsion.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Khushwinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| | - Shivani Uppal
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
18
|
Guo C, Yin Y, Duan J, Zhu Y, Yan J, Wei G, Guan Y, Wu X, Wang Y, Xi M, Wen A. Neuroprotective effect and underlying mechanism of sodium danshensu [3-(3,4-dihydroxyphenyl) lactic acid from Radix and Rhizoma Salviae miltiorrhizae = Danshen] against cerebral ischemia and reperfusion injury in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:283-289. [PMID: 25765834 DOI: 10.1016/j.phymed.2014.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/10/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
Sodium danshensu (SDSS), the sodium salt of danshensu (DSS), has the same pharmacological effects as DSS. In the present study, we aimed to investigate the neuroprotective effect and possible mechanism of SDSS against cerebral ischemic/reperfusion injury. Sprague-Dawley rats were randomly divided into four groups: sham, control, 30 mg/kg and 60 mg/kg SDSS. Cerebral ischemia was induced by 2 h of middle cerebral artery occlusion (MCAO). Neurological functional deficits were evaluated according to the modified neurological severity score (mNSS); cerebral infarct volume and histological damage were measured by TTC or H-E staining. In addition, the number of apoptotic cells and caspase 3/7 activity were assessed by TUNEL or Caspase-Glo assay. And the expression of apoptosis-regulatory proteins and the PI3K/Akt pathway were investigated by western blotting. Our results showed that treatment with SDSS for 5 days after MCAO remarkably improved neurologic deficits and survival rate, reduced infarct volume and the number of dead neurons. SDSS also decreased the number of apoptotic cells, regulated the expression of Bcl-2 and Bax, and increased the ratio of Bcl-2/Bax. Further study revealed that treatment with SDSS also increased the level of p-Akt and p-GSK-3β. Taken together, our results suggest that SDSS has the neuroprotective effect against cerebral I/R injury, and the potential mechanism might to inhibition of apoptosis through activating the PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jiajia Yan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiaoxiao Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Miaomaio Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
19
|
Liu R, Cheng Z, Jiang X. Comparative studies on the interactions of dihydroartemisinin and artemisinin with bovine serum albumin using spectroscopic methods. LUMINESCENCE 2014; 29:1033-46. [PMID: 24804646 DOI: 10.1002/bio.2655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/11/2013] [Accepted: 01/24/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Rong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province; China West Normal University; Nanchong 637002 China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province; China West Normal University; Nanchong 637002 China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province; China West Normal University; Nanchong 637002 China
| |
Collapse
|
20
|
Tang L, Jia W, Zhang D. The effects of experimental conditions of fluorescence quenching on the binding parameters of apigenin to bovine serum albumin by response surface methods. LUMINESCENCE 2013; 29:344-51. [DOI: 10.1002/bio.2550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/05/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Lin Tang
- College of Life Science; Shandong Normal University; Jinan People's Republic of China
| | - Wanteng Jia
- College of Life Science; Shandong Normal University; Jinan People's Republic of China
| | - Dong Zhang
- College of Life Science; Shandong Normal University; Jinan People's Republic of China
| |
Collapse
|
21
|
Spectroscopic Investigation of the Interactions of Cryptotanshinone and Icariin with Two Serum Albumins. J SOLUTION CHEM 2013. [DOI: 10.1007/s10953-013-0022-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Zhu S, Liu Y. Spectroscopic analyses on interaction of Naphazoline hydrochloride with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 98:142-147. [PMID: 22995546 DOI: 10.1016/j.saa.2012.08.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/14/2012] [Indexed: 06/01/2023]
Abstract
The fluorescence and ultraviolet spectroscopy were explored to study the interaction between Naphazoline hydrochloride (Naphcon) and bovine serum albumin (BSA) at three different temperatures (292, 301, and 310 K) under imitated physiological conditions. The quenching mechanism of BSA by Naphacon was interpreted using the Stern-Volmer mechanism, and a combined quenching (dynamic and static quenching). The binding constants, binding sites and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction system were calculated at different temperatures. According to Förster non-radiation energy transfer theory, the binding distance between BSA and Naphcon was found to be 4.71 nm. Synchronous fluorescence spectroscopy showed the conformation of BSA changed in the presence of Naphacon. In addition, the effect of some common metal ions (Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Fe(2+)) on the binding constant between Naphcon and BSA was examined.
Collapse
Affiliation(s)
- Shizhong Zhu
- Farming Development Services Center, Jinghai, 300016 Tianjin, China.
| | | |
Collapse
|
23
|
Zhang J, Xiong D, Chen L, Kang Q, Zeng B. Interaction of pyrrolizine derivatives with bovine serum albumin by fluorescence and UV-Vis spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 96:132-138. [PMID: 22659280 DOI: 10.1016/j.saa.2012.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/26/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
The interaction between pyrrolizine derivatives (PD) and bovine serum albumin (BSA) under imitated physiological conditions was analyzed by fluorescence and ultraviolet spectra. The experiments were conducted at three different temperatures (302, 306 and 310 K) and the results showed that PD caused the fluorescence quenching of BSA through a combined quenching procedure. The binding constant (K(a)), binding-site number (n) between PD and BSA at different temperatures were obtained. According to Förster non-radiation energy transfer theory, the binding distance (r) between BSA and PD was calculated. The corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) were also obtained. The comparison of binding potency of PD and BSA suggested that the substituent on the benzene ring could enhance the binding affinity of PD and BSA. Finally, we investigated the possible sub-domain on BSA where bind PD by displacement experiments.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Physics, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | | | | | | | | |
Collapse
|
24
|
Cheng Z. Comparative studies on the interactions of honokiol and magnolol with human serum albumin. J Pharm Biomed Anal 2012; 66:240-51. [DOI: 10.1016/j.jpba.2012.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 11/25/2022]
|
25
|
Punith R, Seetharamappa J. Spectral characterization of the binding and conformational changes of serum albumins upon interaction with an anticancer drug, anastrozole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 92:37-41. [PMID: 22402577 DOI: 10.1016/j.saa.2012.02.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/01/2012] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
The present study employed different optical spectroscopic techniques viz., fluorescence, FTIR, circular dichroism (CD) and UV-vis absorption spectroscopy to investigate the mechanism of interaction of an anticancer drug, anastrozole (AZ) with transport proteins viz., bovine serum albumin (BSA) and human serum albumin (HSA). The drug, AZ quenched the intrinsic fluorescence of protein and the analysis of results revealed the presence of dynamic quenching mechanism. The binding characteristics of drug-protein were computed. The thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°) were calculated to be +92.99 kJ/mol and +159.18 J/mol/K for AZ-BSA and, +99.43 kJ/mol and +159.19 J/mol/K for AZ-HSA, respectively. These results indicated that the hydrophobic forces stabilized the interaction between the drug and protein. CD, FTIR, absorption, synchronous and 3D fluorescence results indicated that the binding of AZ to protein induced structural perturbation in both serum albumins. The distance, r between the drug and protein was calculated based on the theory of Förster's resonance energy transfer and found to be 5.9 and 6.24 nm, respectively for AZ-BSA and AZ-HSA.
Collapse
Affiliation(s)
- Reeta Punith
- Department of Chemistry, Karnatak University, Dharwad, India
| | | |
Collapse
|
26
|
Sun Y, Wei S, Zhao Y, Hu X, Fan J. Characterization of the interaction between 4-(tetrahydro-2-furanmethoxy)-N-octadecyl-1,8-naphthalimide and human serum albumin by molecular spectroscopy and its analytical application. APPLIED SPECTROSCOPY 2012; 66:464-469. [PMID: 22449330 DOI: 10.1366/11-06425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel 4-(tetrahydro-2-furanmethoxy)-N-octadecyl-1,8-naphthalimide (TNN) was synthesized as a spectrofluorimetric probe for the determination of proteins. The effect of different solvents on the spectral characteristics of TNN was investigated. The results showed that TNN displayed dependent solvent polarity properties due to the effect of internal charge transfer. The interactions between TNN and human serum albumin (HSA) were studied by fluorescence and absorption spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by TNN was the result of the formation of TNN-HSA complex. The binding parameters of interactions between TNN and HSA at different temperatures were obtained according to the Stern-Volmer equation. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), for the interactions were calculated to be -7.31 kJ mol(-1) and 72.75 J mol(-1) K(-1) according to the van't Hoff equation, indicating that the hydrogen bonds and hydrophobic interactions were the dominant intermolecular force in stabilizing the complex. The effect of TNN on the conformation of HSA was analyzed by circular dichroism and synchronous fluorescence spectroscopy. Furthermore, the results of displacement experiments using warfarin indicated that TNN could bind to site I of HSA. The fluorescence of TNN could be largely quenched by HSA, based on which a new fluorometric method for detecting HSA in the HCl-Tris buffer solution (pH = 7.4) was developed. The linear ranges of the calibration curves were 0.1~14.2 μM for HSA, 0.1~13.0 μM for bovine serum albumin (BSA), 0.2~9.7 μM for γ-globulin, and 0.3~11.3 μM for hemoglobin (Hb), with detection limits (3σ) of 1.37 × 10(-10) M for HSA, 1.84 × 10(-10) M for BSA, 3.14 × 10(-10) M for γ-globulin, and 6.86 × 10(-10) M for Hb. The effect of metal cations on the fluorescence spectra of TNN in ethanol was also investigated. The method has been applied to the determination of total proteins in human serum samples collected from the hospital and the results were in good agreement with those reported by the hospital.
Collapse
Affiliation(s)
- Yang Sun
- School of Chemical Engineering, Northwest University, No.229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | | | | | | | | |
Collapse
|
27
|
Anand U, Kurup L, Mukherjee S. Deciphering the role of pH in the binding of ciprofloxacin hydrochloride to bovine serum albumin. Phys Chem Chem Phys 2012; 14:4250-8. [PMID: 22354288 DOI: 10.1039/c2cp00001f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of the added fluoroquinolone, Ciprofloxacin Hydrochloride (CpH), on structural properties of Bovine Serum Albumin (BSA) was investigated by Circular Dichroism (CD), steady-state, time-resolved and Dynamic Light Scattering (DLS) spectroscopic approaches. The intrinsic fluorescence of the Tryptophan (Trp) amino acid residue in the globular protein BSA was made use of and the effect of pH at two different temperatures was thoroughly investigated. CD results indicate that CpH induces some structural changes in BSA and this has been well-supported by steady-state, lifetime and DLS data. The fluorescence intensity of Trp gradually decreases with the rise in concentration of CpH and we have conclusively proved that at pH 7.4 and 9.2, the mechanism of fluorescence quenching is mostly dynamic in nature, whereas at pH 4.5 mainly static quenching is operational. Thermodynamic parameters have been studied to rationalize the nature of binding of CpH to BSA, and we have concluded that hydrophobic and van der Waals forces play an important role in the process of drug-protein interaction at three different pH values. The lifetime of Trp was found to decrease with the rise in CpH concentration and the percentage reduction in lifetime was found to be a function of the pH of the medium under investigation.
Collapse
Affiliation(s)
- Uttam Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research Bhopal, ITI Campus (Gas Rahat) Building, Govindpura, Bhopal 462 023, Madhya Pradesh, India
| | | | | |
Collapse
|
28
|
Yu M, Ding Z, Jiang F, Ding X, Sun J, Chen S, Lv G. Analysis of binding interaction between pegylated puerarin and bovine serum albumin by spectroscopic methods and dynamic light scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 83:453-460. [PMID: 21945127 DOI: 10.1016/j.saa.2011.08.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/25/2011] [Accepted: 08/27/2011] [Indexed: 05/31/2023]
Abstract
The interaction between bovine serum albumin (BSA) and pegylated puerarin (Pur) in aqueous solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy and circular dichroism spectra (CD), as well as dynamic light scattering (DLS). The fluorescence of BSA was strongly quenched by the binding of pegylated Pur to BSA. The binding constants and the number of binding sites of mPEG(5000)-Pur with BSA were 2.67±0.12 and 1.37±0.05 folds larger after pegylating, which were calculated from the data obtained from fluorescence quenching experiments. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be 4.09 kJ mol(-1) and 20.01 J mol(-1) K(-1), respectively, according to Van't Hoff equation, indicating that the hydrophobic force plays a main role in the binding interaction between pegylated Pur and BSA. In addition, the negative sign for Gibbs free energy change (ΔG) implies that the interaction process is spontaneous. Moreover, the results of synchronous fluorescence and CD spectra demonstrated that the microenvironment and the secondary conformation of BSA were changed. Comparing with Pur, all our data collected indicated that pegylated Pur interacted with BSA in the same way as that of Pur, but docked into the hydrophobic pocket of BSA with more accessibility and stronger binding force. DLS measurements showed monomethoxy polyethylene glycol (mPEG) have an effect on BSA conformation, and revealed that changes in BSA size might be due to increases in binding constant and the absolute values of ΔG after Pur pegylation.
Collapse
Affiliation(s)
- Meirong Yu
- Zhejiang Chinese Medical University, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang G, Wang L, Fu P, Hu M. Mechanism and conformational studies of farrerol binding to bovine serum albumin by spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 82:424-431. [PMID: 21831703 DOI: 10.1016/j.saa.2011.07.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/05/2011] [Accepted: 07/13/2011] [Indexed: 05/31/2023]
Abstract
The mechanism and conformational changes of farrerol binding to bovine serum albumin (BSA) were studied by spectroscopic methods including fluorescence quenching technique, UV-vis absorption, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy under simulative physiological conditions. The results of fluorescence titration revealed that farrerol could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The thermodynamic parameters enthalpy change and entropy change for the binding were calculated to be -29.92 kJ mol(-1) and 5.06 J mol(-1) K(-1) according to the van't Hoff equation, which suggested that the both hydrophobic interactions and hydrogen bonds play major role in the binding of farrerol to BSA. The binding distance r deduced from the efficiency of energy transfer was 3.11 nm for farrerol-BSA system. The displacement experiments of site markers and the results of fluorescence anisotropy showed that warfarin and farrerol shared a common binding site I corresponding to the subdomain IIA of BSA. Furthermore, the studies of synchronous fluorescence, CD and FT-IR spectroscopy showed that the binding of farrerol to BSA induced conformational changes in BSA.
Collapse
Affiliation(s)
- Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235, Nanjing East Road, Nanchang 330047, Jiangxi, China.
| | | | | | | |
Collapse
|