1
|
Shen X, Zhang Y, Xu J, Yu X, Bai W, Huang X, Lei H. Central Chirality and Axial Chirality Recognition of the Enantioselective Antibodies to Herbicide Metolachlor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10055-10064. [PMID: 38634336 DOI: 10.1021/acs.jafc.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Enantioselective antibodies have emerged as efficient tools in the field of chiral chemical detection and separation. However, it is complicated to obtain a highly stereoselective antibody due to the unclear recognition mechanism. In this study, the hapten of metolachlor was synthesized and enantio-separated. The absolute configuration of the four haptens obtained was identified by the computed and experimental electronic circular dichroism comparison. Five polyclonal antibodies against the Rac-metolachlor and its enantiomers were generated by immunization. The cross-activity of all the 5 antibodies with 44 structural analogues, including metolachlor enantiomers, was tested. It demonstrated that antibodies have higher specificity to recognize central chirality than axial chirality. Especially, αRR-MET-Ab exhibited excellent specificity and stereoselectivity. Accordingly, 3D-QSAR models were constructed and revealed that paired stereoisomers exhibited opposite interactions with the antibodies. It is the first time that the antibodies against four stereoisomers were prepared and analyzed, which will be conducive to the rational design of the stereoselective antibodies.
Collapse
Affiliation(s)
- Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - JingJing Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - XiaoTing Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - WenMing Bai
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinan Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510400, China
| | - HongTao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wulf J, Lewit N, Akter S, K Bwambok D, Anum D, Alonge T, Kuedukey C, Bolton B, Dassow B, Halim MA, O Fakayode S. Evaluating binding and interaction of selected pesticides with serum albumin proteins by Raman, 1H NMR, mass spectrometry and molecular dynamics simulation. J Biomol Struct Dyn 2024:1-14. [PMID: 38197596 DOI: 10.1080/07391102.2024.2302344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
Addressing the acute pesticide poisoning and toxicity to humans, is a global challenge of top priority. Serum albumin is the most abundant plasma protein, capable of binding with herbicide and pesticide residues. This study reports multifaceted approaches for in-depth and robust investigation of the molecular interactions of selected pesticides, including propanil (PPL), bromoxynil (BXL), metolachlor (MLR) and glyphosate (GPE) with bovine serum albumin (BSA) proteins using experimental (Raman and FTIR spectroscopy, native mass spectrometry and high field 1H NMR), molecular dynamics (MD) simulation and principal component analysis (PCA). The binding of pesticides with BSA resulted in BSA amide I and amide II Raman spectral shifts. PCA of Raman spectra of serum-pesticide complexes showed the grouping of pesticides on the score plot based on the similarities and differences in pesticides' chemical structures. Native mass spectrometry results revealed strong adduct formation of the pesticides with the protein. The observed changes in chemical shifts, peak broadening or peak disappearance of characteristic proton signals of the pesticides, indicated altered chemical environments due to binding BSA-pesticides interactions. The results of MD simulation conducted for over 500 ns revealed strong pesticides interaction with LEU197, LEU218, LEU237, TRP213, SER286 and ILE289 residues to the site I of BSA. Free energy landscapes provided insights into the conformational changes in BSA on the binding of pesticides. Overall, the experimental and computational results are in consonant and indicate the binding of pesticides into the site I and site II (sub-domain IIA) of the BSA via hydrogen bonding, non-covalent and hydrophobic interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Josefa Wulf
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Noam Lewit
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Shaila Akter
- Division of Quantum Chemistry, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - David K Bwambok
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Davis Anum
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Temitope Alonge
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | | | - Brinkley Bolton
- Department of Chemistry, Physics & Astronomy, Georgia College & State University, Milledgeville, GA, USA
| | - Bailey Dassow
- Department of Chemistry, Physics & Astronomy, Georgia College & State University, Milledgeville, GA, USA
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Sayo O Fakayode
- Department of Chemistry, Physics & Astronomy, Georgia College & State University, Milledgeville, GA, USA
| |
Collapse
|
3
|
Chen R, He RJ, Guo D, Zhang ZF, Zhang WG, Fan J. Interactions of diclazuril enantiomers with serum albumins: Multi-spectroscopic and molecular docking approaches. J Mol Recognit 2022; 35:e2948. [PMID: 35094438 DOI: 10.1002/jmr.2948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 01/17/2023]
Abstract
In this work, multi-spectroscopic and molecular docking methods have been conducted in the investigation of enantioselective interactions between diclazuril enantiomers and human/bovine serum albumins (HSA/BSA). The binding constants between serum albumins (SAs) and diclazuril enantiomers revealed that SAs exhibited stronger binding affinity for (R)-diclazuril than (S)-enantiomer. In addition, the fluorescence quenching of SAs induced by diclazuril enantiomers was ascribed to static quenching mechanism, in which hydrogen bonds and Van der Waals forces were the main interactions. According to the thermodynamic study, binding of diclazuril enantiomers and SAs was an exothermic process driven by enthalpy change. Then, circular dichroism spectroscopy of SAs with diclazuril enantiomers revealed that the SAs conformation had changed in the presence of diclazuril. Moreover, molecular docking technology was applied in exploration of interactions between SAs and diclazuril enantiomers. The docking energy between SAs and (R)-diclazuril was larger than (S)-diclazuril, which indicated that the affinity of SAs with (R)-diclazuril was stronger than (S)-enantiomer. This work may provide valuable information for explaining differences in pharmacokinetics and residue elimination of diclazuril enantiomers in living organisms.
Collapse
Affiliation(s)
- Ran Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Ru-Jian He
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China.,Guangzhou Research & Creativity Biotechnology Co. Ltd., Guangzhou, China
| | - Zhi-Feng Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Wei-Guang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Guo D, He R, Su W, Zheng C, Zhang W, Fan J. Stereochemistry of chiral pesticide uniconazole and enantioselective metabolism in rat liver microsomes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104964. [PMID: 34802514 DOI: 10.1016/j.pestbp.2021.104964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In this work, stereochemistry of uniconazole enantiomers and their metabolism behaviors in rat liver microsomes have been researched. Significance analysis has been applied in data processing. Absolute configurations of uniconazole enantiomers were identified through vibrational circular dichroism spectroscopy. According to their elution order from the chiral column using the CO2-methanol (80:20, v/v) mixture, two eluted fractions were determined to be (R)-uniconazole and (S)-uniconazole, respectively. A high-efficient and sensitive LC-MS/MS chiral analysis method was established for investigating the metabolism of uniconazole enantiomers in rat liver microsomes. The metabolic half-life of (R)-uniconazole (38.7 min) in rat liver microsomes was half that of (S)-enantiomer (74.5 min), and maximum velocity of metabolism, Michaelis constant of metabolism as well as the intrinsic metabolic clearance of (R)-uniconazole were significantly higher than (S)-enantiomer (p < 0.05), which indicated that (R)-uniconazole was preferentially metabolized in rat liver microsomes. By the virtue of molecular docking, (R)-uniconazole exhibited a higher binding affinity to cytochrome CYP2D2 than (S)-enantiomer, which corroborated well with the metabolism results. This work will shed light on the risk assessment of uniconazole toward human health and the ecological environment.
Collapse
Affiliation(s)
- Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; Guangzhou Research & Creativity Biotechnology Co. Ltd., Guangzhou 510663, China
| | - Rujian He
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Wenxia Su
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Chun Zheng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Dahiya V, Anand BG, Kar K, Pal S. In vitro interaction of organophosphate metabolites with bovine serum albumin: A comparative 1H NMR, fluorescence and molecular docking analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:39-50. [PMID: 31973869 DOI: 10.1016/j.pestbp.2019.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Since the exposure of organophosphate pesticides are known to cause severe health consequences, it is important to understand the molecular interaction of these pesticides metabolites with vital biomolecules, especially with the proteins. Here, considering bovine serum albumin (BSA) as a model protein, we have examined its interaction with two selected organophosphate metabolites, 3,5,6-trichloro-2-pyridinol (TCPy) and paraoxon methyl (PM). TCPy and PM are resultant metabolites of two most widely used organophosphate pesticides chlorpyrifos and parathion respectively. 1H NMR line broadening, selective spin-lattice relaxation rate measurements, saturation transfer difference (STD) NMR of both TCPy and PM were carried out in the presence and absence of BSA. The obtained values of the affinity index (A), binding constants (Ka) and thermodynamic parameters indicated strong organophosphates-BSA interaction. Further, fluorescence quenching data on TCPy-BSA and PM-BSA interactions strongly supported the NMR results, besides providing the stoichiometry of these complexes. Molecular docking analysis unraveled viable, strong hydrogen bonds and electrostatic interactions in TCPy-BSA and PM-BSA complexes. This study also revealed substantial time-dependent changes in the 1H NMR intensity of PM in the presence of BSA, which suggests faster degradation of PM with increasing protein concentration during protein-metabolite interactions. The hydrolysis is attributed to the esterase-like action of BSA. The result provides key insights into the direct interaction of the organophosphate metabolites with a biologically important carrier protein, serum albumin.
Collapse
Affiliation(s)
- Vandana Dahiya
- Department of Chemistry, Indian Institute of Technology Jodhpur, 342011, India
| | - Bibin G Anand
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, 342011, India
| | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology Jodhpur, 342011, India.
| |
Collapse
|
6
|
Zhu H, Sun H, Yao Y, Wang F, Zhang Y, Liu X. Fate and adverse effects of hexabromocyclododecane diastereoisomers (HBCDDs) in a soil-ryegrass pot system. CHEMOSPHERE 2017; 184:452-459. [PMID: 28618277 DOI: 10.1016/j.chemosphere.2017.05.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
This study explored the fate and adverse effects of 3 main hexabromocyclododecane diastereoisomers (α-, β-, and γ-HBCDDs) in a soil pot system planted with ryegrass (Lolium perenne L.) using a short-term (8 weeks) experiment. At the end of the experiment, soil urease activity in planted spiked soil increased and catalase activity decreased; while there was no obvious change in sucrase and peroxidase activities. HBCDDs mainly accumulated in the root of ryegrass, with root concentration factors (RCF) in the range of 1.46-4.43 and only a small part was transferred to the stem (SCF: 0.198-0.305) and leaf (LCF: 0.042-0.062). The concentration factors varied for different HBCDD diastereoisomers, being in the order of α- > β- > γ-HBCDD for all tissues, indicating preferential accumulation of α-HBCDD in ryegrass tissues. Moreover, the enantiomeric analysis revealed an enrichment of (+)-α-, (-)-β- and (+)-γ-HBCDD enantiomers in ryegrass tissues. β- and γ-HBCDDs (up to 1.90% and 4.11%, respectively) were transformed to aα-HBCDD in ryegrass, while no isomerization product from α-HBCDD was found. Hydroxylated HBCDDs metabolites, such as monoOHHBCDDs and diOHHBCDDs were found in ryegrass tissues for the first time.
Collapse
Affiliation(s)
- Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanwei Zhang
- Key Laboratory of Original Agro-environmental Quality of Ministry of Agriculture, Tianjin Key Laboratory of Agro-environment & Agro-product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
| | - Xiaowei Liu
- Key Laboratory of Original Agro-environmental Quality of Ministry of Agriculture, Tianjin Key Laboratory of Agro-environment & Agro-product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
| |
Collapse
|
7
|
Dahiya V, Chaubey B, Dhaharwal AK, Pal S. Solvent-dependent binding interactions of the organophosphate pesticide, chlorpyrifos (CPF), and its metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), with Bovine Serum Albumin (BSA): A comparative fluorescence quenching analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 139:92-100. [PMID: 28595929 DOI: 10.1016/j.pestbp.2017.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/17/2017] [Accepted: 04/22/2017] [Indexed: 05/19/2023]
Abstract
Analysis of the interaction of pesticides and their metabolites with the cellular proteins has drawn considerable attention in past several years to understand the effect of pesticides on environment and mankind. In this study, we have investigated the binding interaction of Bovine Serum Albumin (BSA) with a widely used organophosphorous insecticide chlorpyrifos (CPF), and its stable metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) to provide a comparative analysis of the two molecules by employing various spectroscopic techniques viz., UV-vis absorption, Circular Dichroism (CD), and Fluorescence spectroscopy. The fluorescence quenching studies of BSA emission in two different solvents viz., water and methanol in presence of CPF and TCPy have led to the revelation of several interesting facts about the pesticide-protein interaction. It has been found that both the molecules cause static quenching of BSA emission as seen from the Stern-Volmer constant (Ksv) irrespective of the solvent used for the analysis. While TCPy is a stronger quencher in water, it exhibits comparable quenching capacity with CPF in methanol. The solvent dependent differential binding interaction of the two molecules finally indicates possibility of diverse bio-distribution of the pesticides within human body. The UV-vis and CD spectra of BSA in presence of the test molecules have unravelled that the molecules formed ground state complex that are highly reversible in nature and have minimal effect on the protein secondary structure. Furthermore it is also understood that structural changes of BSA in presence of CPF is significantly higher compared to that in presence of TCPY.
Collapse
Affiliation(s)
- Vandana Dahiya
- Department of Chemistry, Indian Institute of Technology Jodhpur, 342011, India
| | - Bhawna Chaubey
- Department of Chemistry, Indian Institute of Technology Jodhpur, 342011, India
| | - Ashok K Dhaharwal
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology Jodhpur, 342011, India.
| |
Collapse
|
8
|
Xu Y, Hong T, Chen X, Ji Y. Affinity capillary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin. Electrophoresis 2017; 38:1366-1373. [DOI: 10.1002/elps.201600375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Yujing Xu
- Department of Analytical Chemistry; P.R. China Pharmaceutical University; Nanjing P.R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing P.R. China
| | - Tingting Hong
- Department of Analytical Chemistry; P.R. China Pharmaceutical University; Nanjing P.R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing P.R. China
| | - Xueping Chen
- Department of Analytical Chemistry; P.R. China Pharmaceutical University; Nanjing P.R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing P.R. China
| | - Yibing Ji
- Department of Analytical Chemistry; P.R. China Pharmaceutical University; Nanjing P.R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing P.R. China
| |
Collapse
|
9
|
Shareghi B, Farhadian S, Zamani N, Salavati-Niasari M, Gholamrezaei S. Stability and enzyme activity of lysozyme in the presence of Fe3O4 nanoparticles. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1520-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Spectroscopic and molecular simulation studies on the interaction of di-(2-ethylhexyl) phthalate and human serum albumin. LUMINESCENCE 2014; 30:198-206. [DOI: 10.1002/bio.2713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/28/2014] [Accepted: 05/07/2014] [Indexed: 11/07/2022]
|
11
|
Zhang Q, Wang Y, Ni Y, Kokot S. Analysis of Complex Molecular Systems: The Impact of Multivariate Analysis for Resolving the Interactions of Small Molecules with Biopolymers – a Review. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.865202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|